Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41502
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝
dc.contributor.authorTai-Chieh Liaoen
dc.contributor.author廖泰傑zh_TW
dc.date.accessioned2021-06-15T00:21:00Z-
dc.date.available2011-02-12
dc.date.copyright2009-02-12
dc.date.issued2009
dc.date.submitted2009-02-06
dc.identifier.citation[1] Lieberman JR, Berry DJ, Mont MA, Aaron RK, Callaghan JJ, Rajadhyaksha AD, Urbaniak JR. Osteonecrosis of the hip : Management in the 21st century. J Bone Joint Surg Am. 2002; 84:834-853.
[2] 王云釗. 近20 年我國骨壞死研究進展. 放射學實踐. 2000; 15(3):156-160.
[3] Xu YL, Liang SY, Gong Y, Wang SH, Wang HZ, Zhang WB, Bi F. Evaluation of interventional therapy effect on avascular necrosis of the femoral head (ANFH) in earlier period. Orthop J Chin. 2004; 12(3,4):303-304.
[4] Jones JP Jr. Etiology and pathogenesis of osteonecrosis. Chin J Onhop. 1994; 14(3):153-162.
[5] Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME. Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002 Oct; 32(2):94-124.
[6] Lafforgue P. Pathophysiology and natural history of avascular necrosis of bone. Joint Bone Spine. 2006 Oct; 73(5):500-507.
[7] Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later. J Bone Joint Surg Am. 2006 May; 88(5):1117-1132.
[8] 王惠敏, 朱盛修. 全國骨壞死研討會記要. 骨與關節損傷雜誌. 1994; 9(2):140-142.
[9] 王岩, 朱盛修. 成人股骨頭缺血性壞死的早期診斷及治療. 中華醫學雜誌. 1994; 74(10):642-644.
[10] Jones LC, Hungerford DS. Osteonecrosis: etiology, diagnosis, and treatment. Curr Opin Rheumatol. 2004 Jul; 16(4):443-449.
[11] Steinberg DR, Steinberg ME, Garino JP, Dalinka M, Udupa JK. Determining lesion size in osteonecrosis of the femoral head. J Bone Joint Surg Am. 2006; 88 Suppl 3:27-34.
[12] Ha YC, Jung WH, Kim JR, Seong NH, Kim SY, Koo KH. Prediction of collapse in femoral head osteonecrosis: a modified Kerboul method with use of magnetic resonance images. J Bone Joint Surg Am. 2006; 88 Suppl 3:35-40.
[13] Imhof H, Breitenseher M, Trattnig S, Kramer J, Hofmann S, Plenk H, Schneider W, Engel A. Imaging of avascular necrosis of bone. Eur. Radiol. 1997; 7:180–186
[14] 王岩, 朱盛修, 袁洁, 楊立民. 成人股骨頭缺血壞死療效評價(百分比)草案. 骨與關節損傷雜誌. 1994; 9(2):142.
[15] Mont MA, Marulanda GA, Jones LC, Saleh KJ, Gordon N, Hungerford DS, Steinberg ME. Systematic analysis of classification systems for osteonecrosis of the femoral head. J Bone Joint Surg Am. 2006 Nov; 88 Suppl 3:16-26.
[16] Petrigliano FA, Lieberman JR. Osteonecrosis of the hip: novel approaches to evaluation and treatment. Clin Orthop Relat Res. 2007 Dec;465:53-62.
[17] Zhang NF, Li ZR. Osteotomy and core decompression for Osteonecrosis of the femoral head. J Chin—Jap Friendship Hospital. 1997; 11(4): 325-328.
[18] He YM. Therapeutic feature of adult avascular necrosis of the femoral head. Chinese Journal of Clinical Rehabilitation. 2006; 10(44):86-89.
[19] 孫大輝, 張大鵬. 成人早期股骨頭缺血性壞死治療進展. 中國骨腫瘤骨病. 2008; 7(1):55-58.
[20] Hernigou P, Bachir D, Galacteros F. Avascular necrosis of the femoral head in sickle-cell disease: treatment of collapse by the injection of acrylic cement. J Bone Joint Surg Br. 1993; 75:875–880.
[21] Dong TH, Liu S, Zhu GL, Weng WJ, Wang JS. Implantation of hydroxyapatite methylmethacylate cement in the treatment of osteonecrosis of femoral head: a medium-term evaluation of the results. Chinese Journal of Orthopaedics. 2002; 22(2):84-87.
[22] Wood ML, McDowell CM, Kelley SS. Cementation for femoral head osteonecrosis: a preliminary clinic study. Clin Orthop. 2003; 412:94–102.
[23] Wood ML, McDowell CM, Kelley SS. Cementation for femoral head osteonecrosis: a preliminary clinic study. Clin Orthop Relat Res. 2003;(412):94-102.
[24] Kenny SM, Buggy M. Bone cements and fillers: a review. J Mater Sci Mater Med. 2003; 14(11):923-38.
[25] Dean D, Wolfe MS, Ahmad Y, Totonchi A, Chen JE, Fisher JP, Cooke MN, Rimnac CM, Lennon DP, Caplan AI, Topham NS, Mikos AG. Effect of transforming growth factor beta 2 on marrow-infused foam poly(propylene fumarate) tissue-engineered constructs for the repair of critical-size cranial defects in rabbits. Tissue Eng. 2005; 11(5-6):923-39.
[26] Chen XC, Mi C, Shi XD, Wang B, Ye YL. Clinical application of injectable calcium sulfate with vacuum mixing for grafting bone defects. Orthopedic Journal of China. 2007; 15(24):1857-1859.
[27] 葛亮, 苟三懷. 可注射式人工骨研究進展. 國外醫學-骨科學分冊. 2005; 26(4):201-204.
[28] 田學忠, 劉越, 陳華, 張伯勛. 硫酸鈣人工骨研究進展. 山東醫藥. 2008; 48(9): 143-144.
[29] Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG. In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. J Biomed Mater Res. 1998; 41(1):1-7.
[30] Higgs WA, Lucksanasombool P, Higgs RJ, Swain MV. A simple method of determining the modulus of orthopedic bone cement. J Biomed Mater Res. 2001; 58(2):188-95.
[31] Dorozhkin SV, Calcium orthophosphate cements for biomedical application. J Mater Sci. 2008; 43(9):3028-57.
[32] Hakimimehr D, Liu DM, Troczynski T. In-situ preparation of poly(propylene fumarate)-hydroxyapatite composite. Biomaterials. 2005; 26(35):7297-303.
[33] Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 2007; 8(4):1077-84.
[34] Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003; 5:1-16.
[35] Wolfe MS, Dean D, Chen JE, Fisher JP, Han S, Rimnac CM, Mikos AG. In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate) /beta-tricalcium phosphate scaffolds. J Biomed Mater Res. 2002; 61(1):159-64.
[36] Gresser JD, Hsu SH, Nagaoka H, Lyons CM, Nieratko DP, Wise DL, Barabino GA, Trantolo DJ. Analysis of a vinyl pyrrolidnone/poly(propylene fumarate) restorable bone cement. J Biomed Mater Res. 1995; 29:1241-1247.
[37] Peter SJ, Kim P, Yasko AW, Yaszemski MJ, Mikos AG. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res. 1999 Mar 5; 44(3):314-21.
[38] Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 2002; 23(22):4373-80.
[39] Peter SJ, Lu L, Kim DJ, Mikos AG. Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials. 2000; 21(12):1207-13.
[40] Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, Jansen JA. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res. 2002; 59(3):547-56.
[41] Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 2002; 23(22):4381-7.
[42] Zhao W, Yang DA, Li ZY, Xu TX. Progress in researches on the synthesis of poly(propylene fumarate) and its cross linking characteristics. J Biomed Eng. 2005; 22(2):381-384.
[43] Kharas GB, Kamenetsky M, Simantirakis J, Beinlich KC, Rizzo A.-MT, Caywood GA, Watson K. Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. J Appl Polym Sci. 1997; 66: 1123.
[44] Shung AK, Timmer MD, Jo S, Engel PS, Mikos AG. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. J Biomater Sci Polym Ed. 2002; 13(1):95-108.
[45] Göpferich A. Polymer Bulk Erosion. Macromolecules. 1997; 30(9):2598-2604.
[46] Komath M, Varma HK, Sivakumar R. On the development of an apatitic calcium phosphate bone cement. Bull Mater Sci. 2000; 23(2):135-40
[47] Dagang G, Kewei X, Haoliang S, Yong H. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity. J Biomed Mater Res A. 2006; 77(2):313-23.
[48] Lee KW, Wang S, Yaszemski MJ, Lu L. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials. 2008; 29(19):2839-48.
[49] Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996; 17(2):103-14.
[50] Chen WC, Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res A. 2003; 64(4):664-71.
[51] Ishikawa K, Takagi S, Chow LC, Suzuki K. Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. J Biomed Mater Res. 1999 Sep 15; 46(4):504-10.
[52] Wei XC. Observation on bone repair after Osteonecrosis under scaning electron microscope. Chin J Anatomy. 1994; 17(1):25-28.
[53] Leung KW, Yung KK, Mak NK, Yue PY, Luo HB, Cheng YK, Fan TP, Yeung HW, Ng TB, Wong RN. Angiomodulatory and neurological effects of ginsenosides. Curr Med Chem. 2007; 14(12):1371-80.
[54] Fan TP, Yeh JC, Leung KW, Yue PY, Wong RN. Angiogenesis: from plants to blood vessels. Trends Pharmacol Sci. 2006; 27(6):297-309.
[55] Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV. Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol. 2008; 251(1):137-58.
[56] Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech. 2003; 60(1):107-14.
[57] Risau W. Mechanisms of angiogenesis. Nature. 1997; 386(6626):671-4.
[58] Polverini PJ. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med. 1995; 6(3):230-47.
[59] Lin KM, Hsu CH, Rajasekaran S. Angiogenic evaluation of ginsenoside Rg1 from Panax ginseng in fluorescent transgenic mice. Vascul Pharmacol. 2008; 49(1):37-43.
[60] Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol. 1997; 133(2):135-40.
[61] Leung KW, Pon YL, Wong RN, Wong AS. Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factor-dependent pathway in human endothelial cells. J Biol Chem. 2006; 281(47):36280-8.
[62] Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006; 580(13):3211-6.
[63] Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DT, Yeung HW, Wong RN. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med. 2007; 2:6.
[64] Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials. 2002; 23(22):4333-43.
[65] Timmer MD, Ambrose CG, Mikos AG. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials. 2003; 24(4):571-577.
[66] Wang S, Lu L, Yaszemski MJ. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules. 2006; 7(6):1976-82.
[67] Guan J, Lai CM, Li SP. A rapid method for the simultaneous determination of 11 saponins in Panax notoginseng using ultra performance liquid chromatography. J Pharm Biomed Anal. 2007; 44(4):996-1000.
[68] Huang YC, Chen CT, Chen SC, Lai PH, Liang HC, Chang Y, Yu LC, Sung HW. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharm Res. 2005; 22(4):636-46.
[69] Yu LC, Chen SC, Chang WC, Huang YC, Lin KM, Lai PH, Sung HW. Stability of angiogenic agents, ginsenoside Rg1 and Re, isolated from Panax ginseng: in vitro and in vivo studies. Int J Pharm. 2007; 328(2):168-76.
[70] Wang S, Lu L, Gruetzmacher JA, Currier BL, Yaszemski MJ. A biodegradable and cross-linkable multiblock copolymer consisting of poly(propylene fumarate) and poly(ε-caprolactone): synthesis, characterization, and physical properties. Macromolecules. 2005; 38(17):7358-7370.
[71] He S, Timmer MD, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate) - diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer. 2001; 42(3):1251-1260.
[72] Hodgskinson R, Currey JD. Young's modulus, density and material properties in cancellous bone over a large density range. J. Mater. Sci. - Mater. Med. 1992; 3:377-381.
[73] Giesen EB, Ding M, Dalstra M, van Eijden TM. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis. Calcif Tissue Int. 2003; 73(3):225-31.
[74] Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RN, Sasisekharan R, Fan TP. Modulating angiogenesis: the yin and the yang in ginseng. Circulation. 2004; 110(10):1219-25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41502-
dc.description.abstract股骨頭缺血性壞死是常見的骨疾之一,一般早期的治療手術是核心減壓,但是病人在經此手術後,股骨頭無法馬上得到機械強度上的支撐,必須避免讓股骨頭承受壓力,因此患者的生活受到很大的限制,造成極大的不便。我們希望發展生物可分解及促進血管新生的骨泥,於病人核心減壓後注入,初期提供機械強度及幫助血管新生提供營養,以促進骨組織復原,期望新的骨組織能取代分解掉的骨泥,使患部復原。
聚富馬酸丙二醇酯即聚丙烯延胡索酸酯(poly(propylene fumarate);PPF)是一種聚合溫度低,且具有生物可分解性的高分子材料,加上生物可吸收性另又具有骨誘導性的磷酸鈣鹽水泥,以增加機械強度,再配合有促進血管新生功能的人蔘萃取物:人蔘皂苷Rg1。以此複合材料希望能在給予病人股骨頭機械強度支持時,亦能促進股骨頭血管再生進入患部取代生物可分解之骨泥。
本實驗主要架構前半部在探討磷酸鈣鹽於聚富馬酸丙二醇酯系統中不同比例,骨泥對細胞相容性、骨泥強度、聚合溫度、腫脹測試的影響,實驗結果顯示,增加磷酸鈣鹽於聚富馬酸丙二醇酯中的比例,對於增加細胞相容性有顯著的影響,也對增加骨泥強度,減少聚合溫度,減少腫脹有顯著的影響。後半部我們選取了較佳的磷酸鈣鹽和聚富馬酸丙二醇酯的比例並加入不同量的刺激血管新生劑Rg1,分析其藥物釋放行為,並確定釋放之Rg1 仍維持藥性,由實驗數據知,不論Rg1 的比例為多少,皆有幾近相同的累積釋放模式,我們選擇較適當的藥量,以萃取液用人類臍帶靜脈內皮細胞在培養盤做管狀形成(tube formation)測試,顯示骨泥中釋放之Rg1 仍然維持刺激血管形成之藥效。由上述試驗可知,此種可注射式、生物可分解、又具有刺激血管增生能力的骨泥,極具發展潛力應用在缺血性股骨頭壞死治療,以造福遭受痛苦的病患。
zh_TW
dc.description.abstractAvascular necrosis of the femoral head commonly occurs in the people who are thirty to fifty years old. The most general treatment for early stages of avascular necrosis of the femoral head is core decompression. However, there is no general consensus regarding either the indications for this procedure or the techniques that optimize results. We want to develop a biodegradable and angiogenic bone cement for treatment of avascular necrosis of the hip. Core decompression is followed by injection of bone cement within operation. Bone cement will provide mechanical strength and angiogenic function to increase nutrition supply for bone tissue regeneration. We anticipate the newly formed bone can replace the degraded bone cement and the defect site is able to recovered.
Several advantages of poly(propylene fumarate) (PPF) has been investigated, including:biodegradable material and low crosslinking temperature. Calcium phosphate cement (CPC) is bioresorbable and osteoconductive. We combined these two key materials to offer proper mechanical strength for femoral head of patients. By addition of ginsenoside Rg1 which is extracted from panax ginseng as a angiogenic agent, anticipating that this composite can act as a mechanical support at the bone defect site and stimulate bone regeneration simultaneously.
The first part of this study is mainly to discuss the influence of three different ratios of CPC to PPF on biocompatibility, mechanical strength, crosslinking temperature and swelling. Results showed bone cement was more biocompatible with increasing the ratio of CPC to PPF. Increasing the ratio of CPC to PPF also strengthened the mechanical strength, reduce the crosslinking temperature and lower swelling effect. In the second part of this study, we chose the optimal ratio of CPC to PPF and mixed them with three different amounts of Rg1. Then the drug release profile was analyzed and the function of released Rg1 was checked. Data revealed the three different ratios of Rg1 to cement shared almost the same pattern in cumulative Rg1 figure. We chose the proper ratio to make extract liquid. Angiogenic function of released Rg1 to human umbilical vein endothelial cell (HUVEC) was tested by tube formation assay within extract liquid. Result showed the released Rg1 was still able to stimulate angiogenesis signficantly. In summary, this bone cement composite possesses great developing potential to be applied on treating avascular necrosis of the femoral head.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:21:00Z (GMT). No. of bitstreams: 1
ntu-98-R95548030-1.pdf: 4542287 bytes, checksum: 703f790a4f2cec38d3eb96ebfaa7749d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsCHAPTER 1 INTRDUCTION…1
1.1 PROLOGUE …1
1.2 AVASCULAR NECROSIS OF THE FEMORAL HEAD …3
1.2.1 ETIOLOGY …3
1.2.2 PATHOPHYSIOLOGY …5
1.2.3 DIAGNOSIS …6
1.2.4 CLASSIFICATION AND STAGING …7
1.2.5 CURRENT TREATMENT …9
1.2.5.1 NONOPERATIVE TREATMENT …9
1.2.5.2 CORE DECOMPRESSION …9
1.2.5.3 BONE GRAFT …10
1.2.5.4 OSTEOTOMIES …10
1.2.5.5 BONE CEMENT …10
1.2.5.6 FEMORAL HEAD RESURFACING …11
1.2.5.7 TOTAL HIP ARTHROPLASTY …12
1.3 BONE CEMENT IN TREATING OSTEONECROSIS …14
1.3.1 CURRENT BONE CEMENT …14
1.4 PURPOSE OF STUDY …17
CHAPTER 2 THEORETICAL BASIS…18
2.1 POLY(PROPYLENE FUMARATE) …18
2.1.1 PROPERTIES OF POLY(PROPYLENE FUMARATE) …18
2.1.2 SYNTHESIS MECHANISM OF POLY(PROPYLENE FUMARATE) …21
2.1.3 DEGRADATION MECHANISM OF POLY(PROPYLENE FUMARATE) …22
2.2 CALCIUM PHOSPHATE CEMENT …24
2.2.1 PROPERTY OF TTCP/DCPA …24
2.2.2 SETTING MECHANISM OF TTCP/DCPA …25
2.2.3 BIORESORPTION AND REPLACEMENT OF CPC BY BONES …26
2.3 BONE REGENERATION …28
2.3.1 ANGIOGENIC AGENT — GINSENOSIDE Rg1 …29
CHAPTER 3 MATERIALS AND METHODS…31
3.1 EXPERIMENT EQUIPMENTS …31
3.2 CHEMICAL REAGENTS …33
3.3 EXPERIMENTAL DESIGN …34
3.4 POLY(PROPYLENE FUMARATE) SYNTHESIS …36
3.5 PREPARATION OF CALCIUM PHOSPHATE CEMENT POWDER …38
3.6 MATERIAL ANALYSIS …40
3.6.1 X-RAY DIFFRACTION (XRD) ANALYSIS …40
3.6.2 GEL PERMEATION CHROMATOGRAPHY (GPC) ANALYSIS …41
3.6.3 NUCLEAR MAGNETIC RESONANCE (NMR) ANALYSIS …42
3.7 OPTIMIZATION OF BONE CEMENT FORMULATION…43
3.7.1 BIOCOMPATIBILITY TEST…44
3.7.1.1 CYTOTOXICITY – LDH ASSAY…44
3.7.1.2 CELL VIABILITY – WST-1 ASSAY…45
3.7.2 PHYSICAL PROPERTY TEST…47
3.7.2.1 MECHANICAL TEST…47
3.7.2.2 CROSSLINKING TEMPERATURE TEST…47
3.7.2.3 SWELLING TEST…48
3.8 DRUG RELEASE…49
3.9 TUBE FORMATION OF HUVEC…51
3.10 SCANNING ELECTRON MICROSCOPY (SEM)…52
CHAPTER 4 RESULTS AND DISCUSSIONS…53
4.1 MATERIALS ANALYSIS …53
4.1.1 X-RAY DIFFRACTION (XRD) ANALYSIS …53
4.1.2 GEL PERMEATION CHROMATOGRAPHY (GPC) ANALYSIS …55
4.1.3 NUCLEAR MAGNETIC RESONANCE (NMR) ANALYSIS …57
4.2 OPTIMIZATION OF BONE CEMENT FORMULATION…61
4.2.1 BIOCOMPATIBILITY TEST…61
4.2.1.1 CYTOTOXICITY – LDH ASSAY…61
4.2.1.2 CELL VIABILITY – WST-1 ASSAY…63
4.2.2 PHYSICAL PROPERTY TEST…65
4.2.2.1 MECHANICAL TEST…65
4.2.2.2 CROSSLINKING TEMPERATURE PROFILE…68
4.2.2.3 SWELLING TEST…70
4.3 DRUG RELEASE ANALYSIS…73
4.3.1 ION SELECTION OF MASS SPECTRUM…73
4.3.2 DRUG RELEASE PROFILE…75
4.4 TUBE FORMATION OF HUVEC…77
4.5 SCANNING ELECTRON MICROSCOPY (SEM)…80
CHAPTER 5 CONCLUSION…82
REFERENCES …84
dc.language.isoen
dc.subject生物可分解性zh_TW
dc.subject股骨頭zh_TW
dc.subject血管新生zh_TW
dc.subject鈣磷酸鹽zh_TW
dc.subject聚富馬酸丙二醇酯zh_TW
dc.subject注射式骨泥zh_TW
dc.subjectbiodegradableen
dc.subjectangiogenesisen
dc.subjectpoly(propylene fumarate)en
dc.subjectcalcium phosphateen
dc.subjectavascular necrosis of the femoral headen
dc.subjectinjectable bone cementen
dc.title製備刺激血管新生之複合材料做為可注射式骨泥治療股骨頭缺血性壞死之研究zh_TW
dc.titleThe Preparation of Angiogenic Composite as Injectable Bone Cement for Femoral Head Avascular Necrosisen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張至宏,方旭偉,沙達文(Subramaniam Sadhasivam),沙維塔(Sivasubramanian Savitha)
dc.subject.keyword注射式骨泥,生物可分解性,聚富馬酸丙二醇酯,鈣磷酸鹽,血管新生,股骨頭,zh_TW
dc.subject.keywordinjectable bone cement,biodegradable,poly(propylene fumarate),calcium phosphate,angiogenesis,avascular necrosis of the femoral head,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2009-02-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved