請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41377完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮哲川 | |
| dc.contributor.author | Yen-Ting Chen | en |
| dc.contributor.author | 陳彥廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:17:32Z | - |
| dc.date.available | 2011-05-18 | |
| dc.date.copyright | 2009-05-18 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-05-14 | |
| dc.identifier.citation | chapter1
1.1 http://old-www.ansto.gov.au/natfac/asrp4.html 1.2 http://www.nsrrc.org.tw/english/lightsource.aspx 1.3 http://www.slac.stanford.edu/gen/edu/educatiorn.html 1.4 Synchrotron Light to Explore Matter, Copyright MediaSoft, ESRF and Springer-Verlag 2000. 1.5 J. Schneider, G. Kaindl, C. Kunz, H. Dosch, D. Lour, E. J. Mittemeijer, X-Rays (Synchrotron Radiation), Advanced Analysis of Materials, pp. 238-243. 1.6 N. Marks, Synchrotron Radiation Projects of Industrial Interest, EPAC 98 Proceedings (Invited Papers), pp. 217-221. 1.7 M. W. Parker, Synchrotron Light Sources: Essential Tools for Revealing Protein Structures and for Drug Design, ATSE Focus, No. 121, Mar/Apr 2001. 1.8 A. Gerson and R. J. Hill FTSE, Synchrotron Applications to the Earth Science, ATSE Focus, No. 121, Mar/Apr 2002. 1.9 http://www.physik.uni-kiel.de/kfs/Anwendung/chemistry.php 1.10 http://www.physik.uni-kiel.de/kfs/Forschungsfelder/life.php 1.11 http://www.physik.uni-kiel.de/kfs/Anwendung/medicine.php 1.12 http://www.atse.org.au/index.php?sectionid=471 1.13 http://www.physik.uni-kiel.de/kfs/Anwendung/geosciences.php 1.14 http://www.jinr.ru/delsy/Home_delsy.htm 1.15 http://en.wikipedia.org/wiki/Synchrotron_light chapter2 2.1 Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Ó John Wiley & Sons Ltd, Chichester, 2000, pp. 9209–9231. 2.2 Lee, Zhen-Sheng, “Optical Properties of InGaN/GaN Multi-Quantum Wells Structure Grown by Metalorganic Chemical Vapor Deposition”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). 2.3 Huang, Yi-Zhe, “Optical Measurements and Analyses of InGaN/GaN on ZnO and Field Emission Studies of Carbon Nanotubes”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2008). 2.4 Kuo, Ting-Wei, “Optical Properties and Material Studies of Different InGaN/GaN Multi-Quantum Well Structures Light Emitting Diode Wafer”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2008). 2.5 Vitalij K. Pecharsky, and Peter Y. Zavalij “Fundamental of Powder diffraction and structural characterization of materials”, Springer (2005). 2.6 http://www.physics.und.edu/facilities_xrd.html 2.7 洪上宇 “Measurement and Analysis of InGaN and InGaAlP High Brightness Light-Emitting Diodes”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). 2.8 B.D. Cullity “Elements of X-ray Diffraction” Addison Wesley Mass. 1978. 2.9 http://www.nsrrc.org.tw/chinese/index.aspx 2.10 http://en.wikipedia.org/wiki/Powder_diffraction#Devices 2.11 H. Fricke, Phys. Rev., 16, 202 (1920). 2.12 G. Hertz, Z. Phys., 3, 19 (1920). 2.13 D. Coster, Z. Phys., 25, 83 (1924). 2.14 A. E. Lindh, Z. Phys., 6, 303 (1921); 31, 210 (1925). 2.15 G. A. Lindsay, C. R. Acad. Sci. (Paris), 175, 150 (1922). 2.16 W. Kossel, Z. Phys., 1, 119 (1920); 2, 470 (1920). 2.17 B. B. Ray, Z. Phys., 55, 119 (1929). 2.18 B. Kievet and G. A. Lindsay, Phys. Rev., 36, 648 (1930). 2.19 J. D. Hanawalt, Z. Phys., 70, 20 (1931); Phys. Rev., 37, 715 (1931). 2.20 R. de L. Kronig, Z. Phys., 70, 317 (1931). 2.21 L. V. Azaroff, Rev. Mod. Phys., 35, 1012 (1963). 2.22 E. A. Stern, Phys. Rev. B, 10 3027 (1974). 2.23 R. de L. Kronig, Z. Phys., 75,468 (1932). 2.24 H. Peterson, Z. Phys., 76, 768 (1932); 80, 258 (1933); 98, 569 (1936). 2.25 A. I. Kostarev, Zh. Eksp. Teor. Fiz., 11, 60 (1941); 19, 413. 2.26 D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev Lett., 27, 1204 (1971). 2.27 D. E. Sayers, F. W. Lytle, and E. A. Stern, Adv. X-Ray Anal., 13, 248 (1970). 2.28 D. E. Sayers, F. W. Lytle, and E. A. Stern, Phys Rev. Lett., 27, 1204 (1971). 2.29 P. Eisenberger, B. Kincaid, S. Hunter, D. Sayers, E. A. Stern, and F. W. Lytle, in Proceedings of the IV International Conference on Vacuum Ultraviolet Radiation Physics, E. E. Koch, R. Haensel and C. Kunz (Eds), Pergamon, Oxford, 1974. 2.30 E. A. Stern, Contemp. Phys., 19, 289 (1978). 2.31 P. M. Eisenberger, and B. M. Kincaid, Science, 200, 1441 (1978). 2.32 D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem., 30, 215 (1979). 2.33 S. P. Cramer and K. O. Hodgson, in Progress in Inorganic Chemistry, Vol. 25, S. J. Lippard (Ed.), Wiley, New YORK, 1979, p. 1. 2.34 L. Powers, Biochem. Biophys. Acta, 683, 1 (1982). 2.35 P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys., 53, 769 (1981). 2.36 T. M. Hayes and J. B. Boyce, in Solid State Physics, Vol. 37, H. Ehrenreich, F. Seitz, and D. Turnbull (Eds.), Academic, New York, 1982, p. 173. 2.37 J. E. Enderby, D. M. North, and P. A. Egelstaff, Philos. Mag., 14, 961 (1966). 2.38 P Fuoss, P. Eisenberger, W. K. Warburton and A. Bienenstock, Phys. Rev. Lett., 46, 1537 (1981). 2.39 E. A. Stern, C. E. Bouldin, B. von Roedern, and J. Azoulay, Phys. Rev. B, 27, 6557 (1983). 2.40 Matthew Newville, “Fundamentals of XAFS“, Consortium for Advanced Radiation Sources, Revision 1.7 July 23, 2004 2.41 http://sourceforge.net/projects/ifeffit 2.42 http://cars9.uchicago.edu/~ravel/software/downloads.html 2.43 http://www.i-x-s.org/ 2.44 http://xafs.org/XAFS 2.45 http://leonardo.phys.washington.edu/feff/wiki/index.php?title=Main_Page 2.46 http://cars9.uchicago.edu/iffwiki/Ifeffit 2.47 http://www.astro.caltech.edu/~tjp/pgplot/ 2.48 http://cars.uchicago.edu/ifeffit 2.49 http://www.perl.com 2.50 http://www.lehigh.edu/~sol0/ptk/ 2.51 Shelly D. Kelly, “Introduction to EXAFS data analysis”, Argonne National Laboratory chapter3 3.1 Ho Won Jang, Chang Min Jeon, Ki Hong Kim, Jong Kyu Kim, Sung-Bum Bae, Jung-Hee Lee, Jae Wu Choi, and Jong-Lam Lee, Appl. Phys. Lett. vol 81, num 7, 1249, (2002). 3.2 Y. F. Wu, B. P. Keller, S. Keller, D. Kalponek, P. Kozodoy, S. P. DenBaas, and U. K. Mishra, Appl. Phys. Lett, 69, 1438 (1996). 3.3 N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, Jpn. J. Appl. Phys., Part 2 38, L799 (1999). 3.4 T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, Appl. Phys. Lett, 76, 121 (2000). 3.5 Cho, Kai-Sin, “ Spin-dependent properties of two-dimensional AlGaN/GaN electron systems”, Graduate Institute of Physics College of Science, National Taiwan University, Doctoral Dissertation (2007). 3.6 K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, T. Martin, R. S. Balmer, and D. J. Wallis, “Optical investigation of exciton localization in AlxGa1-xN”, J. Appl. Phys. 101, 053513 (2007). 3.7 Lee, Zhen-Sheng, “Optical Properties of InGaN/GaN Multi-Quantum Wells Structure Grown by Metalorganic Chemical Vapor Deposition”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). 3.8 S.S. Hullavarad, N.V. Hullavarad, D.E. Pugel, S. Dhar, T. Venkatesan, R.D. Vispute, “Structural and chemical analysis of pulsed laser deposited MgxZn1-xO hexagonal (x = 0.15, 0.28) and cubic (x = 0.85) thin films.” , Optical Materials 30, 993-1000, (2008). 3.9 S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 30, L1708 (1991). 3.10 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, T. H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 2014 (1998). 3.11 T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 37, L479 (1998). 3.12 M. Khan, J. N. Kusnia, D. T. Olson, G. M. Van Hove, M. Blasingane, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992). 3.13 D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, Appl. Phys. Lett. 68, 2100 (1996). 3.14 6 K. Ito, K. Hiramatsu, H. Amano, and I. Akasaki, J. Cryst. Growth 104, 533 (1989). 3.15 S. J. Chung, M. Senthil Kumar, H. J. Lee, and E.-K. Suh, J. Appl. Phys., Vol 95, Num 7, 3565, (2004). 3.16 S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80 (2002) 1529. 3.17 A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Appl. Phys. Lett. 72 (1998) 2466. 3.18 C.W. Teng, J.F. Muth, U. Ozgur, M.J. Bergmann, H.O. Everitt, A.K. Sharma, C. Jin, J. Narayan, Appl. Phys. Lett. 76 (2000) 979. 3.19 J. Chen, W.Z. Shen, N.B. Chen, D.J. Qiu, H.Z. Wu, J. Phys. Condens. Matter 15 (2003) L475. 3.20 N.B. Chen, C.H. Sui, Materials Science and Engineering B 126 16–21 (2006). chapter4 4.1 http://www.fiz-karlsruhe.de/icsd.html 4.2 http://www.stn-international.com/stndatabases/sum_sheet/ICSD.pdf 4.3 http://icsdweb.fiz-karlsruhe.de/ 4.4 http://nvl.nist.gov/pub/nistpubs/jres/101/3/j3fluc.pdf 4.5 http://en.wikipedia.org/wiki/JCPDS 4.6 Deane K. Smith and Ron Jenkins, “ICDD and the The Powder Diffraction File Past, Present and Future.”, published by the International Centre for Diffraction Data. 4.7 The Rietveld Method. Ed. by R. A. Young. Oxford University Press, (1993). 4.8 R.B. Von Dreele, D.E.Cox, D. Louër & P. Scardi, “Rietveld refinement guidelines”, Journal of Applied Crystallography, 32, 36-50, (1999). 4.9 http://www-llb.cea.fr/fullweb/winplotr/winplotr.htm 4.10 http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/public/gsas/ 4.11 http://rrdjazz.nist.gov/programs/crystallography/software/expgui/expgui.html 4.12 http://www.ccp14.ac.uk/solution/rietveld_software / 4.13 http://ccp14.sims.nrc.ca/ccp/ccp14/ftp-mirror/howardflack/pub/soft/crystal/stxnews/riet/welcome.htm 4.14 N. C. POPA,” Texture in Rietveld Refinement” J. Appl. Cryst., 25, 611-616, (1992). 4.15 J. PETERS AND W. JAUCH,” Single crystal time-of-flight neutron diffraction”, Science Progress, 85 (4), 297-317, (2002). 4.16 T. Unga, “Strain broadening caused by dislocations”, JCPDS-International Centre for Diffraction Data 1997 4.17 Kazushi SUMITANI, Toshio TAKAHASHI_, Shinichiro NAKATANI, Akinobu NOJIMA, Osami SAKATA1, Yoshitaka YODA1, Shinji KOH2, Toshifumi IRISAWA2 and Yasuhiro SHIRAKI2, “Three-Dimensional Reconstruction of Atoms in Surface X-Ray Diffraction”, Jpn. J. Appl. Phys. Vol. 42, pp.L 189–L 191, (2003). 4.18 Lai, Ying-Chih, “Electroluminescence properties of Ge dots LEDs with or without Si buffer layer”, Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science, National Taiwan University, Master Thesis (2007). 4.19 Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, “p-ZnO/ n-GaN heterostructure ZnO light-emitting diodes”, Appl. Phys. Lett. 86, 222101 (2005). chapter5 5.1 “Photovoltaics” P. Maycock and E. Stirewalt, BrickHouse Pub. Co., Andover, Mass., USA. 5.2 “Photovoltaics-Technical Information Guide” Solar Energy Research Institute, Publication Number SERI/SP-271-2452, Feb., 1985. 5.3 “Solar Energy in America” W. Metz and A. Hammond, American Association for the Advancement of Science, Publication No, 78-10. 5.4 “Livestock Water Pumping Using Solar Energy (Photovoltaic)” Lance Brown, BCMAF, Factsheet No. 590.306-4. 5.5 G.E. Moore, Electronics 38, 114 (1965). 5.6 http://xafs.org/Tutorials 5.7 http://www.nsrrc.org.tw/chinese/research8_1_Absorption.aspx 5.8 http://www.nsrrc.org.tw/lifensrrc/x-ray_absorption_spectroscopy.htm 5.9 http://www.aist.go.jp/aist_e/aist_today/2006_22/feature/feature_03.html 5.10 http://www.epsrc.ac.uk/CMSWeb/Downloads/Publications/Other/Spintronics0607.pdf 5.11 http://sensors.lbl.gov/sn_semi.html 5.12 T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Brunett, L.Franks, and R. B. James, Mater. Sci. Eng., R. 32, 103 (2001) 5.13 Cs. Szeles, S. E. Cameron, S. A. Soldner, J.-O. Ndap, and M. D. Reed, J. Electron. Mater. 33, 742 _2004_ 5.14 Cs. Szeles, IEEE Trans. Nucl. Sci. 51, 1242 _2004 5.15 M. Prokesch and C. Szeles, J. Appl. Phys. 100, 014503 (2006) 5.16 Shelly D. Kelly, “Introduction to EXAFS data analysis”, Argonne National Laboratory. 5.17 http://leonardo.phys.washington.edu/~ravel/software/exafs/ 5.18 Scott Calvin, “Basics of data processing”, Sarah Lawrence College, (2005) NSLS EXAFS Course. 5.19 V. Koteskiet et al, “EXAFS Studies of the Local Structure Around Zn in Cd1−xZnxTe”, Hyperfine Interactions 136/137: 681–685, 2001. 5.20 I-Jui Hsu and Ru-Shi Liu et al, Chem. Mater. 2000, 12, 1115-1121. 5.21 Z. C. Feng and P. Becla et al, Journal of Crystal Growth, 138, 239-243, (1994). 5.22 D. N. Talwar and Z.C. Feng et al, Phys. Rev. B, 48, 17 067, (1993). 5.23 Matthias C. and Jose Luis Martins, Phys. Rev. B, 43, 11873, (1991). 5.24 B. Gil, Group III Nitride Semiconductor Compounds: Physics and Application, Clarendon Press, Oxford, (1998). 5.25 T. Detchprohm, Appl. Phys. Lett. 61, 2688 (1992). 5.26 Kim Doo Soo, Lee Ho Jun, Kim Yong Jin, Jong Su Kim, Lee Dong Kun and Lee Bo Young, Proc. of SPIE Vol. 6894 689406-1, (2008). 5.27 Look DC. Mater Sci Eng B; 80, 383 (2001). 5.28 Chen Y, Bagnall DM, Koh H, Park K, Hiraga K, Zhu Z. J Appl Phys; 84, 3912 (1998). 5.29 Sato D, Kashiwaba Y, Haga K, Watanabe H, Zhang BP, Segawa Y. Vacuum, 74, 601 (2004). 5.30 Sakaguchi I, Ryoken H, Hishita S, Haneda H. Thin Solid Films, 506/507, 184 (2006). 5.31 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001). 5.32 H. Ikeda, S. Goto, K. Honda, M. Sakashit, A. Sakai, S. Zaima, and Y. Yasuda, Jpn. J. Appl. Phys., Part 1 41, 2476 (2002). 5.33 P. W. Atkins, Physical Chemistry, 7th ed. (New York, 2002). 5.34 M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 472 (2002). 5.35 Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, Appl. Phys. Lett. 81, 2041 (2002). 5.36 N. Miyata, T. Nabatame, T. Horikawa, M. Ichikawa, and A. Toriumi, Appl. Phys. Lett. 82, 3880 (2003). 5.37 K. Yamamoto, S. Hayashi, M. Niwa, M. Asai, S. Horii, and H. Miya, Appl. Phys. Lett. 83, 2229 (2003). 5.38 S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li, and C. K. Ong, Appl. Phys. Lett. 82, 2047 (2003). 5.39 Deok-Yong Cho, Kee-Shik Park, B.-H. Choi, and S.-J. Oh, Y. J. Chang, D. H. Kim, and T. W. Noh, Ranju Jung and Jae-Cheol Lee, S. D. Bu, Appl. Phys. Lett. 86, 041913 (2005). 5.40 M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky,C. Eypert, C. Naudin, A. Knowles, F. Bridou, M.-F. Ravet, Appl. Surf. Sci., 253, 328-334, (2006). 5.41 R. R. Galazka, Inst. Phys. Conf. Ser. 43, 133 (1979). 5.42 Semimetal and Semiconductors, edited by P. K. Willardson and A. C. Beer (Academic, New York, 1988), Vol. 25. 5.43 J. K. Furdyna, J. Appl. Phys. 64, R29 (1988). 5.44 G. Dolling, T. M. Holden, and V. F. Sears, J. Appl. Phys. 53, 7644 (1982). 5.45 J. A. Gaj, R. R. Galazka, and M. Nawrocki, Solid State Commun. 25, 193 (1978). 5.46 M. Katsuno, N. Sawaki, T. Suzuki, and K. Hara, Solid-State Electron. 42, 1557 (1998). 5.47 R. Pittini, J. X. Shen, M. C. Debnath, I. Souma, M. Takahashi, and Y. Oka, J. Appl. Phys. 87, 6454 (2000). 5.48 S. B. Oseroff, Phys. Rev. B 25, 6584 (1982). 5.49 A. K. Ramdas, J. Appl. Phys. 53, 7649 (1982). 5.50 H. M. Lin, Y. F. Chen, J. L. Shen and W. C. Chou, J. Appl. Phys. 89, 4476 (2001) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41377 | - |
| dc.description.abstract | 同步加速器光源是二十一世紀尖端科學研究不可或缺的實驗利器,已廣泛應用在材料、生物、醫藥、物理、化學、化工、地質、考古、環保、能源、電子、微機械、奈米元件等基礎與應用科學研究,因而被稱為現代的「科學神燈」。
本文主要討論同步輻射技術在半導體材料上的研究,共分五個章節,第一章為同步輻射的介紹,包含何謂同步輻射、同步輻射的歷史、同步輻射的產生源、同步輻射光源的特性、如何產生同步輻射? 以及同步輻射的應用。第二章為本文中使用到的實驗設備以及實驗原理的介紹,包含光激螢光、X光繞射、X光吸收光譜。第三章主要是以薄膜的氮化鋁鎵以及氧化鋅鎂做粉末X光繞射光譜以及室溫與變溫的光激螢光光譜之數據分析。 第四章以同步輻射的X光繞射光譜為主,一開始先介紹我們實驗室使用的兩套晶格的資料庫,無基晶格結構資料庫(ICSD)以及國際繞射資料庫(ICDD),再以圖示說明如何使用結構分析系統(GSAS)軟體去分析我們在國家同步輻射中心光束線01C粉末X光繞射儀上,所做的量測數據,而在第四章文中分析的X光繞射光譜數據包含氮化鋁生長在藍寶石基板、塊材的氮化鋁、矽鍺矽材料、立方碳化矽生長在矽基板以及氧化鋅生長在藍寶石基板,最後將以上五種樣品的同步輻射粉末X光繞射光譜用結構分析系統軟體做結構精算後,結果整理成圖四之十到圖四之二十以及表格四之五,而在本章中,我們也遇到了一個問題是:在所有的量測數據中得到氮化鋁及氧化鋅的晶格結構為烏采結構,但是在我們做結構精算的結果中卻得到都是立方晶體的結構,為何如此?我們猜測可能是因為同步輻射光源的高能量入射光導致晶體的結構轉相。 而第五章以同步輻射的X光吸收光譜為主,一開始先簡單的介紹二六族元素化合物鉻化硒碲、碲化鋅錳及碲化鉻鋅的應用,再以圖示說明如何使用X光吸收光譜的分析軟體雅典娜(Athena)以及亞特密斯(Artemis)去分析我們的實驗數據,其中包含塊材的鉻化硒碲、碲化鋅錳、碲化鉻鋅以及薄膜的氮化鎵、氧化鋅、二氧化鉿分別都生長在矽基板上。結果發現,上述化合物皆因為某一元素含量的改變,造成較小尺寸原子取代較大尺寸原子在晶格中的位置,因而改變原子間的鍵長及配位數,所以我們可以藉此了解特定元素其區域結構。 | zh_TW |
| dc.description.abstract | During the past decade, synchrotron light sources have become indispensable tools for advanced scientific research. Synchrotron light is used widely in basic and applied research throughout the fields of materials science, biology, medicine, physics, chemistry, chemical engineering, geology, archeology, environmental science, energy, electronics, micro-mechanical engineering, and nanotechnology. For this reason synchrotron light sources have been coined 'magic lamps of science'.
This thesis will focus on synchrotron radiation technology studies of semiconductors and heterostructures. The thesis consists of five chapters: in chapter one, we introduce the synchrotron radiation, including the explanation, history, sources, properties, production and applications of synchrotron radiation. In chapter two, we introduce the experimental instruments and the theoretical background, including photoluminescence (PL), x-ray diffraction (XRD), and x-ray absorption (XAS). In chapter three, we analyze the powder XRD spectrums and the temperature dependent of PL spectrums of the thin film AlGaN and MgZnO samples. In chapter four, we discuss the synchrotron radiation powder XRD. In the beginning of chapter four, we introduce two crystallographic databases, Inorganic Crystal Structure Database (ICSD) and International Centre for Diffraction Data (ICDD) which are usually used by our laboratory members. We illustrate the methods of analyzing the XRD data by General Structure Analysis System (GSAS) program with pictures and measure these XRD data by using the experimental instrument for synchroton radiation X-ray powder diffraction at beamline 01C2 of the National Synchrotron Radiation Research Center (NSRRC). The analyzed XRD data include AlN on sapphire substrate, bulk AlN, Si-Ge-Si, 3C-SiC on sapphire substrate and ZnO on sapphire substrate. Then, we refine the crystal structure of five kind samples above mentioned by GSAS. In this chapter, we encounter a problem: we know that the crystal structure of AlN and ZnO are wurtzite in our all measurement. Nevertheless, the result shows that crystal structural refinement is cubic system. Why? We guess that the crystal structure is transformed because the energy of the incident synchrotron radiation x-ray (28keV) is too high. In chapter five, we discuss the synchrotron radiation XAS. We introduce the applications of II-VI compound materials, CdSeTe, ZnMnTe, and CdZnTe. We measure these samples that include CdSeTe, ZnMnTe, CdZnTe bulk and thin film GaN/Si, ZnO/Si, HfO2/Si by using the Athena and Artemis program. The results show that the various compositions of certain element in the above compound materials cause the small-size atoms substitute the big-size atoms in the crystal lattice, so the bond length and coordination number between atoms are changed. Therefore, we can understand the local structure of the specific elements. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:17:32Z (GMT). No. of bitstreams: 1 ntu-98-R95941083-1.pdf: 5279755 bytes, checksum: dc45145979201c3153039cc455afebd5 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要...........III
Abstract...........V Content............................VII Lists of Figures...................XI Lists of Tables....................XXI Chapter 1 Introduction 1.1. Introduction of Synchrotron Radiation ……………1 1.1.1 What is Synchrotron Radiation?..................1 1.1.2 History of X-ray Sources………………………… ..2 1.1.3 Generations of Synchrotron Radiation Sources……………………….3 1.1.4 The Properties of Synchrotron Radiation………..4 1.1.5 How Is Synchrotron Light Produced?.............6 1.2. Scientific Applications of Synchrotron Radiation…………..12 Reference………………………………………………………….17 Chapter 2 Theoretical Background and Experimental Details 2.1. Photoluminescence (PL)……...............................................19 2.1.1. Introductions of Photoluminescence…………………...……………19 2.1.2. Experimental Setup of Photoluminescence………………………….25 2.1.3. Experimental Setup of Synchrotron Radiation Ultra-Violet Photoluminescence…………………………………….26 2.2. X-Ray Diffraction (XRD)………………………….27 2.2.1 Introductions of X-Ray Diffraction….………….27 2.2.2 Experimental Setup of X-Ray Diffraction………32 2.2.3 Experimental Setup of Synchrotron Radiation X-Ray Diffraction…...33 2.3. X-Ray Absorption Fine-Structure (XAFS)……………………………....34 2.3.1 Introductions of X-Ray Absorption Fine-Structure Spectroscopy…....34 2.3.1.1 Development and Properties……………………..34 2.3.1.2 What is XAFS?...............................37 2.3.2 Experimental Setup of X-Ray Absorption Fine-Structure Spectroscopy…………………………………….42 2.3.3 IFEFFIT, Programs for XAFS Analysis…………..43 Reference.....................................…...45 Chapter 3 AlGaN and MgZnO: XRD simulation, PL 3.1. Introduction…………………………….…………..48 3.1.1 AlGaN……………………………………………………..48 3.1.2 MgZnO…………………………………………..………….49 3.2. Results and Discussion of XRD………………………51 3.2.1 AlGaN………………………………………………….……….51 3.2.2 MgZnO…………………………………………………………54 3.3. Results and Discussion of PL and SR-UVPL......55 3.3.1 AlGaN……………………………………….………………….55 3.3.2 MgZnO...……………………………………………………….62 3.4. Summary…………………………………………………..67 Reference...............................................69 Chapter 4 Synchrotron Radiation X-Ray Diffraction (SR-XRD) 4.1. Introduction of Crystallographic Database……71 4.1.1 Inorganic Crystal Structure Database (ICSD)………………..…71 4.1.2 International Centre for Diffraction Data (ICDD)………………72 4.2. Details of the Fitting Program………………….………………….……..75 4.3. SR-XRD Result and Discussion………………………….………………82 4.3.1 AlN on sapphire and AlN (bulk)…………………………………82 4.3.2 Si-Ge-Si and 3C-SiC on Si………………………………………86 4.3.3 ZnO on sapphire.............89 4.4. Summary…….91 Reference…………………………………………..92 Chapter 5 Synchrotron Radiation X-ray Absorption Spectroscopy (SR-XAS) 5.1 Introduction……………….…………………94 5.1.1 CdSeTe…………………………………………………………...94 5.1.2 ZnMnTe…………………………………………………………..95 5.1.3 CdZnTe…………………………………………………………...96 5.2 SR-XAS Details of the Fitting Program…………..97 5.3 Results and Discussion………………………….101 5.3.1 CdSeTe………………………………………………………….101 5.3.2 ZnMnTe…………………………………………………………106 5.3.3 CdZnTe………...........................................109 5.3.4 GaN / Si…….................................................114 5.3.5 ZnO / Si…...................................................120 5.3.6 HfO2 / Si.......................................122 5.3.7CdZnMnTe.............................................125 5.3.8 ZnMnO................................................128 5.4 Summary……………………………………………………129 Reference………………………………………………………130 Appendix Appendix I Fitting results of AlGaN by using Philips program…………..…...133 Appendix II Temperature dependent measurement of photoluminescence…....143 | |
| dc.language.iso | en | |
| dc.subject | 半導體 | zh_TW |
| dc.subject | 同步輻射 | zh_TW |
| dc.subject | Semiconductor | en |
| dc.subject | Synchrotron Radiation | en |
| dc.subject | Heterostructure | en |
| dc.title | 同步輻射技術在半導體材料之研究 | zh_TW |
| dc.title | Synchrotron Radiation Technology Study of Semiconductors and Heterostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張秋男,楊仲準 | |
| dc.subject.keyword | 同步輻射,半導體, | zh_TW |
| dc.subject.keyword | Synchrotron Radiation,Semiconductor,Heterostructure, | en |
| dc.relation.page | 146 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-05-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
