請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41419完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊西苑 | |
| dc.contributor.author | Yuan-Li Huang | en |
| dc.contributor.author | 黃元勵 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:18:43Z | - |
| dc.date.available | 2014-03-10 | |
| dc.date.copyright | 2009-03-10 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-03-05 | |
| dc.identifier.citation | Abouhamed M, Reichenberg S, Robenek H, Plenz G (2003) Tropomyosin 4 expression is enhanced in dedifferentiating smooth muscle cells in vitro and during atherogenesis. Eur J Cell Biol 82(9): 473-482
Barnes JA, Singh S, Gomes AV (2004) Protease activated receptors in cardiovascular function and disease. Mol Cell Biochem 263(1-2): 227-239 Baykal D, Schmedtje JF Jr, Runge MS (1995) Role of the thrombin receptor in restenosis and atherosclerosis. Am J Cardiol 75(6): 82B-87B Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274(12): 8335-8343 Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618): 729-733 Brunt KR, Fenrich KK, Kiani G, Tse MY, Pang SC, Ward CA, Melo LG (2006) Protection of human vascular smooth muscle cells from H2O2-induced apoptosis through functional codependence between HO-1 and AKT. Arterioscler Thromb Vasc Biol 26(9): 2027-2034 Cagnon L, Braissant O (2008) Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells. Neurobiol Dis 32(2): 281-292 Cao H, Dronadula N, Rao GN (2006) Thrombin induces expression of FGF-2 via activation of PI3K-Akt-Fra-1 signaling axis leading to DNA synthesis and motility in vascular smooth muscle cells. Am J Physiol Cell Physiol 290(1): C172-182 Chamley-Campbell JH, Campbell GR, Ross R (1981) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 89(2): 379-383 Chan AK, Kalmes A, Hawkins S, Daum G, Clowes AW (2003) Blockade of the epidermal growth factor receptor decreases intimal hyperplasia in balloon-injured rat carotid artery. J Vasc Surg 37(3): 644-649 Chatzizisis YS, Giannoglou GD. (2006) Pulsatile flow: a critical modulator of the natural history of atherosclerosis. Med Hypotheses 67(2): 338-340 Chen WS (2007) Expression of nestin in the developing vascular smooth muscle cells of rat common carotid artery. Institute of Molecular and Cellular Biology, National Taiwan University, Master Thesis Cheng L, Jin Z, Liu L, Yan Y, Li T, Zhu X, Jing N (2004) Characterization and promoter analysis of the mouse nestin gene. FEBS Lett 565(1-3): 195-202 Cheung ZH, Gong K, Ip NY (2008) Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci 28(19): 4872-4877 Chou YH, Khuon S, Herrmann H, Goldman RD (2003) Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell 14(4): 1468-1478 Coulombe PA, Bousquet O, Ma L, Yamada S, Wirtz D (2000) The 'ins' and 'outs' of intermediate filament organization. Trends Cell Biol 10(10): 420-428 Coulombe PA, Omary MB (2002) 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14(1): 110-122 Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6(8): 699-706 Cuevas BD, Abell AN, Johnson GL (2007) Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 26(22): 3159-3171 Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1): 9-23 Díaz-Rodríguez E, Esparís-Ogando A, Montero JC, Yuste L, Pandiella A (2000) Stimulation of cleavage of membrane proteins by calmodulin inhibitors. Biochem J 346(Pt 2): 359-367 Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U (1992) Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci 103(Pt 2): 589-597 Daniel C, Albrecht H, Lüdke A, Hugo C (2008) Nestin expression in repopulating mesangial cells promotes their proliferation. Lab Invest 88(4): 387-397 Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565): 557-560 Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30(43): 10363-10370 Debus E, Weber K, Osborn M (1983) Monoclonal antibodies to desmin, the muscle-specific intermediate filament protein. EMBO J 2(12): 2305-2312 Dreux AC, Lamb DJ, Mondjtahedi H, Ferns GAA (2006) The epidermal growth factor receptors and their family of ligands: their putative role in atherosclerosis. Atherosclerosis 186(1): 38-53 Drury RA (1954) The role of intimal haemorrhage in coronary occlusion. J Pathol Bacteriol 67(1): 207-215 Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8(11): 1249-1256 Erami C, Zhang H, Tanoue A, Tsujimoto G, Thomas SA, Faber JE (2005) Adrenergic catecholamine trophic activity contributes to flow-mediated arterial remodeling. Am J Physiol Heart Circ Physiol 289(2): H744-H753 Flannery CR (2006) MMPs and ADAMTSs: functional studies. Front Biosci 11: 544-569 Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350): 514-519 Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63: 345-382 Fuentes LQ, Reyes CE, Sarmiento JM, Villanueva CI, Figueroa CD, Navarro J, González CB (2008) Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways. Cell Signal 20(9): 1642-1650 Fukuhara S, Tomita S, Nakatani T, Yutani C, Kitamura S (2005) Endogenous bone-marrow-derived stem cells contribute only a small proportion of regenerated myocardium in the acute infarction model. J Heart Lung Transplant 24(1): 67-72 Gallo R, Padurean A, Toschi V, Bichler J, Fallon JT, Chesebro JH, Fuster V, Badimon JJ (1998) Prolonged thrombin inhibition reduces restenosis after balloon angioplasty in porcine coronary arteries. Circulation 97(6): 581-588 Geng YJ, Libby P (1995) Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 147(2): 251-266 Goldman RD ( 2001) Worms reveal essential functions for intermediate filaments. Proc Natl Acad Sci U S A 98(14): 7659-7661 Green KJ, Böhringer M, Gocken T, Jones JC ( 2005) Intermediate filament associated proteins. Adv Protein Chem 70: 143-202 Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP (2007) Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res 101(11): 1113-1122 Han M, Wen JK, Zheng B, Cheng Y, Zhang C (2006) Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am J Physiol Cell Physiol 291(1): C50-58 Hayashi K, Takahashi M, Kimura K, Nishida W, Saga H, Sobue K (1999) Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J Cell Biol 145(4): 727-740 Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K (2001) Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 89(3): 251-258 Hemmati-Brivanlou A, Mann RW, Harland RM (1992) A protein expressed in the growth cones of embryonic vertebrate neurons defines a new class of intermediate filament protein. Neuron 9(3): 417-428 Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P (1999) Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 99(1): 96-104 Henson ES, Gibson SB (2006) Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal 18(12): 2089-2097 Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12(1): 79-90 Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM (2003) Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int Rev Cytol 223: 83-175 Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114(Pt 14): 2569-2575 Hirano K (2007) The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 27(1): 27-36 Hirano K, Kanaide H (2003) Role of protease-activated receptors in the vascular system. J Atheroscler Thromb 10(4): 211-225 Hsieh HL, Sun CC, Wang TS, Yang CM (2008) PKC-delta/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE(2) production in rat vascular smooth muscle cells. Biochim Biophys Acta 1783(9): 1563-1575 Huang YL, Shi GY, Jiang MJ, Lee H, Chou YW, Wu HL, Yang HY (2008) Epidermal growth factor up-regulates the expression of nestin through the Ras-Raf-ERK signaling axis in rat vascular smooth muscle cells. Biochem Biophys Res Commun 377(2): 361-366 Huovila AP, Turner AJ, Pelto-Huikko M, Kärkkäinen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30(7): 413-422 Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386(6624): 502-506 Johnson JL, van Eys GJ, Angelini GD, George SJ (2001) Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 21(7): 1146-1151 Josephson R, Müller T, Pickel J, Okabe S, Reynolds K, Turner PA, Zimmer A, McKay RD (1998) POU transcription factors control expression of CNS stem cell-specific genes. Development 125(16): 3087-3100 Kachinsky AM, Dominov JA, Miller JB (1995) Intermediate filaments in cardiac myogenesis: nestin in the developing mouse heart. J Histochem Cytochem 43(8): 843-847 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103(6): 879-887 Kalmes A, Daum G, Clowes AW (2001) EGFR transactivation in the regulation of SMC function. Ann N Y Acad Sci 947: 42-54 Kalmes A, Vesti BR, Daum G, Abraham JA, Clowes AW (2000) Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ Res 87(2): 92-98 Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the 'Glagov phenomenon' is genetically determined. Circulation 110(2): 220-226 Ku NO, Liao J, Chou CF, Omary MB (1996) Implications of intermediate filament protein phosphorylation. Cancer Metastasis Rev 15(4): 429-444 Kumar A, Lindner V (1997) Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 17(10): 2238-2244 López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW (1997) Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 150(3): 993-1007 Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106(8): 2605-2612 Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 114(10): 1070-1077 Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4): 585-595 Li YH, Hsieh CY, Wang DL, Chung HC, Liu SL, Chao TH, Shi GY, Wu HL (2007) Remodeling of carotid arteries is associated with increased expression of thrombomodulin in a mouse transverse aortic constriction model. Thromb Haemost 97(4): 658-664 Li YH, Liu SL, Shi GY, Tseng GH, Liu PY, Wu HL (2006) Thrombomodulin plays an important role in arterial remodeling and neointima formation in mouse carotid ligation model. Thromb Haemost 95(1): 128-133 Lindner V, Olson NE, Clowes AW, Reidy MA (1992) Inhibition of smooth muscle cell proliferation in injured rat arteries. Interaction of heparin with basic fibroblast growth factor. J Clin Invest 90(5): 2044-2049 Lindner V, Reidy MA (1991) Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A 88(9): 3739-3743 Lo IC, Shih JM, Jiang MJ (2005) Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci 12(2): 377-388 Lucchesi P, Sabri A, Belmadani S, Matrougui K (2004a) Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation 110(23): 3587-3593 Lucchesi PA, Sabri A, Belmadani S, Matrougui K (2004b) Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation 110(23): 3587-3593 Lusis AJ (2000) Atherosclerosis. Nature 407(6801): 233-241 Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41(2): 473-479 Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276(1): 341-347 Madsen C, Regan CP, Owens GK (1997) Interaction of CArG elements and a GC-rich repressor element in transcriptional regulation of the smooth muscle myosin heavy chain gene in vascular smooth muscle cells. J Biol Chem 272(47): 29842-29851 Magin TM, Reichelt J, Hatzfeld M (2004) Emerging functions: diseases and animal models reshape our view of the cytoskeleton. Exp Cell Res 301(1): 91-102 Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6): 1248-1258 Majesky MW, Reidy MA, Bowen-Pope DF, Hart CE, Wilcox JN, Schwartz SM (1990) PDGF ligand and receptor gene expression during repair of arterial injury. J Cell Biol 111(5 Pt 1): 2149-2158 Martorell L, Martínez-González J, Rodríguez C, Gentile M, Calvayrac O, Badimon L (2008) Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 99(2): 305-315 McCarthy NJ, Bennett MR (2000) The regulation of vascular smooth muscle cell apoptosis. Cardiovasc Res 45(3): 747-755 McLean WH, Lane EB (1995) Intermediate filaments in disease. Curr Opin Cell Biol 7(1): 118-125 Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20(2): 665-671 Miyamoto T, Fox JC (2000) Autocrine signaling through Ras prevents apoptosis in vascular smooth muscle cells in vitro. J Biol Chem 275(4): 2825-2830 Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1): 11-24 Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404(6778): 609-613 Napier A, Yuan A, Cole GJ (1999) Characterization of the chicken transitin gene reveals a strong relationship to the nestin intermediate filament class. J Mol Neurosci 12(1): 11-22 Nelken N, Soifer SJ, O'Keefe J, Vu TK, Charo IF, Coughlin SR (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 90(4): 1614-1621 Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A 91(20): 9208-9212 Ohtsu H, Dempsey PJ, Eguchi S (2006) ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol 291(1): C1-10 Olivot JM, Estebanell E, Lafay M, Brohard B, Aiach M, Rendu F (2001) Thrombomodulin prolongs thrombin-induced extracellular signal-regulated kinase phosphorylation and nuclear retention in endothelial cells. Circ Res 88(7): 681-687 Olson NE, Chao S, Lindner V, Reidy MA (1992) Intimal smooth muscle cell proliferation after balloon catheter injury. The role of basic fibroblast growth factor. Am J Pathol 140(5): 1017-1023 Omary MB, Ku NO (1997) Intermediate filament proteins of the liver: emerging disease association and functions. Hepatology 25(5): 1043-1048 Omary MB, Ku NO, Liao J, Price D (1998) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem 31: 105-140 Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84(2): 579-621 Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physil Rev 75(3): 487-517 Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3): 767-801 Pallari HM, Eriksson JE (2006) Intermediate filaments as signaling platforms. Sci STKE 2006(366): pe53 Parry DA (2005) Microdissection of the sequence and structure of intermediate filament chains. Adv Protein Chem 70: 113-142 Perlman H, Maillard L, Krasinski K, Walsh K (1997) Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation 95(4): 981-987 Pierce KL, Tohgo A, Ahn S, Field ME, Luttrell LM, Lefkowitz RJ (2001) Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J Biol Chem 276(25): 23155-23160 Pollman MJ, Hall JL, Gibbons GH (1999) Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury. Influence of redox state and cell phenotype. Circ Res 84(1): 113-121 Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH (1998) Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 4(2): 222-227 Prasad S, Soldatenkov VA, Srinivasarao G, Dritschilo A (1999) Intermediate filament proteins during carcinogenesis and apoptosis (Review). Int J Oncol 14(3): 563-570 Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764): 884-888 Raines EW (2004) PDGF and cardiovascular disease. Cytokine Growth Factor Rev 15(4): 237-254 Rauch BH, Millette E, Kenagy RD, Daum G, Clowes AW (2004) Thrombin- and factor Xa-induced DNA synthesis is mediated by transactivation of fibroblast growth factor receptor-1 in human vascular smooth muscle cells. Circ Res 94(3): 340-345 Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164(5): 769-779 Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD, Eriksson JE (2006) A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J 25(20): 4808-4819 Saito T, Konno T, Hosokawa T, Asada A, Ishiguro K, Hisanaga S (2007) p25/cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. J Neurochem 102(1): 133-140 Sanderson MP, Erickson SN, Gough PJ, Garton KJ, Wille PT, Raines EW, Dunbar AJ, Dempsey PJ (2005) ADAM10 mediates ectodomain shedding of the betacellulin precursor activated by p-aminophenylmercuric acetate and extracellular calcium influx. J Biol Chem 280(3): 1826-1837 Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17(1): 7-30 Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106(Pt 4): 1291-1300 Shah BH, Catt KJ (2004) Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrinol Metab 15(6): 241-243 Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR (2000) Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem 275(33): 25216-25221 Sharma M, Hanchate NK, Tyagi RK, Sharma P (2007) Cyclin dependent kinase 5 (Cdk5) mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem Biophys Res Commun 358(2): 379-384 Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17(10): 1183-1193 Sobue K, Hayashi K, Nishida W (1999) Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem 190(1-2): 105-118 Steinert P, Chou YH, Prahlad V, Parry A, Marekov L, Wu K, Jang SI, Goldman RD (1999) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a Type VI intermediate filament protein. J Biol Chem 274(14): 9881-9890 Sullivan CJ, Hoying JB (2002) Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice. Arterioscler Thromb Vasc Biol 22(7): 1100-1105 Takada M, Tanaka H, Yamada T, Ito O, Kogushi M, Yanagimachi M, Kawamura T, Musha T, Yoshida F, Ito M, Kobayashi H, Yoshitake S, Saito I (1998) Antibody to thrombin receptor inhibits neointimal smooth muscle cell accumulation without causing inhibition of platelet aggregation or altering hemostatic parameters after angioplasty in rat. Circ Res 82(9): 980-987 Thompson RW, Liao S, Curci JA (1997) Vascular smooth muscle cell apoptosis in abdominal aortic aneurysms. Coron Artery Dis 8(10): 623-631 Titeux M, Brocheriou V, Xue Z, Gao J, Pellissier JF, Guicheney P, Paulin D, Li Z (2001) Human synemin gene generates splice variants encoding two distinct intermediate filament proteins. Eur J Biochem 268(24): 6435-6449 Touyz RM (2006) Mitochondrial redox control of matrix metalloproteinase signaling in resistance arteries. Arterioscler Thromb Vasc Biol 26(4): 685-688 Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, Eriksson JE, Kalimo H (2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol 60(6): 588-597 Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6): 1057-1068 Ward MR, Pasterkamp G, Yeung AC, Borst C (2000) Arterial remodeling. Mechanisms and clinical implications. Circulation 102(10): 1186-1191 Wei LC, Shi M, Cao R, Chen LW, Chan YS (2008) Nestin small interfering RNA (siRNA) reduces cell growth in cultured astrocytoma cells. Brain Res 1196: 103-112 Werry TD, Sexton PM, Christopoulos A (2005) 'Ins and outs' of seven-transmembrane receptor signalling to ERK. Trends Endocrinol Metab 16(1): 26-33 Wetzker R, Böhmer FD (2003) Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4(8): 651-657 Wilcox JN, Rodriguez J, Subramanian R, Ollerenshaw J, Zhong C, Hayzer DJ, Horaist C, Hanson SR, Lumsden A, Salam TA, Kelly AB, Harker LA, Runge M (1994) Characterization of thrombin receptor expression during vascular lesion formation. Circ Res 75(6): 1029-1038 Wu HL, Lin CI, Huang YL, Chen PS, Kuo CH, Chen MS, Wu CCG, Shi GY, Yang HY, Lee H (2008) Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem Biophys Res Commun 367(1): 162-168 Wu W, Graves LM, Gill GN, Parsons SJ, Samet JM (2002) Src-dependent phosphorylation of the epidermal growth factor receptor on tyrosine 845 is required for zinc-induced Ras activation. J Biol Chem 277(27): 24252-24257 Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A 95(12): 6642-6666 Xue ZG, Cheraud Y, Brocheriou V, Izmiryan A, Titeux M, Paulin D, Li Z (2004) The mouse synemin gene encodes three intermediate filament proteins generated by alternative exon usage and different open reading frames. Exp Cell Res 298(2): 431-444 Yang HY, Lieska N, Goldman AE, Goldman RD (1992a) Colchicine-sensitive and colchicine-insensitive intermediate filament systems distinguished by a new intermediate filament-associated protein, IFAP-70/280 kD. Cell Motil Cytoskeleton 22(3): 185-199 Yang HY, Lieska N, Goldman RD, Johnson-Seaton D, Pappas GD (1992b) Distinct developmental subtypes of cultured non-stellate rat astrocytes distinguished by a new glial intermediate filament-associated protein. Brain Res 573(1): 161-168 Yang HY, Lieska N, Shao D, Kriho V, Pappas GD (1993) Immunotyping of radial glia and their glial derivatives during development of the rat spinal cord. J Neurocytol 22(7): 558-571 Ying W, Zhang HG, Sanders PW (2007) EGF receptor activity modulates apoptosis induced by inhibition of the proteasome of vascular smooth muscle cells. J Am Soc Nephrol 18(1): 131-142 Yoshida T, Owens GK (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96(3): 280-291 Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116(5): 1284-1291 Zehner ZE (1991) Regulation of intermediate filament gene expression. Curr Opin Cell Biol 3(1): 67-74 Zhang H, Chalothorn D, Jackson LF, Lee DC, Faber JE (2004) Transactivation of epidermal growth factor receptor mediates catecholamine-induced growth of vascular smooth muscle. Circ Res 95(10): 989-997 Zhang H, Sunnarborg SW, McNaughton KK, Johns TG, Lee DC, Faber JE (2008) Heparin-binding epidermal growth factor-like growth factor signaling in flow-induced arterial remodeling. Circ Res 102(10): 1275-1285 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41419 | - |
| dc.description.abstract | 血管平滑肌細胞之型態由收縮型轉變為合成型為動脈粥狀硬化病變過程一重要特徵之ㄧ。雖然目前已有許多研究報導指出可能的細胞激素或是生長因子參與在此一路徑中。但是,由於缺乏早期的去分化指標,因此確切的影響分子仍不清楚。於本篇論文中,我們發現一個中間絲巢蛋白會表現於大鼠初級培養之血管平滑肌細胞,並代表著分泌型之細胞型態。而其表現會隨著這些細胞經去除血清後所造成的細胞重新分化而消失。雖然巢蛋白常被利用來當作細胞早期分化指標,但其基因調控機制與其功能仍不清楚。因此,本篇論文的目的在於研究巢蛋白在大鼠初級培養之血管平滑肌細胞中的表現、基因調控方式與功能。首先,我們利用西方墨點法分析,發現表皮生長因子可經由新核醣核酸與新蛋白質形成之路徑來調控巢蛋白表現。進一步的訊息傳遞路徑分析結果顯示,表皮生長因子可經由Ras-Raf-ERK此一路徑來誘導巢蛋白表現。另一方面,我們亦發現凝血酶經活化其受器PAR-1所轉活化之表皮生長因子受器路徑亦可調控大鼠血管平滑肌細胞巢蛋白之表現。而由PAR-1所活化之c-Src在此一路徑中扮演著兩種重要之角色︰(一) 經由細胞內的路徑直接磷酸化表皮生長因子受器;(二) 經由細胞外路徑活化MMP-2促使HB-EGF之切割而活化表皮生長因子受器。經轉活化誘導之表皮生長因子受器路徑會接著活化下游Ras-Raf-ERK路徑,來調控大鼠巢蛋白之表現。此外,電泳遷移率檢測實驗結果顯示,凝血酶需透過活化一個轉錄因子Sp1來誘導大鼠巢蛋白之形成。最後一部份,我們探討巢蛋白在大鼠血管平滑肌細胞之功能。巢蛋白經干擾性核醣核酸技術去除後,會減緩由凝血酶所誘導之細胞增生,此一結果顯示,凝血酶所誘導之巢蛋白形成與細胞增生兩項特徵皆會經由轉活化表皮生長因子受器路徑。進一步的去氧核醣核酸階梯化分析與流式細胞技術結果顯示,去除巢蛋白會強化經過氧化氫所導致之細胞凋零。此外,在250 μM的過氧化氫處理下,只有去除巢蛋白的血管平滑肌細胞其caspase-9、caspase-3及PARP會被活化。因此,顯示巢蛋白抑制在caspase活化的上游。目前已知,表皮生長因子在大鼠血管平滑肌細胞可當作一存活因子。在本篇論文中,我們亦證實去除巢蛋白會消除表皮生長因子的細胞保護作用。總而言之,這些結果顯示在大鼠血管皮滑肌細胞中,巢蛋白可能在表皮生長因子受器活化所傳遞的細胞增生與細胞保護作用扮演著一極重要之角色。 | zh_TW |
| dc.description.abstract | The contractile-synthetic phenotypic modulation of vascular smooth muscle cells (VSMCs) is a key event during the progression of atherosclerosis. Although many studies possibly implicated cytokines and growth factors in this process, critical factors affecting the VSMC phenotype remain unclear due to a lack of identification of early de-differentiation markers. In this study, we show that nestin, an intermediate filament protein, is expressed in primary cultures of rat VSMCs, which represents the synthetic phenotype, and its expression is diminished as these cells re-differentiate following serum deprivation. However, regulation of nestin gene expression and its function have never been reported despite its common usage as an early differentiation marker. Thus, the purposes of this study were to investigate the expression, gene regulation, and function of nestin in primary cultures of rat VSMCs. By immunoblotting, we show that nestin expression is regulated by epidermal growth factor (EGF) via de novo RNA and protein syntheses. Furthermore, signaling analyses revealed that EGF-induced nestin re-expression is mediated by activation of the Ras-Raf-ERK signaling axis. On the other hand, we also show that nestin can be regulated by thrombin/PAR-1-mediated EGFR transactivation in serum-deprived primary cultures of rat VSMCs. PAR-1-induced c-Src plays a critical role through two routes: direct intracellular phosphorylation of the EGFR and extracellular activation of the matrix metalloproteinase (MMP)-2-mediated shedding of HB-EGF. The transactivated EGFR then leads to the downstream Ras-Raf-ERK signaling axis. In addition, EMSA experiments showed that the transcriptional factor, Sp1, is critical for thrombin-induced nestin expression in rat VSMCs. Furthermore, RNA interference (RNAi) of nestin attenuated thrombin-induced cell proliferation, indicating that thrombin-induced nestin expression and cell proliferation share the same EGFR transactivation mechanism. Further, DNA laddering analysis and flow cytometric results demonstrated that apoptotic activity is enhanced in nestin-depleted cells after H2O2 treatment. In addition, caspase-9, caspase-3, and PARP were activated in nestin-depleted rat VSMCs following treatment with 250 μM H2O2, indicating that nestin has an upstream inhibitory effect on caspase activation. It is well-known that the EGF serves as a survival factor in rat VSMCs. Herein, we showed that RNAi of nestin abolished the cytoprotective effect of the EGF. Taken together, these results indicate that nestin may play essential roles in EGFR-mediated cell proliferation and cytoprotective effects in rat VSMCs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:18:43Z (GMT). No. of bitstreams: 1 ntu-98-F90225007-1.pdf: 9427640 bytes, checksum: c14e2f48b99424e80d837afed81841c6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgement.........................................................................................................I Abstract Chinese......................................................................................................................II English.....................................................................................................................IV Table of Contents........................................................................................................VI List of Figures..............................................................................................................X List of Appendixes...................................................................................................XIII Chapter 1. Introduction...............................................................................................1 1.1 Introduction to vascular smooth muscle cells..........................................................1 1.1.1 Phenotypic modulation of VSMCs....................................................................1 1.1.2 Gene expressions of VSMCs in different phenotypes.......................................3 1.1.3 The role of VSMCs following injury.................................................................4 1.2 Introduction of intermediate filaments.....................................................................5 1.2.1 Nestin, a type VI IF protein...............................................................................7 1.2.2 Nestin is expressed during embryogenesis and reappears following injury.....9 1.2.3 Potential functions of nestin............................................................................11 1.3 Introduction to thrombin........................................................................................12 1.3.1 Receptors of thrombin and their activation modes..........................................13 1.3.2 Intracellular signaling pathways following activation of PARs......................14 1.3.3 Roles of thrombin and its receptor PARs in the vascular system....................15 1.4 Introduction to EGFR transactivation....................................................................16 1.4.1 Matrix metalloproteinases (MMPs) serve as mediators of GPCR-mediated EGFR transactivation.....................................................................................17 1.4.2 c-Src plays a critical role in GPCR-mediated EGFR transactivation..............19 1.4.3 EGFR transactivation in the regulation of SMC function...............................20 Chapter 2. Objectives.................................................................................................22 Chapter 3. Materials and Methods...........................................................................23 3.1 Reagents.............................................................................................................23 3.2 Primary cultures of rat aortic SMCs...................................................................24 3.3 Immunofluorescence microscopy.......................................................................25 3.4 Intermediate filament (IF)-enriched preparations..............................................25 3.5 Whole-cell extraction.........................................................................................26 3.6 Protein assay.......................................................................................................26 3.7 Western blotting..................................................................................................27 3.8 RNA extraction...................................................................................................29 3.9 RT-PCR...............................................................................................................30 3.10 Nuclear protein extraction................................................................................30 3.11 Electrophoretic mobility shift assay (EMSA)..................................................31 3.12 Small interfering (si)RNA knockdown assay...................................................32 3.13 Cell viability assay............................................................................................33 3.14 DNA laddering analysis and flow cytometry...................................................33 3.15 Proliferation assay............................................................................................34 3.16 Immunoprecipitation........................................................................................34 3.17 Statistic analysis...............................................................................................35 Chapter 4. Results......................................................................................................36 Part I-Epidermal growth factor up-regulates the expression of nestin through the Ras-Raf-ERK signaling axis in rat VSMCs.....................................................36 4.1 Nestin is expressed in primary cultures of rat aortic VSMCs............................36 4.2 EGF regulates nestin re-expression in serum-deprived rat VSMCs...................37 4.3 EGF induces nestin expression via de novo protein synthesis...........................38 4.4 EGF-induced nestin expression is mediated through Ras-Raf-ERK-dependent pathways.............................................................................................................39 Part II-Thrombin induces nestin expression via the transactivation of EGFR signalings in rat VSMCs..................................................................................40 4.5 Thrombin induces nestin re-expression in serum-deprived rat VSMCs............40 4.6 Thrombin-induced nestin expression is mediated by PAR-1.............................42 4.7 Thrombin induces nestin expression via de novo protein synthesis..................43 4.8 Thrombin induces nestin expression via the Gq and Gi protein-coupled receptor...............................................................................................................43 4.9 Thrombin induces nestin expression via the PLC and PKC signaling pathways.............................................................................................................44 4.10 Thrombin induces nestin expression via the c-Src signaling pathway...............................................................................................................44 4.11 Thrombin induces nestin expression via EGFR transactivation.......................45 4.12 HB-EGF serves as a second ligand in thrombin-induced nestin expression...........................................................................................................46 4.13 FGFR transactivation is not involved in thrombin-induced nestin expression...........................................................................................................47 4.14 MMP-2 mediates thrombin-induced nestin expression....................................47 4.15 Thrombin induces nestin expression through the Ras-Raf-ERK signaling axis.....................................................................................................................49 4.16 ERK-activated Sp1 is involved in thrombin-induced nestin expression..........................................................................................................50 Part III. Nestin serves as a prosurvival determinant which is linked to the cytoprotective effect of the EGF in rat VSMCs…….....................................51 4.17 Knockdown of nestin attenuates rat VSMC proliferation................................51 4.18 Nestin expression plays an important role in cell proliferation.......................52 4.19 Nestin plays a role in maintaining cell survival in rat VSMCs........................53 4.20 Nestin attenuation of rat VSMC apoptosis is caspase-dependent....................54 4.21 The cytoprotective effect of EGF is largely mediated through induction of nestin expression in rat VSMCs.........................................................................55 4.22 The Cdk5-induced Bcl-2 phosphorylation is involved in the cytoprotective effect of nestin in rat VSMCs.............................................................................57 Chapter 5. Discussion.................................................................................................60 Chapter 6. Conclusions..............................................................................................72 References...................................................................................................................73 Tables...........................................................................................................................88 Figures.........................................................................................................................89 Appendix...................................................................................................................159 About the author......................................................................................................167 | |
| dc.language.iso | en | |
| dc.subject | caspase | zh_TW |
| dc.subject | 巢蛋白 | zh_TW |
| dc.subject | 表皮生長因子 | zh_TW |
| dc.subject | 凝血酶 | zh_TW |
| dc.subject | 血管平滑肌細胞 | zh_TW |
| dc.subject | 轉活化表皮生長因子受器 | zh_TW |
| dc.subject | 細胞增生 | zh_TW |
| dc.subject | 細胞凋零 | zh_TW |
| dc.subject | nestin | en |
| dc.subject | caspase | en |
| dc.subject | apoptosis | en |
| dc.subject | proliferation | en |
| dc.subject | EGFR transactivation | en |
| dc.subject | vascular smooth muscle cells | en |
| dc.subject | thrombin | en |
| dc.subject | EGF | en |
| dc.title | 中間絲巢蛋白於大鼠血管平滑肌細胞之表現、調控與功能之研究 | zh_TW |
| dc.title | The study of expression, regulation and function of an intermediate filament protein nestin in rat vascular smooth muscle cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李心予,吳華林,江美治,吳益群,黃步敏 | |
| dc.subject.keyword | 巢蛋白,表皮生長因子,凝血酶,血管平滑肌細胞,轉活化表皮生長因子受器,細胞增生,細胞凋零,caspase, | zh_TW |
| dc.subject.keyword | nestin,EGF,thrombin,vascular smooth muscle cells,EGFR transactivation,proliferation,apoptosis,caspase, | en |
| dc.relation.page | 170 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-03-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 9.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
