Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41518
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌
dc.contributor.authorShao-Chieh Chenen
dc.contributor.author陳紹傑zh_TW
dc.date.accessioned2021-06-15T00:21:29Z-
dc.date.available2011-02-12
dc.date.copyright2009-02-12
dc.date.issued2009
dc.date.submitted2009-02-04
dc.identifier.citation1. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15 – 26.
2. Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077.
3. Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
4. Gebeyehu, D.; Maening, B.; Drechsel, J.; Leo, K.; Pfeiffer, M. Sol. Energy Mater. Sol. Cells 2003, 79, 81.
5. Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Appl. Phys. Lett. 1991, 58, 1061.
6. Geens, W.; Aernouts, T.; Poortmans, J.; Hadziioannou, G. Thin Solid Films 2002, 403-404, 438.
7. Peumans, P.; Uchida, S.; Forrest, S. Nature 2003, 425, 158.
8. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friends, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 78, 451.
9. Yu, G.; Heeger, A. J. J. Appl. Phys. 1998, 78, 4510.
10. Yang, C. Y.; Heeger, A. J. Synth. Met. 1996, 83, 85.
11. Wudl, F. Acc. Chem. Res. 1992, 25, 157161.
12. Nunzi, J. M. C. R. Physique 2002, 3, 523.
13. Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Appl. Phys. Lett. 1993, 62, 585.
14. Mende, L. S.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119.
15. Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M.; Kroon, M.; Michels, M. H. J.; Janssen, R. A. J. Nano Lett. 2005, 5, 579.
16. Shaheen, S.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841.
17. Van Duren, J.; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sievel, A. B.; Hummelen, J. C.; Janssen, R. A. J. Adv. Funct. Mater. 2004, 14, 425.
18. Yokoyama, H.; Kramer, E. J.; Rafailovich, M. H.; Sokolov, J.; Schwarz, S. A. Macromolecules 1998, 31, 8826.
19. Pivrikas, A.; Juska, G.; Mozer, A. J.; Scharber, M.; Karlauskas, A.; Sariciftci, N. S.; Stubb, H.; Osterbacka, R. Phys. Rev. Lett. 2005, 94, 176806.
20. Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Osterbacka, R.; Westerling, M.; Juska, G. Appl. Phys. Lett. 2005, 86, 112104.
21. Mozer, A. J.; Sariciftci, N. S.; Pivrikas, A.; O¬ sterbacka, R.; Juska, G.; Brassat, L. H. Phys. Rev. B 2005, 71, 35214
22. Mozer, A.; Sariciftci, N. S. Chem. Phys. Lett. 2004, 389, 438.
23. Pacios, R.; Bradley, D. D.; Nelson, J.; Brabec, C. J. Synth. Met. 2003, 137, 1469.
24. Mihailetchi, V.; Van Duren, K. K.; Blom, P.; Hummelen, J. C.; Janssen, R.; Kroon, J.; Rispens, M.; Verhees, W.; Wienk, M. Adv. Funct. Mater. 2006, 16, 699.
25. Van Duren, J.; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sievel, A. B.; Hummelen, J. C.; Janssen, R. A. J. Adv. Funct. Mater. 2004, 14, 425.
26. Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgh, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. AdV. Funct. Mater. 2004, 14, 1005.
27. Yang, X.; Van Duren, J. K. J.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Macromolecules 2004, 37, 2151.
28. Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
29. Van Duren, J.; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sievel, A. B.; Hummelen, J. C.; Janssen, R. A. J. AdV. Funct. Mater. 2004, 14, 425.
30. Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner, M.; Sariciftci, N. S. Thin Solid Films 2006, 511-512, 587.
31. Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgh, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. Adv. Funct. Mater. 2004, 14, 1005.
32. Martens, T.; Hoen, J. D.; Munters, T.; Beelen, Z.; Goris, L.; Monca, J.; Oliesloeger, M. D.; Vanderzende, D.; De Schopper, L.; Andriessen, R. Synth. Met. 2003, 138, 243.
33. Wienk, M.; Kroon, J. M.; Verhees, W. J. H.; Krol, J.; Hummelen, J. C.; Van Haal, P.; Janssen, R. A. J. Angew. Chem., Int. Ed. 2003, 42, 3371.
34. Chirvaze, D.; Chiguvare, Z.; Knipper, M.; Parisi, J.; Dyakonov, V.; Hummelen, J. C. J. Appl. Phys. 2003, 93, 3376.
35. Chirvaze, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Nanotechnology 2004, 15, 1314.
36. Reyes, R. R.; Kim, K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506.
37. Al Ibrahim, M.; Klaus Roth, H.; Schroedner, M.; Kalvin, A.; Zhokhavets, U.; Gobsch, G.; Scharff, P.; Sensfuss, S. Org. Electron. 2005, 6, 65.
38. Ahn, T.; Choi, B.; Ahn, S. N.; Han, S. N.; Lee, H. Synth. Met. 2001, 117, 219.
39. Chirvaze, D.; Chiguvare, Z.; Knipper, M.; Parisi, J.; Dyakonov, V.; Hummelen, J. C. Synth. Met. 2003, 138, 299.
40. Takahashi, K.; Tsuji, K.; Inote, K.; Yamaguchi, T.; Kanura, T.; Murata, K. Synth. Met. 2004, 130, 177.
41. Padinger, F.; Rittberger, R.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.
42. Schilinsky, P.; Waldauf, P.; Brabec, C. J. J. Appl. Phys. Lett. 2002, 81, 3885.
43. Kim, J.; Kim, S.; Lee, H.; Lee, K.; Ma, W.; Huong, X.; Heeger, A. J. Adv. Mater. 2006, 18, 572.
44. Prosa, T. J.; Winokur, M. J.; Moulton, M. M.; Smith, P.; Heeger, A. J.Macromolecules 1992, 25, 4364.
45. Bao, Z.; Dodabalapur, A.; Lovinger, A. Appl. Phys. Lett. 1996, 69, 4108.
46. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
47. Padinger, F.; Rittberger, R.; Sariciftci, N. S. AdV. Funct. Mater. 2003, 13, 85.
48. Chirvaze, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Nanotechnology 2004, 15, 1314.
49. Camaioni, N.; Ridolfi, G.; Casalbore, G. M.; Possamai, G.; Maggini, M. Adv. Mater. 2002, 14, 1735.
50. Ahn, T.; Sein Holta, H. L. Appl. Phys. Lett. 2002, 80, 392.
51. Brown, P. J.; Thomas, D. S.; Ko¨hler, A.; Wilson, J.; Kim, J. S.; Rainsdale, C.; Sirringhaus, H.; Friend, R. H. Phys. ReV. B 2003, 67, 064203.
52. Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stuhn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Adv. Funct. Mater. 2005, 15, 1193.
53. Mullekom, H. A. M. v.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mat. Sci. Eng. R. 2001, 32, 1-40.
54. C. Soci, I.-W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Guadiana, C. J. Brabec, A. J. Heeger, Adv. Funct. Mater. 2007, 17, 632–636.
55. K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533–4542.
56. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324 – 1338.
57. H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Mater. Sci. Eng. R 2001, 32, 1–40.
58. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen, Angew. Chem. 2003, 115, 3493 – 3497; Angew. Chem. Int. Ed. 2003, 42, 3371–3375.
59. Y. Yao, C. Shi, G. Li, V. Shrotriya, Q. Pei, Y. Yang, Appl. Phys. Lett. 2006, 89, 153507.
60. L. M. Andersson,O. Inganas, Appl. Phys. Lett. 2006, 88, 082103.
61. X. Wang, E. Perzon, F. Oswald, F. Langa, S. Admassie, M. R. Andersson,O. Inganas, Adv. Funct. Mater. 2005, 15, 1665–1670.
62. Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; Hal, P. A.; Janssen, R. A. J. Adv. Funct. Mater. 2002, 12, 709.
63. Svensson, M.; Zhang, F.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganäs, O.; Andersson, M. R. Adv. Mater. 2003, 15, 988.
64. Wang, X.; Perzon, E.; Delgado, J. L.; Cruz, P.; Zhang, F.; Langa, F.; Andersson, M.; Inganäs O. Appl. Phys. Lett. 2004, 85, 5081-5083.
65. Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganäs, O. Adv. Funct. Mater. 2005, 15, 745.
66. Xia, Y.; Luo, J.; Deng, X.; Li, X.; Li, D.; Zhu, X.; Yang, W.; Cao, Yong Macromol. Chem. Phys. 2006, 207, 511–520.
67. Schulze, K.; Uhrich C.; Schüppel, R.; Leo K.; Pfeiffer, M.; Brier, E.; Reinold, E.; Bäuerle, P. Adv. Mater. 2006, 18 2872.
68. Ashraf, R. S.; Shahid, M.; Klemm, E.; Al-Ibrahim, M.; Sensfuss, S. Macromol. Rapid Commun. 2006, 27, 1454.
69. Xia, Y.; Deng, X.; Wang, L.; Li, X.; Zhu, X.; Cao, Y. Macromol. Rapid Commun. 2006, 27, 1260.
70. Wang, X.; Perzon, E.; Mammo, W.; Oswald, F.; Admassie, S.; Persson, N. K.; Langa, F.; Andersson, M. R.; Inganas, O. Thin Solid Films 2006, 511 – 512, 576 – 580.
71. Shi, C.; Yao, Y.; Y. Yang; Pei, Q. J. AM. CHEM. SOC. 2006, 128, 8980-8986.
72. Wienk M. M.; Turbiez, M. G. R.; Struijk, M. P.; Fonrodona, M.; Janssena, R. A. J. Appl. Phys. Lett. 2006, 88, 153511-153513.
73. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Funct. Mater. 2007, 19, 2295.
74. Yang, J.; Garcia, A.; Nguyen, T. Q. Appl. Phys. Lett. 2007, 90, 103514.
75. Mammoa, W.; Admassiea, S.; Gadisab, A.; Zhangb, F.; Inganas, O.; Andersson, M. R. Solar Energy Materials & Solar Cells 2007, 91, 1010.
76. Gadisa, A.; Mammo, W.; Andersson L. M.; Admassie, S.; Zhang, F.; Andersson, M. R.; Inganä, O. Adv. Funct. Mater. 2007, 17, 3836.
77. Huo, L.; He, C.; Han, M.; Zhou, E.; Li, Y. Polymer Science: Part A 2007, 45, 3861.
78. Tan, Z.; Hou, J.; He, Y.; Zhou, E.; Yang, C.; Li, Y. Macromolecules 2007, 40, 1868-1873.
79. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nature 2007, 6, 497.
80. Parmer, J. E.; Mayer A. C.; Hardin, B. E.; Scully, S. R.; McGehee M. D.; Heeney M.; McCulloch I. Appl. Phys. Lett. 2008, 92, 113309.
81. Valentini, L.; Bagnis, D.; Marrocchi, A.; Seri, M.; Taticchi, A.; Kenny, J. M. Chem. Mater. 2008, 20, 32–34.
82. Millefiorini, S.; Kozma, E.; Catellani, M.; Luzzati, S. Thin Solid Films 2008.
83. Langevwld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W. J. Mol. Struct. 2000, 521, 285.
84. Mishra, S. P. R.; Sahoo, J. Mater. Chem. 2004, 14, 1896.
85. Gogte, V. N.; Shah, L. G.; Tilak, B. D.; Gadekar, K. N.; Sahasrabudhe, M. B.
Tetrahedron 1967, 23, 2437.
86. Keegstra, M. A.; Peters, T. H. A.; Brandsma, L. Tetrahedron 1992, 48, 17, 3633.
87. Goldoni, F.; Langeveld-Voss, B. M. W. E.; Meijer, W. Synthetic Communications 1998, 28, 12, 2237.
88. Huang, J.; Niu, Y. H.; Yang, W.; Mo, Y. Q.; Yuan, M.; Cao, Y. Macromolecules 2002, 35, 16, 6080-6082.
89. Chen, C.P.; Chan, S.H.; Chao, T.C.; Ting, C.; and Ko, B.T. J. Am. Chem. Soc. 2008, 130, 12828–12833.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41518-
dc.description.abstract高分子太陽能電池由於其價格低廉,可利用溶液態時以捲式塗佈技術進行大面積加工,且於應用上具可撓性,使這項研究近幾年來受到極大重視。目前由P3HT/PCBM混成系統做成的太陽能電池元件效率為4%,為了製備效率超越P3HT/PCBM混成的太陽能電池元件,尋找一具備適當能階的低能隙高分子便成一重要課題。低能隙高分子對太陽光譜中可見光至近紅外光區段有較廣的吸收因而能有效提升太陽能元件之效率。在本篇碩士論文中,藉由Suzuki連結聚合法成功合成出施體與受體交替式之高分子PF-co-DMOTB及PC-co-DMOTB,合成之兩種高分子對一般溶劑具良好的溶解性,UV吸收光譜亦可發現其對可見光有良好的吸收。電化學及光學上測量判斷其能隙與能階,PF-co-DMOTB 其能隙為1.90eV ,PC-co-DMOTB則為1.82eV,其低能隙及施體受體交替之特性使其對光譜有較廣之吸收。由循環伏安法測量高分子HOMO之能階, PF-co-DMOTB為-5.19eV ,PC-co-DMOTB為-5.70eV,均低於P3HT之HOMO能階,此項優點使其製成元件時能形成較高之開路電壓。塊材異質接面型太陽能電池製做時將高分子與碳材PCBM混掺做主動層,導電玻璃 ITO為陽極,上層鋁金屬為陰極,實驗結果顯示,製備太陽能電池之最佳效率為由高分子PF-co-DMOTB與PCBM混掺比例為1:4時而得,各項參數如下:開路電壓Voc=0.69 eV,短路電流Jsc=1.06 mA cm-2 ,填充系數FF=0.25,及元件效率0.18%,此結果於太陽光模擬器A.M.1.5強度為100 mW cm-2下測得。zh_TW
dc.description.abstractPolymer solar cells (PSCs) have attracted stong interest in recent years due to the prospect of low cost, solution-based processing and the capability to fabricate flexible devices. To further enhance the power conversion efficiency of 4% achieved from solar cells made of regioregular poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM), a low band gap conjugated polymers with proper energy levels for charge transfer are required. Low optical bandgap conjugated polymers may improve the efficency of organic photovoltaic devices by increasing the absorption in the visible and near infrared region of the solar spectrum. In this master thesis work, I synthesized two new highly soluble and strongly visible-light absorbing alternating polymers using Suzuki coupling polymerization method that are based on 4,7-Bis-(3,4-dimethoxy-thiophen-2-yl)-benzo[1,2,5]thiadiazole monomers: poly[2,7-(9,9-dihexylfluoren)-alt-5,5-(4,7-Bis-(3,4-dimethoxy-thiophen-2-yl)-benzo[1,2,5]thiadiazole] (PF-co-DMOTB) and poly[9-eicosyl-3,6-carbazole-alt-5,5-(4,7-Bis-
(3,4-dimethoxy-thiophen-2-yl)-benzo[1,2,5]thiadiazole](PC-co-DMOTB). Electrochemical and photophysical studies reveal band gaps of 1.90eV for PF-co-DMOTB and 1.82eV for PC-co-DMOTB, which could effectively harvest broader solar spectrum. The cyclic voltammetry measurements show that the HOMO level of the polymers are -5.19eV for PF-co-DMOTB and -5.70eV for PC-co-DMOTB which are significantly lower than that of P3HT. Bulk heterojuncion photovoltaic devices were fabricated using blends of these copolymers with PCBM as the active layer, ITO-glass as the anode, and aluminum as the cathode. It is observed that the best performing solar cell device which made from polymer PF-co-DMOTB (80 wt% PCBM) delivers an open circuit voltage Voc=0.69 eV, Jsc=1.06 mA cm-2 , FF=0.25 and power conversion efficiency 0.18% under an illumination of A.M.1.5 with an intensity of 100
mW cm-2.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:21:29Z (GMT). No. of bitstreams: 1
ntu-98-R95549021-1.pdf: 2697972 bytes, checksum: 881d22d8a3650ce3d93aa3c67daae578 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
摘要………………….………………………..………………………...………………..I
Abstract…..………………………………………………………………..……..……..II
目錄…………………………………………………………………………………….IV
圖索引………………………………...…………………………..……………………VI
表索引…………………………………………………………………................…..VIII
第一章 緒論 ………………………………………….…......…………….……...……1
第二章 文獻回顧
2-1 共軛高分子與碳材混掺之有機太陽能電池基本操作原理………….……...2
2-2 有機太陽能電池之元件結構………………………………………….……...5
2-2-1雙層結構……………………………………………………….……….5
2-2-2 塊材異質接面(Bulk heterojunction)結構………….……………...….5
2-3 應用於有機太陽能電池之高分子材料............................................................7
2-3-1有機太陽能電池材料簡介......................................................................7
2-3-2 PPV:PCBM系統之太陽能電池………………………………9
2-3-3 Poly(3-alkylthiophene) : PCBM系統之太陽能電池............................11
2-4交替式施體-受體共軛高分子..........................................................................12
2-4-1交替式施體-受體共軛高分子介紹………………….………………..12
2-4-2交替式施體-受體共軛高分子應用於太陽能電池………………..….13
2-5近年來應用於太陽能電池之高分子新材料介紹...........................................14
第三章 實驗方法…………………………………………….……………………..…22
3-1 實驗藥品..........................................................................................................22
3-2 使用儀器..........................................................................................................24
3-3 實驗流程…………………………………………………………….……….25
3-3-1 單體合成...............................................................................................25
3-4 實驗步驟................................……………...…………………………..…….27
3-4-1 單體合成方法………………..……….………………..……………..27
3-4-2 聚合反應……………………..……….................................................37
3-4-2-1 PF-co-DMOTB聚合反應……………….……………......….37
3-4-2-2 PC-co-DMOTB聚合反應………………………………...….38
3-5性質測試………….………………………………………..…….……..…….39
第四章 結果與討論……………………………………………………….………..…40
4-1單體及高分子合成方法與鑑定.......................................................................40
4-2 光學及電化學性質..........................................................................................41
4-3 太陽能元件製作及效率測試..........................................................................46
第五章 結論………………………………….………………………………………..57
參考文獻……………………………………….………………………………………58
附錄………………………………………..………………………………...…………64
GPC Data………………………………………………………………………….65
NMR Spectra..…………………………………….………..….………………….66

圖索引
圖2.1 光子轉換成自由載子機制示意圖………………………..……………………3
圖2.2 Bulk heterojunction結構與影響元件效率之各參數示意圖…………………..4
圖2.3 有機太陽能電池雙層結構示意圖………………………………..……..………5
圖2.4 Bulk heterojunction結構之示意圖……………………………………………..6
圖2.5 常用於有機太陽能電池材料之結構圖..............................................................7
圖2.6 施體(D)與受體(A)軌域混成D-A monomer低能隙示意圖................................12
圖3.1 單體4,7-Bis-(5-bromo-3,4-dimethoxy-thiophen-2-yl)-benzo[1,2,5]thiadiazole
之合成...............................................................................................................25
圖3.2 單體9-Eicosyl-3,6-bis-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-
9H-carbazole之合成........................................................................................... 26
圖3.3 合成高分子PF-co-DMOTB…………………………………………………….37
圖3.4 合成高分子PC-co-DMOTB……………………………………………………38
圖4.3 PF-co-DMOTB UV吸收光譜............................................................................41
圖4.4 PC-co-DMOTB UV吸收光譜............................................................................42
圖4.5 (a)高分子PF-co-DMOTB CV量測之氧化電位圖
(b)高分子PC-co-DMOTB CV量測之氧化電位圖............................................44
圖4.6 (a)PF-co-DMOTB, PCBM, PEDOT:PSS, ITO與Al電極相對能階圖
(b)PC-co-DMOTB, PCBM, PEDOT:PSS, ITO與Al電極相對能階圖..............45
圖4.7 太陽能元件結構圖..............................................................................................46
圖4.8 PF-co-DMOTB與PCBM 混掺比例1:1製備太陽能元件之電流-電壓特性圖.........................................................................................................................48
圖4.9 PF-co-DMOTB與PCBM混掺於不同轉速成膜後之UV-vis吸收....................48
圖4.10 PF-co-DMOTB與PCBM混掺比例1:4製備太陽能元件電流-電壓特性圖.....50
圖4.11 PF-co-DMOTB與PCBM混掺於不同轉速成膜後之UV-vis吸收.....................50
圖4.12 PF-co-DMOTB與PCBM混掺 1:4時之AFM圖(a)高度圖(b)相圖(c)平均粗糙度.....................................................................................................................51
圖4.13 PC-co-DMOTB與PCBM混掺不同轉速下製備太陽能元件之電流-電壓特性圖.........................................................................................................................52
圖4.14 PC-co-DMOTB與PCBM混掺不同轉速及混掺比例下製備太陽能元件之電流-電壓特性圖....................................................................................................53
圖4.15 PC-co-DMOTB與PCBM混掺成膜之UV-vis吸收..........................................54
圖4.16 PC-co-DMOTB與PCBM混掺於Chloroform與DCB混合溶劑下製備太陽能元件之電流-電壓特性圖................................................................................55

表索引
表2.1 應用於太陽能電池之有機材料化學結構及其光電轉換效率........................15
表4.1 PF-co-DMOTB於不同轉速製備太陽能元件之效率與各項參數..................48
表4.2 PF-co-DMOTB於不同轉速製備太陽能元件之效率與各項參數..................50
表4.3 PC-co-DMOTB於不同轉速製備太陽能元件之效率與各項參數.................52
表4.3 PC-co-DMOTB以Chloroform為溶劑於不同混掺比例及轉速製備太陽能元 件之效率與各項參數.......................................................................................54
表4.4 PC-co-DMOTB以Chloroform與DCB混合溶劑於不同混掺比例及轉速製備太陽能元件之效率與各項參數...................................................................56
表4.5 PC-co-DMOTB以Chloroform溶劑固定混掺比例不同轉速下製備太陽能元件之效率與各項參數.......................................................................................56
dc.language.isozh-TW
dc.subject電子施體/受體zh_TW
dc.subject高分子太陽能電池zh_TW
dc.subjectSuzuki 連結聚合法zh_TW
dc.subject低能隙zh_TW
dc.subjectPolymer solar sellen
dc.subjectLow band gapen
dc.subjectDonor-acceptoren
dc.subjectSuzuki couplingen
dc.title新穎施體-受體聚噻吩系共軛高分子衍生物之合成及有機太陽能電池應用zh_TW
dc.titleNovel Donor-Acceptor Conjugated Benzothiadiazole-based Copolymers Synthesis and Applications for Organic Solar Cellen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.coadvisor顏溪成
dc.contributor.oralexamcommittee韓錦鈴
dc.subject.keyword低能隙,Suzuki 連結聚合法,電子施體/受體,高分子太陽能電池,zh_TW
dc.subject.keywordLow band gap,Suzuki coupling,Donor-acceptor,Polymer solar sell,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2009-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved