Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宛珊(Christina W. Tsai)
dc.contributor.authorFu-Chiun Yuen
dc.contributor.author余富群zh_TW
dc.date.accessioned2021-06-15T00:18:11Z-
dc.date.available2013-08-19
dc.date.copyright2011-08-19
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citationAbderrezzak, K. E., and Paquier, A. (2011). “Applicability of sediment transport capacity formulas to dam-break flows over movable beds.” Journal of Hydraulic Engineering, 137(2), 209-221.
Ancey, C., Iverson, R. M., Rentschler, M., and Denlinger, R. P. (2008). “An exact solution for ideal dam-break floods on steep slopes.” Water Resources Research, 44(1), W01430 .
Bush, A. W. (1992). Perturbation methods for engineers and scientists. Teesside Polytechnic, UK.
Cao, Z., Pender, G., Wallis, S., and Carling, P. (2004). “Computational dam-break hydraulics over erodible sediment bed.” Journal of Hydraulic Engineering, 130(7), 689-703.
Capart, H. and Young, D.L., (1998), “Formation of a jump by a dam-break wave over a granular bed.” Journal of Fluid Mechanics, 372, 165-187.
Chanson, H. (2005). “Analytical solution of dam break wave with flow resistance application to tsunami surges.” Proc. 31th Biennial IAHR Congress, Seoul, Korea, B.H. Jun, S.I. Lee, I.W. Seo and G.W. Choi Editors, Theme D1, Paper 0137, 3341-3353.
Chanson, H. (2006a). “Tsunami surges on dry coastal plains: Application of dam break wave equations”, Coastal Engineering Journal, 48(4), 355-370.
Chanson, H. (2006b) “Analytical solutions of laminar and turbulent dam break wave.” Proceeding of International Conference on “Fluvial Hydraulics River Flow 2006”, Lisbon, Portugal, 2006.
Dressler, R. F. (1952). “Hydraulic resistance effect upon the dam-break functions.”Journal of Research of the National Bureau of Standards, 49(3), 217-225.
Fraccarollo, L., and Armanini, A. (1998). ‘‘A semi-analytical solution for the dam-break problem over a movable bed.’’ Proc., European Concerted Action on Dam-Break Modelling, CADAM, Munich, Germany, 145–152.
Fraccarollo, L., and Capart, H. (2002). “Riemann wave description of erosional dam-break flows.” Journal of Fluid Mechanics, 461, 183-228.
Graf, W. H., and Suszka, L. (1987). “Sediment transport in steep channels.” Journal of the Hydroscience and Hydr. Engrs., JSCE, 5(1), 11-26.
Holmes, M. H. (1995). Introduction to perturbation methods. New York: Springer.
Hunt, B. (1982). “Asymptotic solution for dam-break problem.” Journal of the Hydraulics Division, 108(1), 115-126.
Hunt, B. (1983). “Asymptotic solution for dam-break on sloping channel.” Journal of Hydraulic Engineering, 109(12), 1698-1706.
Hunt, B. (1984a). “Dam-break solution.” Journal of Hydraulic Engineering, 110(6), 675-686.
Hunt, B. (1984b). “Perturbation solution for dam-break floods.” Journal of Hydraulic Engineering, 110(8), 1058-1071.
Hunt, B. (1987a). “A perturbation solution of the flood-routing problem.” Journal of Hydraulic Research, 25(2), 215-234.
Hunt, B. (1987b). “An inviscid dam-break solution.” Journal of Hydraulic Research,25(3), 313-327.
Hunt, B. (1994). “Newtonian fluid mechanics treatment of debris flows and avalanches.” Journal of Hydraulic Engineering, 120(12), 1350-1363.
Lai, C. (1991). “Modeling Alluvial-channel flow by multimode characteristic method.” Journal of Engineering Mechanics, 117(1), 32-53.
Matsutomi, H. (2003). “Dam-break flow over a uniformly sloping bottom.” Journal of Hydrau, Coast., Environ. Enineering, JSCE, 726/II-62, 151-156.
Nayfeh, A. H. (2000) Perturbation methods, John Wiley and Sons, New York, N.Y.
Pritchard, D., and Hogg, A. J. (2002). “On sediment transport under dam-break flow.” Journal of Fluid Mechanics, 473, 265-274.
Ritter, A. (1892).“Die fortpflanzung der wasserwellen” Zeitschrift des Vereines Deutscher Ingenieure, Vol. 36,No. 33, Aug., pp. 947-954. cited by Hunt, B. (1982). “Asymptotic Solution for Dam-Break Problem.” Journal of the Hydraulics Division, 108(1), 115-126.
Shieh, M. C., and Huang, H. P. (2007) “Estimation of mixed-grain sediment discharge.” Journal of Chinese Soil and Water Conservation, 38(4), 349-371.
Song, T., and Graf, W.H. (1997). “Experimental study of bedload transport in unstead Open-channel flow.” International Journal of Sediment Research, 12(3), 63-71.
Stoker, J. J. (1948). “The formation of breakers and bores - the theory of nonlinear wave propagation in shallow water and open channels.” Communications on Applied Mathematics, 1(1), 1-87.
Tsai, C., and Kuai, K. Z. (2004). “Nonlinear modeling of wave propagation over a mobile sediment bed under uncertainty.” Proc., The Sixth International Conference on Hydro-science and Engineering, 13pp. Brisbane, Australia.
Tsai, C. W., and Yen, B.C. (2004) “Shallow water wave propagation in convectively accelerating open-channel flow induced by the tailwater effect.” Journal of Engineering Mechanics, 130(3), 320-336.
U.N. (2001). “Climate change 2001:The scientific bass-summary for policymakers.” Intergovernmental Panel on Climate Change:Third Assessment Report.
Van Dyke, M. (1975) Perturbation methods in fluid mechanics, annotated ed., The Parabolic Press, Stanford, Calif.
Vanoni, V.A., ed. (2006). Sedimentation Engineering. Manuals and Reports on Engineering Practice No. 54. American Society of Civil Engineers: Reston, VA.
Whitham, G. B. (1955). “The effects of hydraulic resistance in the dam-break problem.” Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 227(1170), 399-407.
Whitham, G. B. (1974). Linear and nonlinear waves. John Wiley and Sons, Inc., New York, N. Y.
Wollkind, D. J. (1977). “Singular perturbation techniques - Comparison of method of matched asymptotic expansions with that of multiple scales.” Siam Review, 19(3), 502-516.
Wu, W., and Wang, S. S. Y. (2007). “One-dimensional modeling of dam-break flow over movable beds.” Journal of Hydraulic Engineering, 133(1), 48-58.
Yen, B. C. (1992). “Dimensionally homogeneous Manning’s formula.” Journal of Hydraulic Engineering, 118(9), 1326-1332; Closure: (1993). 119(12), 1443-1445.
Yen, B. C. (2002). “Open Channel Flow Resistance.” Journal of Hydraulic Engineering, 128(1), 20-39.
Yoo, C., Jung, K.S., and Tae, W.K. (2005). “Rainfall frequency analysis using a mixed gamma distribution: Evaluation of the global warming effect on daily rainfall.” Hydrological Processes, 19, 3851-3861.

Internet Resource
Harper, A. (2006). http://homepage.ntlworld.com/harper7/ (accessed November 18, 2009).
Hunter, J. K. (2004). Asymptotic analysis and singular perturbation theory. http://www.math.ucdavis.edu/~hunter/notes/asy.pdf (accessed December 18, 2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41398-
dc.description.abstract近來由於氣候變遷,使得極端降雨事件增加;水庫、防砂壩壩體的安全也受到威脅。在水利工程中,潰壩的研究一直是熱門的問題。潰壩的問題涵蓋許多不同的領域,包含泥砂運動力學、地貌水利學、渠道水力學…等,相當複雜。研究中常以物理和數學模式來模擬,並求得潰壩以後水流的變化。而早期,為了順利求得解析解,許多重要的條件都被簡化。往後幾年,許多研究開始使用微擾法來求得潰壩問題的近似解,這類的研究考慮了更多相關的條件。近年來,電腦的興盛,許多研究都使用數值模擬的方法,來解決潰壩相關的問題。數值模擬可以考慮更多的條件,並且更深入研究問題。本研究在潰壩問題中考慮許多重要的基本條件,並利用微擾法,來求得潰壩問題的近似解。
本研究包含兩個不同條件的潰壩模型,第一個是純水的模型、第二個是水和砂混合的模型。在第一個模型當中,潰壩所產生的洪水,被以點源的型式假設,瞬間傳播到下游河道中,而下游河道是沒有初始水深的傾斜定型渠道。在第二個模型中,一樣是點源洪水波的潰壩問題。與前一個模型最大的不同是加入了泥砂運動和動床的條件,下游渠道為傾斜並包含固定的初始水深。
針對兩個潰壩模型,本研究使用了奇異微擾法,來求得潰壩問題的近似解。首先將原本的控制方程式無因次化,取得微小的微擾參數,計算領導階層的方程式,得到外部解。為了計算出波前端的細部解,將原本的變數重新定義後帶回原方程式,再求解領導階層的方程式,最後計算出內部解。最後將外部解和內部解結合,並扣除共同項,得到最後的答案。
在第一個部分,我們得到水深和速度的變化,而不同型式摩擦力的結果,也被討論。在第二個部分中,我們得到水深、速度、泥砂濃度和泥砂層的變化,其中發現泥砂層受水流的影響不大,很難發現其變化,但是我們發現到水波和底床變化之間有著延遲的現象。最後,模式的適用性與準確度,需和實驗做結合,係未來研究的方向。
zh_TW
dc.description.abstractThis thesis attempts to investigate the dam-break problem. We construct two models to approach the problems with different conditions in this study. The first one is the clear water model, and the second one is the water and sediment mixture model. The shallow water equations and Manning’s formula are used in the first model. The initial state is that a point source floods released from dam-break. And the wave propagates downstream in a dry sloping channel. We derive the solutions of the governing equations using the method of matched asymptotic expansions. The results are compared with the other model with different friction slope formulas. The comparison between the model and others shows good agreement. The flow-sediment continuity and momentum equations, sediment discharge and Manning’s formulas are used in the second model. The initial state is similar to that in the clear water model. But in the second proposed model, there exists some initial flow depth downstream of the dam and the channel bed is sediment-laden. When the flood wave passes to the downstream, the sediment layer might be subject to souring. As such, sediment concentrations in the flood wave will increase. We also use the matched asymptotic expansions method to solve the governing equations in the second proposed model. The variation of the sediment layer might be of smaller order of magnitude compared with that of the water depth. Nevertheless, results demonstrate that the spatial lag exists between the flood wave and the sediment layer. The effects of the various conditions are discussed. The results show that the channel slope and sediment diameter are two of the most important parameters in the second proposed model.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:18:11Z (GMT). No. of bitstreams: 1
ntu-100-R98521320-1.pdf: 5066087 bytes, checksum: 39e690ad27c227880ac75332011b589d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要.....................................................I
Abstract................................................II
List of Figures.........................................V
List of Tables..........................................XI
Chapter 1 INTRODUCTION..................................1
1.1 Problem statement...............................1
1.2 Objectives of Study.............................2
1.3 Significance of Study...........................3
1.4 Governing Equations.............................5
1.4.1 Clear Water Model...............................5
1.4.2 Water and Sediment Mixture Model................7
1.5 Overview of Thesis..............................10
Chapter 2 LITERATURE REVIEW.............................11
2.1 Clear Water Models..............................12
2.1.1 Analytical Approach.............................12
2.1.2 Asymptotic Approach.............................13
2.2 Water and Sediment Mixture Models...............20
2.2.1 Analytical Approach.............................20
2.2.2 Numerical Approach..............................20
2.3 Sediment Discharge Formula......................24
2.4 Summary and Conclusion..........................26
Chapter 3 METHODOLOGY...................................27
3.1 Method of Matched Asymptotic Expansions.........27
3.2 Perturbation Parameter Selection................33
3.3 Summary and Conclusion..........................34
Chapter 4 CLEAR WATER DAM-BREAK MODELING AND RESULTS....35
4.1 Normalization...................................35
4.2 Outer Solution..................................36
4.3 Inner Solution..................................42
4.4 Composite Solution..............................49
4.5 Results.........................................54
4.6 Summary and Conclusion..........................55
Chapter 5 WATER AND SEDIMENT MIXTURE DAM-BREAK MODELING AND RESULTS.................................................56
5.1 Normalization...................................56
5.2 Outer Solution..................................57
5.3 Inner Solution..................................63
5.4 Composite Solution..............................67
5.5 Results.........................................70
5.6 Summary and Conclusion..........................71
Chapter 6 DISCUSSIONS...................................72
6.1 Effects of the Channel slope....................72
6.2 Effects of the Roughness Coefficient............75
6.2.1 Different Roughness Values......................75
6.2.2 Different Friction Formulas.....................78
6.3 Effects of the Downstream Flow Depth............80
6.4 Effects of the Sediment.........................82
6.4.1 Effects of the Porosity.........................82
6.4.2 Effects of the Sediment Diameter................85
6.5 Effects of the Source Volume....................87
6.6 Summary and Conclusion..........................90
Chapter 7 CONCLUSIONS AND RECOMMENDATIONS...............91
7.1 Summary and Conclusion..........................91
7.2 Recommendations for Future Research.............92
Reference...............................................93
Appendix................................................97
Notation................................................97
dc.language.isoen
dc.title利用微擾法計算潰壩洪水問題zh_TW
dc.titleDam-Break Flood Wave Modeling Using the Matched Asymptotic Expansions Methoden
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳富春(Fu-Chun Wu),游景雲(Gene J-Y You)
dc.subject.keyword潰壩問題,微擾法,泥砂濃度,底床變化,延遲現象,zh_TW
dc.subject.keywordDam-break problems,Method of matched asymptotic expansions,Sediment transport,Sediment concentration,Spatial lag,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved