Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉怡玉
dc.contributor.authorCheng-Ta Yangen
dc.contributor.author楊政達zh_TW
dc.date.accessioned2021-06-15T00:17:50Z-
dc.date.available2012-05-12
dc.date.copyright2009-05-12
dc.date.issued2009
dc.date.submitted2009-04-30
dc.identifier.citationAngelone, B. L., Levin, D. T., & Simons, D. J. (2003). The relationship between change detection and recognition of centrally attended objects in motion pictures. Perception, 32(8), 947-962.
Ariga, A., Yokosawa, K., & Ogawa, H. (2007). Object-based attentional selection and awareness of objects. Visual Cognition, 15(6), 685-709.
Ashby, F., & Townsend, J. T. (1980). Decomposing the reaction time distribution: Pure insertion and selective influence revisited. Journal of Mathematical Psychology, 21(2), 93-123.
Baddeley, A. (1981). The concept of working memory: A view of its current state and probable future development. Cognition, 10(1-3), 17-23.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423.
Batchelder, W. H., & Riefer, D. M. (1990). Multinomial processing models of source monitoring. Psychological Review, 97(4), 548-564.
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6(1), 57-86.
Battig, W. F., & Montague, W. E. (1969). Category norms of verbal items in 56 categories A replication and extension of the Connecticut category norms. Journal of Experimental Psychology: Human Perception and Performance, 80(3, Pt.2), 1-46.
Beck, M. R., & Levin, D. T. (2003). The role of representational volatility in recognizing pre- and postchange objects. Perception & Psychophysics, 65(3), 458-468.
Beck, M. R., Levin, D. T., & Angelone, B. L. (2007a). Change blindness blindness: Beliefs about the roles of intention and scene complexity in change detection. Consciousness and Cognition, 16(1), 31-51.
Beck, M. R., Levin, D. T., & Angelone, B. L. (2007b). Metacognitive errors in change detection: Lab and life converge. Consciousness and Cognition, 16(1), 58-62.
Beck, M. R., Peterson, M. S., & Angelone, B. L. (2007). The roles of encoding, retrieval, and awareness in change detection. Memory & Cognition, 35(4), 610-620.
Bindemann, M., Burton, A., & Jenkins, R. (2005). Capacity limits for face processing. Cognition, 98(2), 177-197.
Brown, C., Costigan, T. E., & Kendziora, K. T. (2008). Data analytic frameworks: Analysis of variance, latent growth, and hierarchical models. [References]. In A. M. Nezu & C. M. Nezu (Eds.), Evidence-based outcome research: A practical guide to conducting randomized controlled trials for psychosocial interventions (pp. 285-313). New York, NY: Oxford University Press.
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523-547.
Caplovitz, G. P., Fendrich, R., & Hughes, H. C. (in press). Failures to see: Attentive blank stares revealed by change blindness. Consciousness and Cognition.
Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive Psychology, 22(2), 225-271.
Chan, C. H. S. (2008). Paternalistic leadership styles and follower performance: Examining mediating variables in a multi-level model. Hong Kong Polytechnic University, Hong Kong.
Cohen, D. J. (2003). Direct estimation of multidimensional perceptual distributions: Assessing hue and form. Perception & Psychophysics, 65(7), 1145-1160.
Cole, G. G., Kentridge, R. W., Gellatly, A. R., & Heywood, C. A. (2003). Detectability of onsets versus offsets in the change detection paradigm. Journal of Vision, 3(1), 22-31.
Coltheart, V. (1999). Phonological codes in reading comprehension, short-term memory, and memory for rapid visual sequences. In V. Coltheart (Ed.), Fleeting memories: Cognition of brief visual stimuli (pp. 181-223). Cambridge, MA: The MIT Press.
CorelDRAW! (1994). Ottawa, ON, Canada: Corel, Inc.
Davidson, M. L., Fox, M. J., & Dick, A. (1973). Effect of eye movements on backward masking and perceived location. Perception & Psychophysics, 14(1), 110-116.
De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.
Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1245-1255.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.
Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107-117.
Downing, P. E., & Dodds, C. M. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689-703.
Driver, J., Davis, G., Russell, C., Turatto, M., & Freeman, E. (2001). Segmentation, attention and phenomenal visual objects. Cognition, 80(1-2), 61-95.
Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501-517.
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458.
Dzhafarov, E. N. (1999). Conditionally selective dependence of random variables on external factors. Journal of Mathematical Psychology, 43(1), 123-157.
Eastwood, J. D., Frischen, A., Reynolds, M., Gerritsen, C., Dubins, M., & Smilek, D. (2008). Do emotionally expressive faces automatically capture attention? Evidence from global–local interference. Visual Cognition, 16(2), 248 - 261.
Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161-177.
Enns, J. T., & Di Lollo, V. (2000). What's new in visual masking? Trends in Cognitive Sciences, 4(9), 345-352.
Fabre-Thorpe, M. (2003). Visual categorization: Accessing abstraction in non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences 358(1435), 1215-1223.
Farah, M. J. (1995). Dissociable systems for visual recognition: A cognitive neuropsychology approach. In S. M. Kosslyn & D. N. Osherson (Eds.), Visual cognition: An invitation to cognitive science, Vol 2 (2nd ed., pp. 101-119). Cambridge, MA: The MIT Press.
Farah, M. J. (1996). Is face recognition 'special'? Evidence from neuropsychology. Behavioural Brain Research, 76(1-2), 181-189.
Farah, M. J., Tanaka, J. W., & Drain, H. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628-634.
Feldman, J. A. (1985). Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences, 8(2), 265-313.
Fernandez-Duque, D., Grossi, G., Thornton, I. M., & Neville, H. J. (2003). Representation of change: Separate electrophysiological markers of attention, awareness, and implicit processing. Journal of Cognitive Neuroscience, 15(4), 491-507.
Fernandez-Duque, D., & Thornton, I. M. (2000). Change detection without awareness: Do explicit reports underestimate the representation of change in the visual system? Visual Cognition, 7(1-3), 323-344.
Fific, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-processing architectures in multidimensional classification: A validation test of the systems factorial technology. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 356-375.
Flombaum, J. I., & Scholl, B. J. (2006). A temporal same-object advantage in the tunnel effect: Facilitated change detection for persisting objects. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 840-853.
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044.
Gallace, A., Tan, H. Z., & Spence, C. (2007). Do 'mudsplashes' induce tactile change blindness? Perception & Psychophysics, 69(4), 477-486.
Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nature Neuroscience, 2(6), 568-573.
Gauthier, I., Tarr, M. J., Moylan, J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2000). Does visual subordinate-level categorisation engage the functionally defined fusiform face area? Cognitive Neuropsychology, 17(1-3), 143-163.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). Boca Raton (FL): Chapman & Hall/CRC.
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/ hierarchical models. Cambridge, MA: Cambridge University Press.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton, Mifflin and Company.
Gibson, J. J. (2003). The ecological approach to visual perception The history of psychology: Fundamental questions (pp. 468-477). New York, NY: Oxford University Press.
Goldstein, H. (1995). Hierarchical data modeling in the social sciences. Journal of Educational and Behavioral Statistics, 20(2), 201-204.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Oxford, England: John Wiley.
Grice, G., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Perception & Psychophysics, 35(5), 451-463.
Grice, G., Canham, L., & Gwynne, J. W. (1984). Absence of a redundant-signals effect in a reaction time task with divided attention. Perception & Psychophysics, 36(6), 565-570.
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), Cambridge handbook of computational cognitive modeling (pp. 59–100). Cambridge, MA: Cambridge University Press.
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7(5), 555-562.
Grimes, J. (1996). On the failure to detect changes in scenes across saccades Perception (pp. 89-110). New York, NY: Oxford University Press.
Haber, R. N., & Hershenson, M. (1973). The psychology of visual perception. Oxford, England: Holt, Rinehart & Winston.
Hakoda, Y. (2003). Domain-specificity versus domain-generality in facial expressions and recognition. Japanese Journal of Psychonomic Science, 22(1), 121-124.
Henderson, J. M., Brockmole, J. R., & Gajewski, D. A. (2008). Differential detection of global luminance and contrast changes across saccades and flickers during active scene perception. Vision Research, 48(1), 16-29.
Henderson, J. M., & Hollingworth, A. (1998). Eye movements during scene viewing: An overview. In G. Underwood (Ed.), Eye guidance in reading and scene perception (pp. 269-293). Oxford, England: Elsevier Science Ltd.
Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50, 243-271.
Henderson, J. M., & Hollingworth, A. (2003). Eye movements and visual memory: Detecting changes to saccade targets in scenes. Perception & Psychophysics, 65(1), 58-71.
Hershler, O., & Hochstein, S. (2005). At first sight: A high-level pop out effect for faces. Vision Research, 45(13), 1707-1724.
Hollingworth, A. (2001). Accurate memory for previously attended objects in natural scenes. Michigan State University, US.
Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 388-403.
Hollingworth, A. (2004). Constructing visual representations of natural scenes: the roles of short- and long-term visual memory. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 519-537.
Hollingworth, A. (2005). The relationship between online visual representation of a scene and long-term scene memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 396-411.
Hollingworth, A. (2006). Visual memory for natural scenes: Evidence from change detection and visual search. Visual Cognition, 14(4-8), 781-807.
Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 113-136.
Hollingworth, A., & Henderson, J. M. (2003). Testing a conceptual locus for the inconsistent object change detection advantage in real-world scenes. Memory & Cognition, 31(6), 930-940.
Hollingworth, A., & Henderson, J. M. (2004). Sustained change blindness to incremental scene rotation: A dissociation between explicit change detection and visual memory. Perception & Psychophysics, 66(5), 800-807.
Hollingworth, A., Schrock, G., & Henderson, J. M. (2001). Change detection in the flicker paradigm: The role of fixation position within the scene. Memory & Cognition, 29(2), 296-304.
Hollingworth, A., Williams, C. C., & Henderson, J. M. (2001). To see and remember: Visually specific information is retained in memory from previously attended objects in natural scenes. Psychonomic Bulletin & Review, 8(4), 761-768.
Ingvalson, E. M., & Wenger, M. J. (2005). A strong test of the dual-mode hypothesis. Perception & Psychophysics, 67, 14-35.
Intraub, H. (1984). Conceptual masking: the effects of subsequent visual events on memory for pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 115-125.
Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 23(3), 420-456.
Irwin, D. E., Brown, J. S., & Sun, J. S. (1988). Visual masking and visual integration across saccadic eye movements. Journal of Experimental Psychology: General, 117(3), 276-287.
Irwin, D. E., & Yeomans, J. M. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 12(3), 343-360.
Irwin, D. E., & Zelinsky, G. J. (2002). Eye movements and scene perception: memory for things observed. Perception & Psychophysics, 64(6), 882-895.
Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10-12), 1489-1506.
Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541-15544.
Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3(8), 759-763.
Kawabata, H. (2003). Domain-specificity and generality in the brain. Japanese Journal of Psychonomic Science, 22(1), 132-136.
Klauer, K. C., Voss, A., Schmitz, F., & Teige-Mocigemba, S. (2007). Process components of the Implicit Association Test: A diffusion-model analysis. Journal of Personality and Social Psychology, 93(3), 353-368.
Kosslyn, S. M. (1975). Information representation in visual images. Cognitive Psychology, 7(3), 341-370.
Laming, D. R. J. (1968). Information, theory of choice-reaction times. New York: Academic Press.
Lamy, D., & Egeth, H. (2002). Object-based selection: The role of attentional shifts. Perception & Psychophysics, 64(1), 52-66.
Lavie, N., Ro, T., & Russell, C. (2003). The role of perceptual load in processing distractor faces. Psychological Science, 14(5), 510-515.
Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15(1), 1-15.
Levin, D. T., Drivdahl, S. B., Momen, N., & Beck, M. R. (2002). False predictions about the detectability of visual changes: The role of beliefs about attention, memory, and the continuity of attended objects in causing change blindness blindness. Consciousness and Cognition, 11(4), 507-527.
Levin, D. T., Momen, N., Drivdahl, S. B., & Simons, D. J. (2000). Change blindness blindness: The metacognitive error of overestimating change-detection ability. Visual Cognition, 7(1-3), 397-412.
Levin, D. T., & Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures. Psychonomic Bulletin & Review, 4(4), 501-506.
Levin, D. T., Simons, D. J., Angelone, B. L., & Chabris, C. F. (2002). Memory for centrally attended changing objects in an incidental real-world change detection paradigm. British Journal of Psychology, 93(3), 289-302.
Link, S., & Heath, R. (1975). A sequential theory of psychological discrimination. Psychometrika, 40(1), 77-105.
Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740-749.
Loftus, E. (1979). Eyewitness Reliability. Science, 205(4404), 386-387.
Loftus, G. R., & Ginn, M. (1984). Perceptual and conceptual masking of pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(3), 435-441.
Longford, N. T. (1995). Hierarchical models and social sciences. Journal of Educational and Behavioral Statistics, 20(2), 205-209.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325-337.
Mace, M. J., Richard, G., Delorme, A., & Fabre-Thorpe, M. (2005). Rapid categorization of natural scenes in monkeys: target predictability and processing speed. Neuroreport, 16(4), 349-354.
Mantyla, T., & Sundstrom, A. (2004). Changing scenes: Memory for naturalistic events following change blindness. Memory, 12(6), 696-706.
MathWorks (1993). MATLAB. Natick: The MathWorks Inc.
McConkie, G. W., & Currie, C. B. (1996). Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 22(3), 563-581.
Merkle, E. C., & Van Zandt, T. (2006). An application of the Poisson race model to confidence calibration. Journal of Experimental Psychology: General, 135(3), 391-408.
Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247-279.
Mitroff, S. R., Simons, D. J., & Franconeri, S. L. (2002). The siren song of implicit change detection. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 798-815.
Mitroff, S. R., Simons, D. J., & Levin, D. T. (2004). Nothing compares 2 views: Change blindness can occur despite preserved access to the changed information. Perception & Psychophysics, 66(8), 1268-1281.
Molenberghs, G., & Verbeke, G. (2006). Models for discrete longitudinal data. New York: Springer.
Mordkoff, J., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 520-538.
Mordkoff, J., & Yantis, S. (1993). Dividing attention between color and shape: Evidence of coactivation. Perception & Psychophysics, 53(4), 357-366.
Nakayama, K. (1994). James J. Gibson--an appreciation. Psychological Review, 101(2), 329-335.
Neisser, U. (1967). Cognitive psychology: Appleton-Century-Crofts.
Noe, A. (2002). Is the visual world a grand illusion? Journal of Consciousness Studies, 9(5-6), 1-12.
Noe, A. (2005). What does change blindness teach us about consciousness? Trends in Cognitive Sciences, 9(5), 218.
Noe, A., Pessoa, L., & Thompson, E. (2000). Beyond the grand illusion: What change blindness really teaches us about vision. Visual Cognition, 7(1-3), 93-106.
Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104(2), 266-300.
Nothdurft, H.-C. (2000). Salience from feature contrast: Temporal properties of saliency mechanisms. Vision Research, 40(18), 2421-2435.
O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584-587.
O'Regan, J. K. (1992). Solving the 'real' mysteries of visual perception: the world as an outside memory. Candian Journal of Psychology, 46(3), 461-488.
O'Regan, J. k., Rensink, R. A., & Clark, J. J. (1999). Change-blindness as a result of 'mudsplashes.'. Nature, 398(6722), 34.
Ohman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80(3), 381-396.
Palermo, R., & Rhodes, G. (2003). Change detection in the flicker paradigm: Do faces have an advantage? Visual Cognition, 10(6), 683-713.
Palmer, J. (1990). Attentional limits on the perception and memory of visual information. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 332-350.
Palmer, J. (1995). Attention in visual search: Distinguishing four causes of a set-size effect. Current Directions in Psychological Science, 4(4), 118-123.
Palmer, J., & Jonides, J. (1988). Automatic memory search and the effects of information load and irrelevant information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 136-144.
Palmer, J., Verghese, P., & Pavel, M. (2000). The psychophysics of visual search. Vision Research, 40(10-12), 1227-1268.
Phillips, W. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16(2), 283-290.
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160-174.
Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning & Memory, 2(5), 509-522.
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.
Ratcliff, R. (1980). A note on modeling accumulation of information when the rate of accumulation changes over time. Journal of Mathematical Psychology, 21(2), 178-184.
Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling accumulation of partial information. Psychological Review, 95(2), 238-255.
Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111(1), 159-182.
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347-356.
Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in two-choice letter identification. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 127-140.
Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333-367.
Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology and Aging, 19(2), 278-289.
Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaching to dealing with contaminant reaction and parameter variability. Psychonomic Bulletin & Review, 9(3), 438-481.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.
Remington, R. W., & Folk, C. L. (2001). A dissociation between attention and selection. Psychological Science, 12(6), 511-515.
Rensink, R. A. (2000a). The dynamic representation of scenes. Visual Cognition, 7(1-3), 17-42.
Rensink, R. A. (2000b). Seeing, sensing, and scrutinizing. Vision Research, 40(10-12), 1469-1487.
Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53(1), 245-277.
Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368-373.
Rensink, R. A., O'Regan, J. K., & Clark, J. J. (2000). On the failure to detect changes in scenes across brief interruptions. Visual Cognition, 7(1-3), 127-145.
Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95(3), 318-339.
Ro, T., Russell, C., & Lavie, N. (2001). Changing faces: A detection advantage in the flicker paradigm. Psychological Science, 12(1), 94-99.
Robert, C. P., & Casella, G. (2003). Monte Carlo statistical methods. New York: Springer.
Rousselet, G. A., Fabre-Thorpe, M., & Thorpe, S. J. (2002). Parallel processing in high-level categorization of natural images. Nature Neuroscience, 5(7), 629-630.
Ryan, J. D., & Cohen, N. J. (2004). The nature of change detection and online representations of scenes. Journal of Experimental Psychology: Human Perception and Performance, 30(5), 988-1015.
Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763.
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's Guide: Psychology Software Inc.
Scholl, B. J. (2000). Attenuated change blindness for exogenously attended items in a flicker paradigm. Visual Cognition, 7(1-3), 377-396.
Scott-Brown, K. C., Baker, M. R., & Orbach, H. S. (2000). Comparison Blindness. Visual Cognition, 7(1), 253 - 267.
Scott-Brown, K. C., & Heeley, D. W. (2001). The effect of the spatial arrangement of target lines on perceived speed. Vision Research, 41(13), 1669-1682.
Scott-Brown, K. C., & Orbach, H. S. (1998). Contrast discrimination, non-uniform patterns and change blindness. Proceedings of the Royal Society B: Biological Sciences, 265(1411), 2159-2166.
Shaw, M. L. (1982). Attending to multiple sources of information: I. The integration of information in decision making. Cognitive Psychology, 14(3), 353-409.
Shepherd, M., Findlay, J. M., & Hockey, R. J. (1986). The relationship between eye movements and spatial attention. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 38(3-A), 475-491.
Shiffrin, R., & Atkinson, R. (1969). Storage and retrieval processes in long-term memory. Psychological Review, 76(2), 179-193.
Silverman, M. E., & Mack, A. (2006). Change blindness and priming: When it does and does not occur. Consciousness and Cognition, 15(2), 409-422.
Simons, D. J. (2000). Current approaches to change blindness. Visual Cognition, 7(1-3), 1-15.
Simons, D. J., & Ambinder, M. S. (2005). Change blindness: Theory and consequences. Current Directions in Psychological Science, 14(1), 44-48.
Simons, D. J., Chabris, C. F., Schnur, T., & Levin, D. T. (2002). Evidence for preserved representations in change blindness. Consciousness and Cognition, 11(1), 78-97.
Simons, D. J., Franconeri, S. L., & Reimer, R. L. (2000). Change blindness in the absence of a visual disruption. Perception, 29(10), 1143-1154.
Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1(7), 261-267.
Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review, 5(4), 644-649.
Simons, D. J., Nevarez, G., & Boot, W. R. (2005). Visual sensing is seeing why 'Mindsight,' in hindsight, is blind. Psychological Science, 16(7), 520-524.
Simons, D. J., & Rensink, R. A. (2005a). Change blindness, representations, and consciousness: Reply to Noe. Trends in Cognitive Sciences, 9(5), 219.
Simons, D. J., & Rensink, R. A. (2005b). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9(1), 16-20.
Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23(4), 323-355.
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York, NY: Oxford University Press.
Smilek, D., Eastwood, J. D., & Merikle, P. M. (2000). Does Unattended Information Facilitate Change Detection? Journal of Experimental Psychology: Human Perception and Performance, 26(2), 480-487.
Smilek, D., Eastwood, J. D., Reynolds, M. G., & Kingstone, A. (2007). Metacognitive errors in change detection: Missing the gap between lab and life. Consciousness and Cognition, 16(1), 52-57.
Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27(3), 161-168.
Snodgrass, J. G., & Townsend, J. T. (1980). Comparing parallel and serial models: Theory and implementation. Journal of Experimental Psychology: Human Perception and Performance, 6(2), 330-354.
Spaniol, J., Madden, D. J., & Voss, A. (2006). A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 101-117.
Sperling, G. (1960). The information available in brief visual presentation. Psychological Monographs, 74(11, Whole No. 498), 29.
Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207-222.
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652-654.
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276-315.
Strayer, D. L. (1997). Testing race models of visual search. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 566-581.
Tanaka, J. W., & Farah, M. J. (1991). Second-order relational properties and the inversion effect: Testing a theory of face perception. Perception & Psychophysics, 50(4), 367-372.
Tatler, B. W., Gilchrist, I. D., & Rusted, J. (2003). The time course of abstract visual representation. Perception, 32(5), 579-592.
Theeuwes, J., & Van der Stigchel, S. (2006). Faces capture attention: Evidence from inhibition of return. Visual Cognition, 13(6), 657-665.
Thomas, R. D. (2001). Characterizing perceptual interactions in face identification using multidimensional signal detection theory. In M. J. Wenger & J. T. Townsend (Eds.), Computational, geometric, and process perspectives on facial cognition: Contexts and challenges (pp. 193-227). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
Thornton, T. L., & Gilden, D. L. (2007). Parallel and Serial Processes in Visual Search. Psychological Review, 114(1), 71-103.
Tomonaga, M. (2007). Visual search for orientation of faces by a chimpanzee (Pan troglodytes): face-specific upright superiority and the role of facial configural properties. Primates, 48(1), 1-12.
Townsend, J. T. (1990a). Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee but they can (and should) be distinguished. Psychological Science, 1(1), 46-54.
Townsend, J. T. (1990b). Truth and consequences of ordinal differences in statistical distributions: Toward a theory of hierarchical inference. Psychological Bulletin, 108(3), 551-567.
Townsend, J. T. (2001). A clarification of self-terminating versus exhaustive variances in serial and parallel models. Perception & Psychophysics, 63(6), 1101-1106.
Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. New York: Cambridge University Press.
Townsend, J. T., & Fific, M. (2004). Parallel versus serial processing and individual differences in high-speed search in human memory. Perception & Psychophysics, 66(6), 953-962.
Townsend, J. T., & Honey, C. J. (2007). Consequences of base time for redundant signals experiments. Journal of
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41386-
dc.description.abstract人們往往無法偵測環境中的重大改變,此現象稱為改變盲。決策失敗為改變盲的成因之一。然而,改變偵測的決策機制尚待釐清。因此,本論文主要探討改變偵測的決策歷程。根據過去研究,改變前、後物體的相似性會影響改變偵測的決策判斷。當改變前、後物體越相似時,偵測困難度上升,則偵測表現下降。本論文探討不同類別刺激材料之間的相似性(如:人臉(第二章)、物體(第三章)、與Gabor(第四章)),如何影響改變偵測。實驗一-三顯示,改變前、後臉的相似性會調節人臉的偵測優勢。實驗四-六測試物體間知覺和語意的相似性,在不同的刺激呈現時間下,如何影響訊息累積速度。利用Diffusion model,發現兩種層次的相似性都會使得決策訊息的累積速度變慢,但不影響非決策的時間。實驗七-九利用systematic factorial technology,進一步探討刺激中不同特徵的處理如何影響決策歷程。結果發現,當不同特徵改變量不等時,受試者會使用不同的決策策略(實驗七);當不同特徵改變量相等時,受試者會傾向使用平行自我終止式的處理方式來偵測改變(實驗八)。當畫面中有兩個物體時,受試者採用序列自我終止式的處理方式來偵測改變(實驗九)。決策歷程會隨著情境不同而有所改變。本論文探討改變偵測中決策歷程的各個不同面向,研究結果更進一步釐清決策歷程在改變偵測扮演的角色。zh_TW
dc.description.abstractPeople often fail to detect a large change in the visual environment. This phenomenon, change blindness, has attracted researchers’ interests. The decision failure has been proposed as one of the causes of change blindness. Yet, the processes that underlie the decision mechanism are still unclear. As similarity between the pre- and post-change stimuli can influence the decision, I tested how similarity between faces (Chapter 2), objects (Chapter 3), and Gabor patches (Chapter 4) influences the decision. Previous results have shown that similarity costs detection performance (similarity cost), and the results from Experiments 1 - 3 showed that the similarity cost can override the face-detection advantage. Experiments 4 - 6 tested how different levels of similarity (visual and conceptual similarity) influences the information accumulation process when the exposure duration was 2,000, 1,000, or 180 ms. Ratcliff’s diffusion model was used to analyze the information accumulation process. Results showed that both visual and conceptual similarity decreased the rate of information accumulation. The rate of information accumulation also decreased as a function of the exposure duration, suggesting that participants spend more time on accumulating evidence for a decision when the memory strength of the pre-change objects is weak. In Experiments 7 - 9, I used the systematic factorial technology to investigate the processing of each feature underlying change detection. Results showed that participants used different decision strategies when the detection threshold of each type of change was unequal (Experiment 7). When the detection threshold is controlled, participants conducted a parallel process with a self-terminating rule in detecting changes (Experiment 8). They used a serial processing with a self-terminating rule to detect changes when two objects were presented (Experiment 9). Results suggested that participants are able to change the decision strategy depending on the context. Results from this thesis furthers the understanding of the different aspects of the decision mechanism, including the decision difficulty, the rate of information accumulation, the response criterion, the process architecture, the stopping rule and the process capacity, in the context of change detection. Results may shed light on the comparison and decision processes involved in change detection.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:17:50Z (GMT). No. of bitstreams: 1
ntu-98-F93227101-1.pdf: 2305663 bytes, checksum: c08bd72186296f3148a9ec68ecd9b603 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsCHAPTER 1 .................................................1
INTRODUCTION ........................................1
SUMMARY ................................................31
CHAPTER 2: THE EFFECT OF SIMILARITY ON THE FACE-CAPTURING EFFECT IN CHANGE DETECTION ..............................33
INTRODUCTION .......................................35
EXPERIMENT 1 .......................................38
EXPERIMENT 2 .......................................46
EXPERIMENT 3 .......................................52
GENERAL DISCUSSION .......................................55
CONCLUSION .......................................57
CHAPTER 3: THE DIFFUSION PROCESS INVOLVED IN DETECTION DECISION ................................................59
INTRODUCTION .......................................59
EXPERIMENT 4 .......................................76
EXPERIMENT 5 .......................................92
EXPERIMENT 6 ......................................101
COMPARING THE RESULTS BETWEEN EXPERIMENTS 4-6 ...........109
CHAPTER 4 ...............................................115
INTRODUCTION ......................................115
EXPERIMENT 7 ......................................133
EXPERIMENT 8 ......................................163
EXPERIMENT 9 ......................................184
SUMMARY ...............................................208
GENERAL DISCUSSION ......................................211
OBJECTIVES ......................................211
SUMMARY OF THE MAIN FINDINGS ....................214
DISCUSSION ......................................217
FUTURE STUDIES ......................................235
REFERENCE ...............................................239
dc.language.isoen
dc.subject改變偵測zh_TW
dc.subject決策zh_TW
dc.subjectsystematic factorial technologyzh_TW
dc.subjectdiffusion modelzh_TW
dc.subjectsystematic factorial technologyen
dc.subjectchange detectionen
dc.subjectdecisionen
dc.subjectdiffusion model.en
dc.title改變偵測的決策歷程zh_TW
dc.titleThe Decision Process in Change Detectionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.coadvisor徐永豐
dc.contributor.oralexamcommittee黃榮村,汪曼穎,李玉琇,襲充文,鄭仕坤
dc.subject.keyword改變偵測,決策,systematic factorial technology,diffusion model,zh_TW
dc.subject.keywordchange detection,decision,systematic factorial technology,diffusion model.,en
dc.relation.page263
dc.rights.note有償授權
dc.date.accepted2009-05-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved