Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英
dc.contributor.authorYing-Da Luoen
dc.contributor.author羅盈達zh_TW
dc.date.accessioned2021-06-15T00:18:27Z-
dc.date.available2013-03-31
dc.date.copyright2009-03-31
dc.date.issued2009
dc.date.submitted2009-03-20
dc.identifier.citation1. Antonietti, M.; Landfester, K. Prog. Polym. Sci. 2002, 27, (4), 689-757.
2. Landfester, K. Macromol. Rapid Commun. 2001, 22, (12), 896-936.
3. Landfester, K. Adv. Mater. 2001, 13, (10), 765-768.
4. Ouzineb, K.; Graillat, C.; McKenna, T. F. J. Appl. Polym. Sci. 2005, 97, (3), 745-752.
5. Ugelstad, J.; Elaasser, M. S.; Vanderho.Jw. Journal of Polymer Science Part C-Polymer Letters 1973, 11, (8), 503-513.
6. Chou, Y. J.; Elaasser, M. S.; Vanderhoff, J. W. Journal of Dispersion Science and Technology 1980, 1, (2), 129-150.
7. Sudol, E. D.; El-Aasser, M. S., In Emulsion Polymerization and Emulsion Polymers. Wiley: New York, 1997.
8. El-Aasser, M. S.; Sudol, E. D. JCT Res. 2004, 1, (1), 21-31.
9. Blythe, P. J.; Klein, A.; Sudol, E. D.; El-Aasser, M. S. Macromolecules 1999, 32, (21), 6952-6957.
10. Do Amaral, M.; Asua, J. M. J. Polym. Sci. Pol. Chem. 2004, 42, (17), 4222-4227.
11. Luo, Y. D.; Dai, C. A.; Chiu, W. Y. J. Polym. Sci. Pol. Chem. 2008, 46, (3), 1014-1024.
12. Ando, K.; Kawaguchi, H. J. Colloid Interface Sci. 2005, 285, (2), 619-626.
13. Jeng, J.; Dai, C. A.; Chiu, W. Y.; Chern, C. S.; Lin, K. F.; Young, P. Y. J. Polym. Sci. Pol. Chem. 2006, 44, (15), 4603-4610.
14. Wang, P. C.; Lee, C. F.; Young, T. H.; Lin, D. T.; Chiu, W. Y. J. Polym. Sci. Pol. Chem. 2005, 43, (7), 1342-1356.
15. Ramirez, J. C.; Herrera-Ordonez, J.; Gonzalez, V. A. Polymer 2006, 47, (10), 3336-3343.
16. Kabalnov, A. S.; Shchukin, E. D. Advances in Colloid and Interface Science 1992, 38, 69-97.
17. Lazaridis, N.; Alexopoulos, A. H.; Chatzi, E. G.; Kiparissides, C. Chem. Eng. Sci. 1999, 54, (15-16), 3251-3261.
18. Zhou, Q.; Rosen, M. J. Langmuir 2003, 19, (11), 4555-4562.
19. Choi, Y. T.; Elaasser, M. S.; Sudol, E. D.; Vanderhoff, J. W. Journal of Polymer Science Part a-Polymer Chemistry 1985, 23, (12), 2973-2987.
20. Fontenot, K.; Schork, F. J. Ind. Eng. Chem. Res. 1993, 32, (2), 373-385.
21. Kukulj, D.; Davis, T. P.; Gilbert, R. G. Macromolecules 1997, 30, (25), 7661-7666.
22. Kabalnov, A. S.; Pertzov, A. V.; Shchukin, E. D. J. Colloid Interface Sci. 1987, 118, (2), 590-597.
23. Webster, A. J.; Cates, M. E. Langmuir 1998, 14, (8), 2068-2079.
24. Leiza, J. R.; Sudoi, E. D.; ElAasser, M. S. Journal of Applied Polymer Science 1997, 64, (9), 1797-1809.
25. Wang, S.; Schork, F. J. Journal of Applied Polymer Science 1994, 54, (13), 2157-2164.
26. Landfester, K.; Antonietti, M. Macromolecular Rapid Communications 2000, 21, (12), 820-824.
27. Bhadra, S.; Singha, N. K.; Khastgir, D. Synthetic Metals 2006, 156, (16-17), 1148-1154.
28. Chern, C. S.; Chen, T. J.; Liou, Y. C. Polymer 1998, 39, (16), 3767-3777.
29. Voorn, D. J.; Ming, W.; van Herk, A. M. Macromolecules 2006, 39, (6), 2137-2143.
30. Paiphansiri, U.; Tangboriboonrat, P.; Landfester, K. Macromol. Biosci. 2006, 6, (1), 33-40.
31. Landfester, K.; Willert, M.; Antonietti, M. Macromolecules 2000, 33, (7), 2370-2376.
32. Blagodatskikh, I.; Tikhonov, V.; Ivanova, E.; Landfester, K.; Khokhlov, A. Macromolecular Rapid Communications 2006, 27, (22), 1900-1905.
33. Zhou, J.; Zhang, S. W.; Qiao, X. G.; Li, X. Q.; Wu, L. M. J. Polym. Sci. Pol. Chem. 2006, 44, (10), 3202-3209.
34. Al-Ghamdi, G. H.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. J. Appl. Polym. Sci. 2006, 101, (5), 3479-3486.
35. Kim, H.; Daniels, E. S.; Li, S.; Mokkapati, V. K.; Kardos, K. J. Polym. Sci. Pol. Chem. 2007, 45, (6), 1038-1054.
36. Lu, W.; Chen, M.; Wu, L. M. J. Colloid Interface Sci. 2008, 328, (1), 98-102.
37. Taniguchi, T.; Takeuchi, N.; Kobaru, S.; Nakahira, T. J. Colloid Interface Sci. 2008, 327, (1), 58-62.
38. Fang, Y. T.; Kuang, S. Y.; Gao, X. N.; Mang, Z. G. Energy Conversion and Management 2008, 49, (12), 3704-3707.
39. Tiarks, F.; Landfester, K.; Antonietti, M. Langmuir 2001, 17, (19), 5775-5780.
40. Erdem, B.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Macromol. Symp. 2000, 155, 181-198.
41. Peres, M.; Costa, L. C.; Neves, A.; Soares, M. J.; Monteiro, T.; Esteves, A. C.; Barros-Timmons, A.; Trindade, T.; Kholkin, A.; Alves, E. Nanotechnology 2005, 16, (9), 1969-1973.
42. Lu, S. H.; Forcada, J. J. Polym. Sci. Pol. Chem. 2006, 44, (13), 4187-4203.
43. Ramirez, L. P.; Landfester, K. Macromol. Chem. Phys. 2003, 204, (1), 22-31.
44. Lin, C. L.; Chiu, W. Y.; Don, T. M. J. Appl. Polym. Sci. 2006, 100, (5), 3987-3996.
45. Tiarks, F.; Landfester, K.; Anonietti, M. Macromol. Chem. Phys. 2001, 202, (1), 51-60.
46. Zhang, J. J.; Gao, G.; Zhang, M.; Zhang, D.; Wang, C. L.; Zhao, D. C.; Liu, F. Q. J. Colloid Interface Sci. 2006, 301, (1), 78-84.
47. Bechthold, N.; Tiarks, F.; Willert, M.; Landfester, K.; Antonietti, M. Macromol. Symp. 2000, 151, 549-555.
48. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, (11), 2987-2988.
49. Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, (20), 5614-5615.
50. Krstina, J.; Moad, C. L.; Moad, G.; Rizzardo, E.; Berge, C. T. In A new form of controlled growth free radical polymerization, 2nd International Symposium on Free Radical Polymerization - Kinetics and Mechanisms, Genoa, Italy, May 26-31, 1996; Genoa, Italy, 1996; pp 13-23.
51. Wieland, P. C.; Raether, B.; Nuyken, O. Macromol. Rapid Commun. 2001, 22, (9), 700-703.
52. Luo, Y. D.; Dai, C. A.; Chiu, W. Y. Journal of Polymer Science Part a-Polymer Chemistry 2008, 46, (24), 8081-8090.
53. Alam, M. N.; Zetterlund, P. B.; Okubo, M. Polymer 2008, 49, (16), 3428-3435.
54. Cunningham, M. F.; Ng, D. C. T.; Milton, S. G.; Keoshkerian, B. J. Polym. Sci. Pol. Chem. 2006, 44, 232-242.
55. Cunningham, M. F.; Lin, M.; Buragina, C.; Milton, S.; Ng, D.; Hsu, C. C.; Keoshkerian, B. Polymer 2005, 46, 1025-1032.
56. Cunningham, M. F.; Tortosa, K.; Lin, M.; Keoshkerian, B.; Georges, M. K. J. Polym. Sci. Pol. Chem. 2002, 40, 2828-2841.
57. Cheng, K. C.; Chen, J. J.; Chiu, W. Y.; Wang, L. Y.; Wang, P. C. J. Polym. Sci. Pol. Chem. 2005, 43, 42–49.
58. Asua, J. M. Prog. Polym. Sci. 2002, 27, 1283-1346.
59. Cunningham, M. F.; Ng, D. C. T.; Milton, S. G.; Keoshkerian, B. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, (1), 232-242.
60. Stoffelbach, F.; Belardi, B.; Santos, J.; Tessier, L.; Matyjaszewski, K.; Charleux, B. Macromolecules 2007, 40, (25), 8813-8816.
61. Min, K.; Gao, H. F.; Matyjaszewski, K. Journal of the American Chemical Society 2005, 127, (11), 3825-3830.
62. Huang, X. Y.; Sudol, E. D.; Dimonie, V. L.; Anderson, C. D.; El-Aasser, M. S. Macromolecules 2006, 39, (20), 6944-6950.
63. Tang, E. J.; Cheng, G. X.; Pang, X. S.; Ma, X. L.; Xing, F. B. Colloid Polym. Sci. 2006, 284, (4), 422-428.
64. Kim, J. W.; Shim, J. W.; Bae, J. H.; Han, S. H.; Kim, H. K.; Chang, I. S.; Kang, H. H.; Suh, K. D. Colloid Polym. Sci. 2002, 280, (6), 584-588.
65. Mizutani, T.; Arai, K.; Miyamoto, M.; Kimura, Y. Prog. Org. Coat. 2006, 55, (3), 276-283.
66. Chen, C. W.; Serizawa, T.; Akashi, M. Chem. Mat. 1999, 11, (5), 1381-1389.
67. Zheng, W. M.; Gao, F.; Gu, H. C. In Carboxylated magnetic polymer nanolatexes: Preparation, characterization and biomedical applications, 5th International Conference on Scientific and Clinical Applications of Magnetic Carriers, Lyon, FRANCE, May 20-22, 2004; Elsevier Science Bv: Lyon, FRANCE, 2004; pp 199-205.
68. Haik, Y.; Pai, V.; Chen, C. J. In Development of magnetic device for cell separation, 2nd International Conference on Scientific and Clinical Applications of Magnetic Carriers (SCAMC2), Cleveland, Ohio, May 28-30, 1998; Elsevier Science Bv: Cleveland, Ohio, 1998; pp 254-261.
69. Pyle, B. H.; Broadaway, S. C.; McFeters, G. A. Appl. Environ. Microbiol. 1999, 65, (5), 1966-1972.
70. Alexiou, C.; Schmid, R. J.; Jurgons, R.; Kremer, M.; Wanner, G.; Bergemann, C.; Huenges, E.; Nawroth, T.; Arnold, W.; Parak, F. G. Eur. Biophys. J. Biophys. Lett. 2006, 35, (5), 446-450.
71. Alexiou, C.; Jurgons, R.; Schmid, R. J.; Bergemann, C.; Henke, J.; Erhardt, W.; Huenges, E.; Parak, F. In Magnetic drug targeting - Biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment, International Conference on Molecular Targets and Cancer Therapeutics, Miami Beach, Florida, Oct 29-Nov 02, 2001; Taylor & Francis Ltd: Miami Beach, Florida, 2001; pp 139-149.
72. Pollert, E.; Knizek, K.; Marysko, M.; Zaveta, K.; Lancok, A.; Bohacek, J.; Horak, D.; Babic, M. J. Magn. Magn. Mater. 2006, 306, (2), 241-247.
73. Xie, G.; Zhang, Q. Y.; Luo, Z. P.; Wu, M.; Li, T. H. J. Appl. Polym. Sci. 2003, 87, (11), 1733-1738.
74. Horak, D.; Chekina, N. J. Appl. Polym. Sci. 2006, 102, (5), 4348-4357.
75. Mackova, H.; Horak, D. J. Polym. Sci. Pol. Chem. 2006, 44, (2), 968-982.
76. Wang, X. B.; Ding, X. B.; Zheng, Z. H.; Hu, X. H.; Cheng, X.; Peng, Y. X. Macromol. Rapid Commun. 2006, 27, (14), 1180-1184.
77. Wang, P. C.; Chiu, W. Y.; Lee, C. F.; Young, T. H. J. Polym. Sci. Pol. Chem. 2004, 42, (22), 5695-5705.
78. Pich, A.; Bhattacharya, S.; Ghosh, A.; Adler, H. J. P. Polymer 2005, 46, (13), 4596-4603.
79. Faridi-Majidi, R.; Sharifi-Sanjani, N.; Agend, F. Thin Solid Films 2006, 515, (1), 368-374.
80. Liu, X. Q.; Guan, Y. P.; Ma, Z. Y.; Liu, H. Z. Langmuir 2004, 20, (23), 10278-10282.
81. Csetneki, I.; Faix, M. K.; Szilagyi, A.; Kovacs, A. L.; Nemeth, Z.; Zrinyi, M. J. Polym. Sci. Pol. Chem. 2004, 42, (19), 4802-4808.
82. Zheng, W. M.; Gao, F.; Gu, H. C. J. Magn. Magn. Mater. 2005, 288, 403-410.
83. Vestal, C. R.; Zhang, Z. J. J. Am. Chem. Soc. 2002, 124, (48), 14312-14313.
84. Deng, Y.; Wang, L.; Yang, W.; Fu, S.; Elaissari, A. J. Magn. Magn. Mater. 2003, 257, (1), 69-78.
85. Ma, Z. Y.; Guan, Y. P.; Liu, H. Z. J. Polym. Sci. Pol. Chem. 2005, 43, (15), 3433-3439.
86. Lee, C. F.; Chou, Y. H.; Chiu, W. Y. J. Polym. Sci. Pol. Chem. 2007, 45, (17), 3912-3921.
87. Lee, C. F.; Chou, Y. H.; Chiu, W. Y. J. Polym. Sci. Pol. Chem. 2007, 45, (14), 3062-3072.
88. Asua, J. M. Prog. Polym. Sci. 2002, 27, (7), 1283-1346.
89. Landfester, K.; Bechthold, N.; Forster, S.; Antonietti, M. Macromol. Rapid Commun. 1999, 20, (2), 81-84.
90. Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Macromolecules 1999, 32, (8), 2679-2683.
91. Schwertmann, U.; Cornell, M. R., Iron Oxides in the Laboratory, Preparation and Characterization. VCH, New York: 1991.
92. Taylor, A., X-Ray Metallography. Wiley, New York: 1961; p 674.
93. Massart, R.; Cabuil, V. J. Chim. Phys.-Chim. Biol. 1987, 84, (7-8), 967-973.
94. Moore, R. G. C.; Evans, S. D.; Shen, T.; Hodson, C. E. C. Physica E 2001, 9, (2), 253-261.
95. Bellamy, L. J., The infra-red spectra of complex molecules. Wiley: New York, 1975.
96. Islam, A. M.; Chowdhry, B. Z.; Snowden, M. J. Adv. Colloid Interface Sci. 1995, 62, (2-3), 109-136.
97. Vincent, B.; Young, C. A.; Tadros, T. F. Faraday Discussions of the Chemical Society 1978, 65, 296-305.
98. Vincent, B.; Young, C. A.; Tadros, T. F. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1980, 76, 665-673.
99. Vincent, B.; Jafelicci, M.; Luckham, P. F.; Tadros, T. F. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1980, 76, 674-682.
100. Luckham, P.; Vincent, B.; Hart, C. A.; Tadros, T. F. Colloids and Surfaces 1980, 1, 281-293.
101. Okubo, M.; Lu, Y. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 109, 49-53.
102. Ottewill, R. H.; Schofield, A. B.; Waters, J. A.; Williams, N. S. J. Colloid and Polymer Science 1997, 275, (3), 274-283.
103. Harley, S.; Thompson, D. W.; Vincent, B. Colloids and Surfaces 1992, 62, (1-2), 153-162.
104. Serizawa, T.; Taniguchi, K.; Akashi, M. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2000, 169, (1-3), 95-105.
105. Sudol, E. D.; El-Aasser, M. S., In Emulsion Polymerization and Emulsion Polymers. Wiley: New York, 1997; p 699-722.
106. Li, C. Y.; Chiu, W. Y.; Lee, C. F. e-Polymers 2007.
107. Wormuth, K. J. Colloid Interface Sci. 2001, 241, (2), 366-377.
108. Bechthold, N.; Landfester, K. Macromolecules 2000, 33, (13), 4682-4689.
109. Chern, C. S.; Liou, Y. C. Polymer 1999, 40, (13), 3763-3772.
110. Jeng, J.; Dai, C. A.; Chiu, W. Y.; Young, P. Y. Polym. Int. 2007, 56, (6), 746-753.
111. Reimers, J. L.; Schork, F. J. J. Appl. Polym. Sci. 1996, 60, (2), 251-262.
112. Luo, Y. D.; Dai, C. A.; Chiu, W. Y. J. Polym. Sci. Pol. Chem. 2008, 46, (3), 1014-1024.
113. Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, (9), 646-652.
114. Brown, D.; Marcadon, V.; Mele, P.; Alberola, N. D. Macromolecules 2008, 41, (4), 1499-1511.
115. Karimi-Varzaneh, H. A.; Carbone, P.; Muller-Plathe, F. Macromolecules 2008, 41, (19), 7211-7218.
116. Gertner, B. J.; Hynes, J. T. Science 1996, 271, (5255), 1563-1566.
117. Ju, S. P.; Lee, W. J.; Huang, C. I.; Cheng, W. Z.; Chung, Y. T. J. Chem. Phys. 2007, 126, (22), 10.
118. Li, D. X.; Liu, B. L.; Liu, Y. S.; Chen, C. L. Cryobiology 2008, 56, (2), 114-119.
119. Chen, J. H.; Dai, C. A.; Chen, H. J.; Chien, P. C.; Chiu, W. Y. Journal of Colloid and Interface Science 2007, 308, (1), 81-92.
120. Wooding, A.; Kilner, M.; Lambrick, D. B. Journal of Colloid and Interface Science 1991, 144, (1), 236-242.
121. Kataby, G.; Cojocaru, M.; Prozorov, R.; Gedanken, A. Langmuir 1999, 15, (5), 1703-1708.
122. Levitt, M.; Hirshberg, M.; Sharon, R.; Daggett, V. Comput. Phys. Commun. 1995, 91, (1-3), 215-231.
123. Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. Journal of the American Chemical Society 1994, 116, (7), 2978-2987.
124. Lang, H. P.; Thommengeiser, V.; Bolm, C.; Felder, M.; Frommer, J.; Wiesendanger, R.; Werner, H.; Schlogl, R.; Zahab, A.; Bernier, P.; Gerth, G.; Anselmetti, D.; Guntherodt, H. J. Applied Physics a-Materials Science & Processing 1993, 56, (3), 197-205.
125. Rashin, A. A.; Honig, B. J. Phys. Chem. 1985, 89, (26), 5588-5593.
126. Hale, J. M., Molecular Dynamic Simulation. Wiley-Interscience: New York, 1992.
127. Rapaport, D. C., The Art of Molecular Dynamics Simulations. Cambridge University Press: Cambridge, 1997.
128. Lambin, P.; Senet, P. International Journal of Quantum Chemistry 1993, 46, (1), 101-107.
129. Capek, I. Adv. Colloid Interface Sci. 2004, 107, (2-3), 125-155.
130. Landfester, K. Macromol. Symp. 2000, 150, 171-178.
131. McDermid, A. S.; McKee, A. S.; Marsh, P. D. Infect. Immun. 1988, 56, (5), 1096-1100.
132. Takahashi, N.; Schachtele, C. F. J. Dent. Res. 1990, 69, (6), 1266-1269.
133. Louden, J. D.; Roberts, R. R.; Goodship, T. H. J. Kidney Int. 1999, 56, S85-S88.
134. Garay, M. T.; Alava, C.; Rodriguez, M. Polymer 2000, 41, (15), 5799-5807.
135. Maurer, J. J.; Eustace, D. J.; Ratcliffe, C. T. Macromolecules 1987, 20, (1), 196-202.
136. Nagasawa, M.; Murase, T.; Kondo, K. J. Phys. Chem. 1965, 69, (11), 4005-&.
137. Borkovec, M.; Koper, G. J. M.; Piguet, C. Curr. Opin. Colloid Interface Sci. 2006, 11, (5), 280-289.
138. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R. S.; Zhang, Y. Adv. Funct. Mater. 2004, 14, (10), 943-956.
139. Meng, Q. B.; Takahashi, K.; Zhang, X. T.; Sutanto, I.; Rao, T. N.; Sato, O.; Fujishima, A.; Watanabe, H.; Nakamori, T.; Uragami, M. Langmuir 2003, 19, (9), 3572-3574.
140. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, (23), 8286-8287.
141. Gao, T.; Wang, T. H. Appl. Phys. A-Mater. Sci. Process. 2005, 80, (7), 1451-1454.
142. Moustaghfir, A.; Tomasella, E.; Rivaton, A.; Mailhot, B.; Jacquet, M.; Gardette, J. L.; Cellier, J. Surf. Coat. Technol. 2004, 180-81, 642-645.
143. Houabes, M.; Metz, R. Ceram. Int. 2007, 33, (7), 1191-1197.
144. Liu, D. S.; Wu, C. Y.; Sheu, C. S.; Tsai, F. C.; Li, C. H. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 2006, 45, (4B), 3531-3536.
145. KyprianidouLeodidou, T.; Margraf, P.; Caseri, W.; Suter, U. W.; Walther, P. Polym. Adv. Technol. 1997, 8, (8), 505-512.
146. Li, J.; Srinivasan, S.; He, G. N.; Kang, J. Y.; Wu, S. T.; Ponce, F. A. J. Cryst. Growth 2008, 310, (3), 599-603.
147. Kang, X. Y.; Wang, T. D.; Han, Y.; Tao, M. D.; Tu, M. J. Mater. Res. Bull. 1997, 32, (9), 1165-1171.
148. Lu, C. H.; Yeh, C. H. Ceram. Int. 2000, 26, (4), 351-357.
149. Kim, K. S.; Kim, H. W. Physica B 2003, 328, (3-4), 368-371.
150. Audebrand, N.; Auffredic, J. P.; Louer, D. Chem. Mat. 1998, 10, (9), 2450-2461.
151. Yang, Y.; Chen, H. L.; Zhao, B.; Bao, X. M. J. Cryst. Growth 2004, 263, (1-4), 447-453.
152. Xu, H. Y.; Wang, H.; Zhang, Y. C.; He, W. L.; Zhu, M. K.; Wang, B.; Yan, H. Ceram. Int. 2004, 30, (1), 93-97.
153. Wang, Z. L. J. Phys.-Condes. Matter 2004, 16, (25), R829-R858.
154. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, (5510), 1947-1949.
155. Chen, H. J.; Wang, L. Y.; Chiu, W. Y. J. Polym. Sci. Pol. Chem. 2008, 46, (2), 515-529.
156. Ma, H. Z.; Hu, J.; Zhang, Z. J. Eur. Polym. J. 2007, 43, (10), 4169-4177.
157. Cui, L. L.; Xu, H.; He, P.; Sumitomo, K. K.; Yamaguchi, Y.; Gu, H. C. J. Polym. Sci. Pol. Chem. 2007, 45, (22), 5285-5295.
158. Qiao, X. G.; Chen, M.; Zhou, J.; Wu, L. M. J. Polym. Sci. Pol. Chem. 2007, 45, (6), 1028-1037.
159. Hong, R. Y.; Pan, T. T.; Qian, J. Z.; Li, H. Z. Chem. Eng. J. 2006, 119, (2-3), 71-81.
160. Kobayashi, M.; Kaneko, F.; Sato, K.; Suzuki, M. J. Phys. Chem. 1986, 90, (23), 6371-6378.
161. Giesekke, E. W. Int. J. Miner. Process. 1983, 11, (1), 19-56.
162. Khrenov, V.; Klapper, M.; Koch, M.; Mullen, K. Macromol. Chem. Phys. 2005, 206, (1), 95-101.
163. Woodbury, C. P. J. Phys. Chem. 1993, 97, (14), 3623-3630.
164. Matyjaszewski, K.; Xia, J. H. Chemical Reviews 2001, 101, (9), 2921-2990.
165. Matyjaszewski, K.; Patten, T. E.; Xia, J. H. J. Am. Chem. Soc. 1997, 119, (4), 674-680.
166. Veregin, R. P. N.; Georges, M. K.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1994, 27, (18), 5238-5238.
167. Kuo, K. H.; Chiu, W. Y.; Cheng, K. C. Polymer International 2008, 57, (5), 730-737.
168. Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, (16), 5457-5459.
169. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Macromolecules 1999, 32, (21), 6977-6980.
170. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, (16), 5559-5562.
171. Moad, G.; Rizzardo, E.; Thang, S. H. Australian Journal of Chemistry 2005, 58, (6), 379-410.
172. Viala, S.; Tauer, K.; Antonietti, M.; Kruger, R. P.; Bremser, W. Polymer 2002, 43, (26), 7231-7241.
173. Kos, T.; Strissel, C.; Yagci, Y.; Nugay, T.; Nuyken, O. European Polymer Journal 2005, 41, (6), 1265-1271.
174. Raether, B.; Nuyken, O.; Wieland, P.; Bremser, W. In Free-radical synthesis of block copolymers on an industrial scale, 8th Dresden Polymer Discussion, Dresden, Germany, Apr 23-26, 2001; Dresden, Germany, 2001; pp 25-41.
175. Chen, D.; Liu, R. X.; Fu, Z. F.; Shi, Y. E-Polymers 2008.
176. Stoeckel, N.; Wieland, P. C.; Nuyken, O. Polym. Bull. 2002, 49, (4), 243-250.
177. Tasdelen, M. A.; Degirmenci, M.; Yagci, Y.; Nuyken, O. Polym. Bull. 2003, 50, (3), 131-138.
178. Theis, A.; Feldermann, A.; Charton, N.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Macromolecules 2005, 38, (7), 2595-2605.
179. Brandup, J. I., E. H.; Grulke, E., Polymer Handbook. Wiley & Sons: New York, 1989.
180. Beuermann, S.; Buback, M.; Davis, T. P.; Gilbert, R. G.; Hutchinson, R. A.; Olaj, O. F.; Russell, G. T.; Schweer, J.; vanHerk, A. M. Macromolecular Chemistry and Physics 1997, 198, (5), 1545-1560.
181. Butte, A.; Storti, G.; Morbidelli, M. Macromolecules 2001, 34, (17), 5885-5896.
182. Maehata, H.; Buragina, C.; Cunningham, M.; Keoshkerian, B. Macromolecules 2007, 40, (20), 7126-7131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41408-
dc.description.abstract複合材料是指將兩種不同性質的材料結合在一起,形成一種性質更好的新材料,已經被廣泛使用在軍事、航空、建築、運動器材等相關領域。本論文為研究以迷你乳化聚合合成奈米複合乳膠顆粒及高分子團聯共聚物,並探討反應機制及其功能應用。論文內容共分為三大部分。第一部份使用oil in water (O/W) 迷你乳化聚合製備 聚(苯乙烯)/四氧化三鐵 複合乳膠顆粒。第二部份使用water in oil (W/O) 迷你乳化聚合製備 聚(丙烯酸-丙烯酸鈉)/氧化鋅 複合乳膠顆粒。第三部分以活性自由基聚合製備 聚(甲基丙烯酸甲酯)-聚(丙烯酸丁酯) 團聯共聚物。
第一部份包含第二、三章。第二章中的合成方法分兩步驟。首先使用共沈澱法合成四氧化三鐵奈米粒子,再以月桂酸進行表面處理,使得改質後的四氧化三鐵表面為疏水。在第二步驟,將含四氧化三鐵及共同安定劑的單體液滴以均質乳化程序分散於水相後,再藉著水溶性的起始劑(KPS)或油溶性的起始劑(AIBN)起始反應,進行迷你乳化聚合反應,最後得到一磁性複合顆粒。過程中將討論反應組成對反應動力、複合顆粒粒徑分佈、成核機制及形態的影響。
第三章的合成方法分成三步驟。先利用共沈澱法合成四氧化三鐵奈米粒子,接著進行月桂酸與十二烷基硫酸鈉的雙重處理,以得到帶負電的穩定的四氧化三鐵懸浮水溶液。在第二步驟則是先以低均質能量製備不安定的迷你乳液,靜置一天使單體的交換到達平衡。再取下層較安定的迷你乳液進行反應,此時得到的乳膠粒子將完全是從單體液滴原位聚合而來,且其粒徑分佈相當狹窄。最後一步驟將上述四氧化三鐵懸浮水溶液與乳膠顆粒混合,利用異質凝聚法即可得到磁性複合顆粒。過程中將討論各項反應組成,對此種此種新型迷你乳液之成核機制及粒徑分佈的影響。除此,也將使用全分子模擬探討有機、無機粒子大小及其表面電性對複合顆粒形態的影響,並與實驗結果相互驗證。
第二部份包含第四、五章。第四章中以W/O迷你乳化聚合法,利用環己烷為溶劑。過硫酸銨(APS)和偏亞硫酸鈉(SMBS)當作氧化還原起始劑在0-5oC下進行聚合反應合成 聚(丙烯酸-丙烯酸鈉) 乳膠顆粒,以減少單體溶在環己烷的比例。並探討共同介面安定劑的種類及量對迷你乳液的安定性、乳膠顆粒形態、乳膠顆粒成核機制的影響。所合成乳膠顆粒的pKa及其在酸鹼緩衝上的應用也在此研究中做深度探討。第五章則是第四章的延續實驗,引入了經油酸改質的奈米氧化鋅粒子,使其與聚(丙烯酸-丙烯酸鈉)形成複合顆粒。氧化鋅不但是兩性物質也具有光觸媒及紫外光遮蔽的效果,除了原本的酸鹼緩衝功能,此複合顆粒的應用面將更加廣泛。本章中探討了聚(丙烯酸-丙烯酸鈉)/氧化鋅 的合成機制、形態、酸鹼緩衝及紫外光吸收性質。
第三部份包含第六章。1,1-二苯基乙烯(DPE) 被利用來控制甲基丙烯酸甲酯的活性自由基聚合,但是不論改變1,1-二苯基乙烯的量、起始劑的量、反應溫度(但小於95oC),分子量都不隨單體轉化率提高而增加,反而都幾乎維持著定值。於是我們提出了一個活性聚合反應動力模型嘗試去解釋此種現象,並與實驗數據比較以估計相關的速率常數,發現這是因為k2的速率常數太小,也就是DPE capped dormant chains重新活化的反應速率太慢,造成分子量無法繼續成長。為了增加k2,聚合反應溫度提高至135oC,證實了高分子鏈的分子量可以隨轉化率增加而繼續成長,表現出活性聚合反應的特性,再輔以預熱處理,讓所有的起始劑都在預熱階段分解,就可以成功製備窄分子量分佈的高分子,並在反應的過程中都只觀察到單峰的分子量分佈,而不會有過渡的雙峰分子量分佈GPC圖譜。最後利用DPE-containing PMMA當巨起始劑,成功的用兩種聚合方法(均相聚合及迷你乳化聚合)製備 聚(甲基丙烯酸甲酯)-聚(丙烯酸丁酯) 團聯共聚物,並探討引入溶劑的量及聚合方法對反應速率、活性自由基聚合控制效果、分子量及其分佈之影響。
zh_TW
dc.description.abstractComposite materials were made from two or more constituent materials with different chemical or physical properties and have been demonstrated an enhanced performance. It has been widely applied in many fields, such as military hardware, aviation, architecture and fitness equipment. In this work, composite latex particles and block copolymers were synthesized via miniemulsion polymerization. The reaction mechanisms and related applications were investigated. This research was divided into three parts. The objective of the first part was to prepare PS/Fe3O4 composite latex particles by oil in water (O/W) miniemulsion polymerization. The objective of the second part was to prepare P(AA-SA)/ZnO composite latex particles by water in oil (W/O) miniemulsion polymerization. The objective of the third part was to synthesize PMMA-b-PBA block copolymers via controlled/living radical polymerization.
In the first part, there were two synthesis pathways to prepare PS/Fe3O4 nano composite latex particles. The first pathway contained a two-step process. First, the Fe3O4 nanoparticles were prepared by a coprecipitation method followed by the surface treatment with lauric acid. Hence, the surface modified Fe3O4 was hydrophobic in nature. In the second step, the monomer droplets containing Fe3O4 and costabilizer were dispersed in water with surfactant by ultrasonication. As the miniemulsion polymerization was initiated by water-soluble initiator, potassium persulfate (KPS), or oil-soluble initiator, 2,2'-azobisisobutyronitrile (AIBN), magnetic composite latex particles could be obtained. The influences of initial formulation on the monomer conversion, size distributions of monomer droplets and latex particles, nucleation mechanism, and morphology of composite particles were investigated in depth. Another synthesis pathway contained a three-step process. On the first step, the Fe3O4 dispersion was prepared by a coprecipitation method followed by the surface treatment with lauric acid and sodium dodecyl sulfate (SDS). On the Second step, the one-to-one copy of monomer droplets to latex particles could be synthesized via polymerization of an equilibrium stabilized miniemulsion prepared from a less stringent preparation process. The size distribution of obtained latex particles was relatively narrow. On the third step, by mixing the Fe3O4 dispersion with latex particles, the magnetic composite latex particles could be fabricated from heterocoagulation. Moreover, an all-atom molecular dynamics simulations were employed to explore the influences of sizes and surface polarity of polymer and inorganic particles on the morphology of composite latex particles. The simulation results were in agreement with our experimental results.
In the second part, P(AA-SA) latex particles were synthesized via W/O miniemulsion polymerization. In order to minimize the monomer dissolving in continuous phase, cyclohexane, the polymerization was carried out in the presence of ammonium persulfate/sodium metabisulfite (APS/SMBS) redox initiators at 0-5oC. The influences of costabilizer on the stability of miniemulsion, its morphology and nucleation mechanism were studied. The pKa and pH regulation capacity of P(AA-SA) latex particles synthesized in this work were investigated in depth. Furthermore, the ZnO nanoparticles were fabricated by a hydrothermal synthesis method in ethanol followed by oleic acid surface modification for dispersing the nanoparticles in cyclohexane. Based on our previous experimental procedure of synthesizing P(AA-SA) latex particles, P(AA-SA)/ZnO composite particles could be fabricated by introducing modified ZnO nanoparticles into continuous phase. ZnO was not only amphoteric substance but also owned an excellent performance in photocatalyst and UV shielding. The applications of P(AA-SA)/ZnO composite particles were various besides pH regulation. The reaction mechanism, morphology, pH regulation capacity and UV/Vis absorbance properties of composite latex particles were examined.
In the third part of this work, 1,1-diphenylethene (DPE) was employed to control the living free radical polymerization of MMA. When the reaction temperature was low (less than 95oC), the molecular weight of synthesized polymer remained almost a constant throughout the reaction time regardless of changing the amounts of DPE and initiator. A living polymerization kinetic model was established and compared with our experimental results. The kinetic rate constants involved in the DPE mechanism were estimated. The rate constant k2, corresponding to the reactivation reaction of the DPE- capped-dormant chains, was found to be very small, that accounted for the result of a constant molecular weight of polymer synthesized throughout the polymerization. In order to increase k2, the polymerization temperature was increased to 135oC, and the molecular weight of polymers increases with conversion, demonstrating the living nature of DPE mechanism. In addition, by using a preheating treatment, all the initiators dissociated into radicals at the very beginning of the polymerization. Then the synthesized polymers with narrow molecular weight distribution could be prepared successfully. From the trace of GPC diagram, a unimodal rather than bimodal molecular weight distribution was observed throughout the polymerization. Finally, PMMA-b-PBA block copolymers were synthesized by two polymerization methods (homogeneous polymerization and miniemulsion polymerization) using DPE-containing PMMA as a macroinitiator. The influences of solvent and polymerization methods on the polymerization rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) throughout the polymerization were studied and discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:18:27Z (GMT). No. of bitstreams: 1
ntu-98-F93549008-1.pdf: 10263214 bytes, checksum: 150bd01afff1d0534422377399f8da67 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 I
Abstract III
Contents VI
List of Tables XI
List of Figures XII
Chapter 1 Introduction 1
1-1 Introduction of miniemulsion polymerization 1
1-2 Development of oil in water (O/W) miniemulsion polymerization 2
1-3 Development of water in oil (W/O) miniemulsion polymerization 4
1-4 Development of composite particles prepared by miniemulsion polymerization 5
1-5 Introduction of controlled/living polymerization 7
1-6 Development of controlled/living polymers prepared by miniemulsion polymerization 10
1-7 Motivation of this work 12
1-7.1 PS/Fe3O4 composite latex particles from O/W miniemulsion polymerization 13
1-7.2 P(AA-SA)/ZnO composite latex particles from W/O miniemulsion polymerization 15
1-7.3 PMMA-b-PBA block copolymers from DPE controlled living miniemulsion polymerization 17
1-8 Summaries of originality and contribution of this work 19
Chapter 2 Preparation of PS/Fe3O4 Composite Particles from Miniemulsion Polymerization 24
2-1 Introduction 24
2-2 Experimental 27
2-2.1 Materials 27
2-2.2 Preparation of oil-based Fe3O4 particles 27
2-2.3 Preparation of PS/Fe3O4 composite particle 27
2-2.4 Characterization 28
2-2.4.1 X-ray diffraction (XRD) 28
2-2.4.2 Fourier transform infrared spectroscopy (FT-IR) analysis 28
2-2.4.3 Conversion 28
2-2.4.4 Morphology of PS/Fe3O4 composite particles 29
2-2.4.5 Size distributions of monomer droplets and composite latex particles 29
2-2.4.6 Thermogravimetric analysis (TGA) 29
2-2.4.7 Magnetization curve 29
2-3 Results and discussion 31
A:Preparation of PS/Fe3O4 Composite Particles using KPS as Initiator 31
2-3.1A Characterization of oil-based Fe3O4 nanoparticles 31
2-3.2A Influence of content of Fe3O4 32
2-3.3A Influence of homogenization energy 33
2-3.4A Influence of amount of initiator 34
2-3.5A Influence of amount of surfactant 35
2-3.6A Influence of costabilizer 36
2-3.7A Thermal property of PS/Fe3O4 composite particle 37
2-3.8A Magnetization curve of composite latex particles 37
B:Preparation of PS/Fe3O4 Composite Particles using AIBN as Initiator 38
2-3.1B Influence of content of Fe3O4 38
2-3.2B Influence of homogenization energy 40
2-3.3B Influence of surfactant concentration 41
2-3.4B Influence of costabilizer 42
2-3.5B Influence of initiator on nucleation mechanism 44
2-3.6B Thermal property of PS/Fe3O4 composite particles 45
2-3.7B Magnetization curve of composite latex particles 45
2-4 Conclusions 47
A:Preparation of PS/Fe3O4 Composite Particles using KPS as Initiator 47
B:Preparation of PS/Fe3O4 Composite Particles using AIBN as Initiator 48
Chapter 3 Preparation of PS/Fe3O4 Composite Particles via Heterocoagulation 75
3-1 Introduction 75
3-2 Experimental 79
A:Facile Synthesis of One-to-One Copy of Monomer Droplet to Latex Particle via Equilibrium Stabilized Miniemulsion Polymerization 79
3-2.1A Materials 79
3-2.2A Preparation of latex particles by miniemulsion polymeriazation 79
3-2.3A Latex characterizations 80
B:Molecular Dynamics Study of The TiO2/P(AA-co-MMA) and Fe3O4/PS Composite Latex Particles Prepared by Heterocoagulation 81
3-2.1B Materials 81
3-2.2B Preparation of TiO2/latex composite particles 81
3-2.3B Preparation of Fe3O4/latex composite particles 82
3-2.4B Model and simulation method 82
3-3 Results and discussion 85
A:Facile Synthesis of One-to-One Copy of Monomer Droplet to Latex Particle via Equilibrium Stabilized Miniemulsion Polymerization 85
3-3.1A suitable time for redistribution of monomer droplets into more stable state 85
3-3.2A latex particles showing a one to one copy of the monomer droplets 86
3-3.3A Control of size distribution of latex particles by surfactant concentration 87
3-3.4A Was costabilizer necessary for one-to-one copy of droplets to latex particles? 88
3-3.5A When water soluble initiator was used 91
B:Molecular Dynamics Study of The TiO2/P(AA-co-MMA) and Fe3O4/PS Composite Latex Particles Prepared by Heterocoagulation 92
3-3.1B Morphology of composite latex particles from experiment 92
3-3.2B Morphology of composite latex particles from simulation - different size, different charge polarity 93
3-3.3B Morphology of composite latex particles from simulation – same size, different charge polarity 94
3-3.4B Morphology of composite latex particles from simulation – same size, same charge polarity 95
3-3.5B Morphology of composite latex particles from simulation - different size, same charge polarity 96
3-4 Conclusions 97
A:Facile Synthesis of One-to-One Copy of Monomer Droplet to Latex Particle via Equilibrium Stabilized Miniemulsion Polymerization 97
B:Molecular Dynamics Study of The TiO2/P(AA-co-MMA) and Fe3O4/PS Composite Latex Particles Prepared by Heterocoagulation 98
Chapter 4 Preparation of P(AA-SA) Latex Particle Synthesis via Inverse Miniemulsion Polymerization. 118
4-1 Introduction 118
4-2 Experimental 121
4-2.1 Materials 121
4-2.2 Preparation of latex particles by inverse miniemulsion polymerization 121
4-2.3 Characterization 122
4-2.3.1 Morphology of latex particles 122
4-2.3.2 Size distributions of monomer droplets and latex particles 122
4-2.3.3 Titration of latex particles 122
4-2.3.4. PH buffering properties of latex particles 123
4-2.3.5 Thermogravimetric analysis (TGA) 123
4-2.3.6 Differential scanning calorimeter (DSC) 124
4-3 Results and discussion 125
4-3.1 Nucleation mechanism and morphology of PAA latex particles 125
4-3.1.1 Influence of costabilizer 125
4-3.1.2 Influence of concentration of costabilizer 126
4-3.1.3 Influence of amounts of surfactant 127
4-3.2 Thermal properties of the synthesized latex particles 128
4-3.2.1 DSC analysis 128
4-3.2.2 TGA analysis 128
4-3.3 Dissociation behavior of the synthesized latex particles 129
4-3.4. PH buffering properties of the synthesized latex particles 130
4-3.4.1 Influence of degree of neutralization 130
4-3.4.2 Influence of amounts of crosslinking agent 131
4-4 Conclusions 133
Chapter 5 Preparation of P(AA-SA)/ZnO Composite Particles via Inverse Miniemulsion Polymerization 151
5-1 Introduction 151
5-2 Experimental 154
5-2.1 Materials 154
5-2.2 Preparation of OA-ZnO nanoparticles 154
5-2.3 Preparation of latex particles by inverse miniemulsion polymerization 154
5-2.4 Characterization 155
5-2.5 pH regulation properties of P(AA-SA), ZnO and composite particles 156
5-3 Results and discussion 157
5-3.1 Characteristic of ZnO nanoparticles 157
5-3.2 P(AA-SA) latex particles by inverse miniemulsion polymerization 157
5-3.3 P(AA-SA)/ZnO composite particles by inverse miniemulsion polymerization 159
5-3.4 Thermal and UV shielding properties of the synthesized composite particles 160
5-3.5 pH regulation capacity 161
5-3.5.1 Bare ZnO nanoparticles or OA-ZnO nanoparticles 161
5-3.5.2 P(AA-SA) latex particles and P(AA-SA)/ZnO composite particles 161
5-4 Conclusions 163
Chapter 6 DPE Controlled Radical Polymerization in Homogeneous and Miniemulsion System - Kinetic Study and Preparation of Block Copolymer 178
6-1 Introduction 178
6-2 Experimental 181
6-2.1 Materials 181
6-2.2 Preparation of DPE-containing homopolymer 181
6-2.3 Experiment of chain extension 181
6-2.4 Preparation of PMMA-b-PBA block copolymer from homogeneous polymerization 182
6-2.5 Preparation of PMMA-b-PBA block copolymer from miniemulsion polymerization 182
6-2.6 Characterization 183
6-3 Results and discussion 184
A:Preparation of DPE-containing homopolymers 184
6-3.1A Influence of DPE 184
6-3.2A Influence of initiator 185
6-3.3A Influence of temperature 186
6-3.4A Influence of monomer 187
6-3.5A Influence of preheating 188
6-3.6A Chain extension 189
6-3.7A Kinetic model 190
B:Preparation of PMMA-b-PBA block copolymer 200
6-3.1B Preparation of macroinitiator 200
6-3.2B Block copolymer from homogeneous polymerization 201
6-3.3B Block copolymer from miniemulsion polymerization 203
6-3.4B Comparison between homogeneous polymerization and miniemulsion polymerization 204
6-4 Conclusions 207
A:Preparation of DPE-containing homopolymer 207
B:Preparation of PMMA-b-PBA block copolymers 207
Chapter 7 Conclusions 237
Chapter 8 Suggestion of Future Work 242
References 243
dc.language.isoen
dc.subject團聯共聚物zh_TW
dc.subject四氧化三鐵zh_TW
dc.subject氧化鋅zh_TW
dc.subject迷你乳化聚合zh_TW
dc.subject複合顆粒zh_TW
dc.subject活性自由基聚合zh_TW
dc.subjectzinc oxideen
dc.subjectblock copolymeren
dc.subjectliving/controlled radical polymerizationen
dc.subjectcomposite particlesen
dc.subjectminiemulsion polymerizationen
dc.subjectFe3O4en
dc.title迷你乳化聚合製備奈米複合乳膠顆粒PS/Fe3O4,P(AA-SA)/ZnO
及PMMA-b-PBA — 成核機制,形態控制及動力分析
zh_TW
dc.titlePreparation of nano Composite Particle PS/Fe3O4, P(AA-SA)/ZnO and PMMA-b-PBA by Miniemulsion Polymerization — Nucleation Mechanism, Morphology Control and Kinetic Analysisen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee戴子安,李佳芬,陳文章,黃慶怡,林江珍,許克瀛
dc.subject.keyword四氧化三鐵,氧化鋅,迷你乳化聚合,複合顆粒,活性自由基聚合,團聯共聚物,zh_TW
dc.subject.keywordFe3O4,zinc oxide,miniemulsion polymerization,composite particles,living/controlled radical polymerization,block copolymer,en
dc.relation.page254
dc.rights.note有償授權
dc.date.accepted2009-03-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
10.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved