Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君浩(jiunhawlee@ntu.edu.tw)
dc.contributor.authorChien-Hung Linen
dc.contributor.author林建宏zh_TW
dc.date.accessioned2021-06-15T00:16:52Z-
dc.date.available2010-06-08
dc.date.copyright2009-06-08
dc.date.issued2009
dc.date.submitted2009-05-25
dc.identifier.citationch.1
[1.1] M. Segal, M. Singh, K. Rivoire, S. Difley, T. Van Voorhis, and M. A. Baldo, Extrafluorescent electroluminescence in organic light-emitting devices, Nature Mater. 6, 374 (2007).
[1.2] C.-H. Hsiao, C.-F. Lin, J.-H. Lee, Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer, J. Appl. Phys. 102, 094508 (2007).
[1.3] A. Curioni, and W. Andreoni, Metal-Alq3 Complexes: The nature of the chemical bonding, J. Am. Chem. Soc. 121, 8216 (1999).
[1.4] H. Kaji, Y. Kusaka, G. Onoyama, and F. Horii, CP/MAS 13C NMR characterization of the isomeric states and intermolecular packing in tris(8-hydroxyquinoline) aluminum(III) (Alq3), J. Am. Chem. Soc. 128, 4292 (2006).
[1.5] J. Kido, and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer, Appl. Phys. Lett. 73, 2866 (1998).
[1.6] A. Rajagopal, and A. Kahn, Photoemission spectroscopy investigation of magnesium–Alq3 interfaces, J. Appl. Phys. 84, 355 (1998).
[1.7] M. A. Baldo, and S. R. Forrest, Interface-limited injection in amorphous organic semiconductors, Phys. Rev. B, 64, 085201 (2001).
[1.8] B. N. Limketkai, and M. A. Baldo, Charge injection into cathode-doped amorphous organic semiconductors, Phys. Rev. B, 71, 085207 (2005).
[1.9] V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors, Phys. Rev. B, 71, 045214 (2005).
[1.10] M. G. Mason, C. W. Tang, L.-S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S.-T. Lee, L. S. Liao, and L. F. Cheng Interfacial chemistry of Alq3 and LiF with reactive metals, J. Appl. Phys. 89, 2756 (2001).
[1.11] C. Shen, I. G.Hill, A. Kahn, and J. Schwartz, Organometallic chemistry at the magnesium-tris(8-hydroxyquinolino)aluminum Interface, J. Am. Chem. Soc.122, 5391 (2000).
[1.12] C. Shen, A. Kahn, J. Schwartz, Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy quinoline) aluminum, J. Appl. Phys. 89, 449 (2001).
[1.13] R. Q.Zhang, X. Y. Hou, and S. T. Lee, Theory of magnesium/Alq3 interaction in organic light emitting devices, Appl. Phys. Lett. 74, 1612 (1999).
[1.14] T.-W. Pi, C.-P. Ouyang, T. C. Yu, J. F. Wen, and H. L. Hsu, Surface electronic structure of Mg-doped tris(8-hydroxyquinolato) aluminum studied by synchrotron radiation photoemission, Phys. Rev. B, 70, 235346 (2004).
[1.15] M. Cölle, C. Gärditz, and M. Braun, The triplet state in tris-(8-hydroxyquinoline)aluminum, J. Appl. Phys.96, 6133 (2004).
[1.16] S. Watanabe, A. Furube, and R. Katoh, Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions, J. Phys. Chem. A, 110, 10173 (2006).
[1.17] H. D. Burrows, M. Fernandes, J. S. de Melo, A. P. Monkman, and S. Navaratnam, Characterization of the triplet state of tris(8-hydroxyquinoline)aluminium(III) in benzene solution, J. Am. Chem. Soc.125, 15310 (2003).
[1.18] R. Ballardini, G. Varani, M. T. Indelli, and F. Scandola, Phosphorescent 8-quinolinol metal chelates. Excited-state properties and redox behavior, Inorg. Chem.25, 3858 (1986).
[1.19] P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93, 3693 (2003).
[1.20] J. A. Arbogast, A. Darmanyan, C. Foote, Y. Rubin, F. Diederich, M. Alvarez, S. Anz, and R. Whetten, Photophysical properties of C60, J. Phys. Chem. 95. 11 (1991).
[1.21] Y. Shao, and Y. Yang, Efficient organic heterojunction photovoltaic cells based on triplet materials, Adv. Mate. 17, 2841 (2005).
[1.22] M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, High-efficiency organic solar concentrators for photovoltaics, Science, 321, 226 (2008).
[1.23] A. E. Becquerel, Mémoire sur les effets électriques produits sous l'influence des rayons solaires, Compt. Rend. Acad. Sci. 9, 145 (1839).
[1.24] W. Smith, Effect of light on selenium during the passage of an electric current, Nature, 7, 303, (1873).
[1.25] W. G. Adams, R. E. Day, The action of light on selenium, Proc. R. Soc. London, 25, 113, (1876).
[1.26] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25, 676, (1954).
[1.27] A. Pochettino, Sul comportamento foto-elettrico dell’ antracene, Acad. Lincei Rend. 15, 355 (1906).
[1.28] M. Volmer, Die verschiedenen lichtelektrischen Erscheinungen am Anthracen, ihre Beziehungen zueinander, zur Fluoreszenz und Dianthracenbildung, Ann. Physik, 345, 775 (1913).
[1.29] P.M. Borsenberger, D.S. Weiss, Organic photoreceptors for imaging systems, marcel dekker, New York, (1993).
[1.30] R.H. Bube, Photoconductivity of solids, Wiley, New York, (1960).
[1.31] H. J. Hovel, Solar Cells, Vol. 2, Academic Press, New York, (1978).
[1.32] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Short communication solar cell efficiency tables (Version 31), Prog. Photovolt: Res. Appl. 16, 61, (2008).
[1.33] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183 (1986).
[1.34] P. Peumans, S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79, 126 (2001).
[1.35] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, A hybrid planar-mixed molecular heterojunction photovoltaic cell, Adv. Mater. 17, 66 (2005).
[1.36] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater. 4, 864 (2005).
[1.37] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater.18, 572 (2006).
[1.38] H. R. Kerp, H. Donker, R. B. M. Koehorst, T. J. Schaafsma, E. E. Van Faassen, Exciton transport in organic dye layers for photovoltaic applications, Chem. Phys. Lett. 298, 302 (1998).
[1.39] P. Peumans, V. Bulovic, S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76, 2650 (2000).
[1.40] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270, 1789 (1995).
[1.41] P. Peumans, S. Uchida, S. R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, 425, 158 (2003).
[1.42] S. Uchida, J. Xue, B. P. Rand, S. R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer, Appl. Phys. Lett. 84, 4218 (2004).
[1.43] P. Sullivan, S. Heutz, S. M. Schultes, T. S. Jones, Influence of codeposition on the performance of CuPc–C60 heterojunction photovoltaic devices, Appl. Phys. Lett. 84, 1210 (2004).
[1.44] A. Yakimov, S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett. 80, 1667 (2002).
[1.45] M. Hiramoto, M. Suezaki, M. Yokoyama, Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell, Chem. Lett. 3, 327 (1990).
[1.46] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376, 498 (1995).
[1.47] W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16, 1009 (2004).
[1.48] K. M. Coakley, M. D. McGehee, Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania, Appl. Phys. Lett. 83, 3380 (2003).
[1.49] P. Ravirajan, S. A. Haque, J. R. Durrant, D. Poplavskyy, D. D. C. Bradley, J. Nelson, Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor, J. Appl. Phys. 95, 1473 (2004).
[1.50] B. Sun, E. Marx, N. C. Greenham, Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers, Nano Lett. 3, 961 (2003).
ch.2
[2.1] N. J. Turro, Modern molecular photochemistry, Menlo Park, Calif.: Benjamin/Cummings Pub. Co. (1978).
[2.2] M. Pope, and C. E. Swenberg, Electronic processes in organic crystals and polymers, New York: Oxford University Press (1999).
[2.3] S. S. Sun, and N. S. Sariciftci, Organic photovoltaics mechanisms, materials, and devices, Boca Raton, FL: Taylor & Francis (2005).
[2.4] R. Farchioni, and G. Grosso, Organic electronic materials: conjugated polymers and low molecular weight organic solids, New York: Springer (2001).
[2.5] I. Sokolik, R. Priestley, A. D. Walser, R. Dorsinville, and C. W. Tang, Bimolecular reactions of singlet excitons in tris(8-hydroxyquinoline) aluminum,
Appl. Phys. Lett, 69, 4168 (1996).
[2.6] A. Huijser, T. J. Savenije, A. Shalav, and L. D. A. Siebbeles, An experimental study on the molecular organization and exciton diffusion in a bilayer of a porphyrin and poly(3-hexylthiophene), J. Appl. Phys. 104 034505 (2008).
[2.7] C. Shen, A. Kahn and J. Schwartz, Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy quinoline) aluminum, J. Appl. Phys. 89, 449 (2001).
[2.8] T.-W. Pi, C.-P. Ouyang, T. C. Yu, J. F. Wen and H. L. Hsu, Surface electronic structure of Mg-doped tris(8-hydroxyquinolato) aluminum studied by synchrotron radiation photoemission, Phys. Rev. B, 70, 235346 (2004).
ch.3
[3.1] M. Segal, et al. Extrafluorescent electroluminescence in organic light-emitting devices, Nature Mater. 6, 374 (2007).
[3.2] C.-H. Hsiao, C.-F. Lin and J.-H. Lee, Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer, J.
Appl. Phys. 102, 094508 (2007).
[3.3] M. D. Halls and H. B. Schlegel, Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum (III), Chem. Mater. 13, 2632 (2001).
[3.4] A. Curioni and W. Andreoni, Metal-Alq3 Complexes: The nature of the chemical bonding, J. Am. Chem. Soc. 121, 8216 (1999).
[3.5] H. Kaji, Y. Kusaka, G. Onoyama and F. Horii, CP/MAS 13C NMR characterization of the isomeric states and intermolecular packing in tris(8-hydroxyquinoline)
aluminum(III) (Alq3), J. Am. Chem. Soc. 128, 4292 (2006).
[3.6] J. Kido and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer, Appl. Phys. Lett. 73, 2866 (1998).
[3.7] A. Rajagopal and A. Kahn, Photoemission spectroscopy investigation of magnesium–Alq3 interfaces, J. Appl. Phys. 84, 355 (1998).
[3.8] M. A. Baldo and S. R. Forrest, Interface-limited injection in amorphous organic semiconductors, Phys. Rev. B, 64, 085201 (2001).
[3.9] B. N. Limketkai and M. A.Baldo, Charge injection into cathode-doped amorphous organic semiconductors, Phys. Rev. B, 71, 085207 (2005).
[3.10] V. I. Arkhipov, P. Heremans, E. V. Emelianova and H. Bässler, Effect of doping on the density-of-states distribution and carrier hopping in disordered organic
semiconductors, Phys. Rev. B, 71, 045214 (2005).
[3.11] M. G. Mason, et al. Interfacial chemistry of Alq3 and LiF with reactive metals, J. Appl. Phys. 89, 2756-2765 (2001).
[3.12] C. Shen, I. G. Hill, A. Kahn and J. Schwartz, Organometallic chemistry at the magnesium-tris(8-hydroxyquinolino)aluminum Interface, J. Am. Chem. Soc. 122, 5391 (2000).
[3.13] C. Shen, A. Kahn and J. Schwartz, Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy quinoline) aluminum, J. Appl. Phys. 89, 449 (2001).
[3.14] R. Q. Zhang, X. Y. Hou and S. T. Lee, Theory of magnesium/Alq3 interaction in organic light emitting devices, Appl. Phys. Lett. 74, 1612 (1999).
[3.15] T.-W. Pi, C.-P. Ouyang, T. C. Yu, J. F. Wen and H. L. Hsu, Surface electronic structure of Mg-doped tris(8-hydroxyquinolato) aluminum studied by synchrotron radiation photoemission, Phys. Rev. B, 70, 235346 (2004).
[3.16] W. Brütting, S. Berleb, and A. G. Mückl, Device physics of organic light-emitting diodes based on molecular materials, Org. Electron. 2, 1 (2001.)
[3.17] R. J. Curry and W. P. Gillin, Radiative recombination mechanisms in aluminum tris(8-hydroxyquinoline): Evidence for triplet exciton recombination, J. Appl. Phys. 88, 781 (2000).
[3.18] I. Sokolik, R. Priestley, A. D.Walser, R. Dorsinville and C. W. Tang, Bimolecular reactions of singlet excitons in tris(8-hydroxyquinoline) aluminum, Appl. Phys. Lett. 69, 4168 (1996).
[3.19] S. Watanabe, A. Furube and R. Katoh, Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions, J. Phys. Chem. A, 110, 10173 (2006).
ch.4
[4.1] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183 (1986).
[4.2] P. Peumans, and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79, 126 (2001).
[4.3] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, A hybrid planar-mixed molecular heterojunction photovoltaic cell, Adv. Mater. 17, 66 (2005).
[4.4] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater. 4, 864(2005).
[4.5] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based
titanium oxide as an optical spacer, Adv. Mater. 18, 572 (2006).
[4.6] P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys.93, 3693 (2003).
[4.7] Arbogast, J. A.; et al. Photophysical properties of C60, J. Phys. Chem. 95. 11 (1991).
[4.8] Y. Shao, and Y. Yang, Efficient organic heterojunction photovoltaic cells based on triplet materials, Adv. Mate.17, 2841 (2005).
[4.9] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270, 1789 (1995).
[4.10] P. Peumans, S. Uchida, S. R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, 425, 158 (2003).
[4.11] S. Uchida, J. Xue, B. P. Rand, S. R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer, Appl. Phys.
Lett. 84, 4218 (2004).
[4.12] P. Sullivan, S. Heutz, S. M. Schultes, T. S. Jones, Influence of codeposition on the performance of CuPc–C60 heterojunction photovoltaic devices, Appl. Phys.
Lett. 84, 1210 (2004).
[4.13] A. Yakimov, S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett. 80,
1667 (2002).
[4.14] M. Hiramoto, M. Suezaki, M. Yokoyama, Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell, Chem. Lett. 3, 327
(1990).
[4.15] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Efficient photodiodes from interpenetrating polymer
networks, Nature, 376, 498 (1995).
[4.16] W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16, 1009 (2004).
[4.17] M. Ofuji, K. Inaba, K. Omote, H Hoshi, Y. Takanishi, K. Ishikawa and H. Takezoe, Growth Process of Vacuum Deposited Copper Phthalocyanine Thin Films on Rubbing-Treated Substrates, J.J. Appl. Phys. 42, 7520 (2003)
[4.18] S. Hoshino, T. Kamata, and K.Yase, Effect of active layer thickness on device properties of organic thin-film transistors based on Cu(II) phthalocyanine, J. Appl. Phys. 92, 6028 (2002).
[4.19] W.-L. Yu, J. Pei, Y. Cao, and W. Huang, Hole-injection enhancement by copper
phthalocyanine (CuPc) in blue polymer light-emitting diodes, J. Appl. Phys. 89, 2343 (2001).
[4.20] R. Agrawal, P. Kumar, S. Ghosh, and A. K. Mahapatro, Thickness dependence of space charge limited current and injection limited current in organic molecular semiconductors, Appl. Phys. Lett. 93, 073311 (2008).
ch.5
[5.1] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater. 4, 864(2005).
[5.2] P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys.93, 3693 (2003).
[5.3] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, A hybrid planar-mixed molecular heterojunction photovoltaic cell, Adv. Mater. 17, 66 (2005).
[5.4] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183 (1986).
[5.5] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater. 18, 572 (2006).
[5.6] P. Peumans, and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79, 126 (2001).
[5.7] Arbogast, J. A.; et al. Photophysical properties of C60, J. Phys. Chem. 95. 11 (1991).
[5.8] Y. Shao, and Y. Yang, Efficient organic heterojunction photovoltaic cells based on triplet materials, Adv. Mate.17, 2841 (2005).
[5.9] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270, 1789 (1995).
[5.10] P. Peumans, S. Uchida, S. R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, 425, 158 (2003).
[5.11] S. Uchida, J. Xue, B. P. Rand, S. R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer, Appl. Phys. Lett. 84, 4218 (2004).
[5.12] P. Sullivan, S. Heutz, S. M. Schultes, T. S. Jones, Influence of codeposition on the performance of CuPc–C60 heterojunction photovoltaic devices, Appl. Phys. Lett. 84, 1210 (2004).
[5.13] A. Yakimov, S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett. 80, 1667 (2002).
[5.14] M. Hiramoto, M. Suezaki, M. Yokoyama, Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell, Chem. Lett. 3, 327 (1990).
[5.15] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376, 498 (1995).
[5.16] W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16, 1009 (2004).
[5.17] B. N. Limketkai and M. A. Baldo, Charge injection into cathode-doped amorphous organic semiconductors, Phys. Rev. B, 71, 085207 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41364-
dc.description.abstract有機太陽能電池研究與發展至今已經有三十年的歷史,直到最近十年能源問題的浮現,它在科學與經濟上的利用價值才逐漸被科學家們所注意,元件因此在轉換效率上有了突破。為克服轉換效率問題,材料內部的載子傳輸能力、光激子分離及光激子擴散長度都是非常重要議題;一個優良的電子受體必須與施體材料間形成有效的能階落差才能使得光激子被分離,並且擁有良好的電子傳輸特性,就如同碳六十材料。由於目前廣泛使用的碳六十材料成本較高,而且其穩定性不盡理想,因此積極開發高穩定性且低成本的電子傳輸材料是一項重要的方向。
我們使用鎂原子來改善有機分子8-羥基奎林鋁(Alq3)的光電特性。在有機太陽能電池應用裡,鎂摻雜8-羥基奎林鋁能提供一個電子受體的角色並且擁有良好的電子傳輸能力;其能階增加0.64 eV以致於形成載子轉換的型態,提供較高效率的光激子分離。更從光譜中觀察到其單重態(螢光)的光激子之生命週期縮短從2 ns 到14 ns,而且其三重態(燐光)的光激子保持穩定的長生命週期0.5 ms,並且三重態光激子的擴散長度被預測為90 nm。這樣擁有長生命週期與擴散能力的有機材料能提供更多的光激子並且提升光電流的輸出。在太陽能電池元件的表現上,添加鎂金屬粒子的元件與尚未添加的元件相較之下,光轉換效率可以修正到0.15%,且其外部量子效率也驗證出其光電行為被改善。
zh_TW
dc.description.abstractOrganic solar cell research has developed during the past 30 years, but especially in the last decade it has attracted scientific and economic interest triggered by a rapid increase in power conversion efficiencies in low-cost organic materials. To overcome this limitation of the photo-to-carrier generation, enhancements of electron conductivity, exciton separation and exciton diffusion have been suggested. A suitable electron acceptor in solar cells, which can replace the high-cost and air-instable fullerene C60, must has suitable energy to match p-type layer and cathode and owns high electron conductivity.
In this thesis, the low molecular weight tris-(8-hydroxyquinoline)aluminum (Alq3) has been modified with magnesium (Mg) incorporation that altered the nature of electronic characteristics in it. This Mg modified Alq3 can provide an electron accepter and a good electron transporting layer in photovoltaic devices, which conduction enhancement of the current with variations of more than 3 orders of magnitude can be observed. The energy level of Mg-Alq3 shifts 0.64 eV and forms charge-transfer condition to promote the exciton separation at p-n junction. Detail optical and vibrational studies depict the quenching of the fluorescence, originating from singlet state transition of short lifetime (2-14 ns) excitons upon Mg incorporation. This is accompanied by enhanced phosphorescence, due to a triplet state transition, having longer lifetimes (0.5 ms) and hence an estimated excitonic diffusion length of ~90 nm to boost the performance of organic solar cell devices. Optimized Mg:Alq3 layer, when introduced in the device, improves the power conversion efficiencies by several orders to 0.15% compared to the pure Alq3 device. The improvement in the photovoltaic performance has been attributed to the carrier transport, high HOMO and the superior exciton diffusion length.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:16:52Z (GMT). No. of bitstreams: 1
ntu-98-D92941005-1.pdf: 3475623 bytes, checksum: 8c55fe9eadbf8208f04b6a42ddd31f9c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction…………………………………………………………….. 1
1.1 The Story of Solar Cells……………………...………………………...…… 3
1.2 Organic Solar Cells…………………………………………………………. 4
1.3 Principle of Operation………………………………………………………. 5
References………………………………………………………………………. 9
Chapter 2 Optical-Electronic Theory of Organic Material and Device Mechanis….18
2.1 Optical Properties of Organic Molecules……………………………...…... 19
2.1.1 Molecular Orbital and Excited States………………………………... 19
2.1.2 Excitons in Excited State……………………………………………. 22
2.1.3 Energy Transfer and Charge Transfer………………………………… 24
2.1.4 Dynamic Process and Intersystem Crossing………………………… 26
2.1.5 Exciton Diffusion……………………………………………………… 28
2.2 Electric Properties in Organic Molecules…………………………………. 29
2.2.1 Carrier Transport…………………………………………………… 29
2.2.2 Mobility in Amorphous Materials………………………………….. 31
2.2.3 Space-Charge Limited Current………………………………………. 32
2.3 Device Physics…………………………………………………………….. 33
2.2.4 Principle of Operation……………………………………………… 33
2.2.5 Power Conversion Efficiency………………………………………. 34
2.2.6 Open Circuit Voltage……………………………………………….. 34
2.4 Metal/organic Interfaces……………………………………………………35
References……………………………………………………………………... 38
Chapter 3 Analysis of Electric and Optical Characteristics….…………………….. 56
3.1 Introduction……………………………................................................…... 56
3.2 Sample Preparation and Experimental Procedures………………………... 58
3.3 Ultraviolet Photoemission Spectroscopy Results…………………………. 59
3.4 X-ray Photoelectron Spectroscopy Results……………………………….. 60
3.5 Charge-Carrier Transport Characteristics…………………………………. 62
3.6 Absorption and Photoluminescence………………………………………. 64
3.7 Summary…………………………………………………………………... 68
References……………………………………………………………………... 69
Chapter 4 Organic Photovoltaic Applications…………………………..…………. 95
4.1 Introduction……………………………..............................................…..... 95
4.2 Experiments………………………………………………………………... 96
4.3 Device Performance………….…………………………………………..... 96
4.4 Optimized Organic Solar Cells……………………………………………. 98
4.5 Summary………………………………………………………………... 102
References………………………………………………………………….. 103
Chapter 5 Device Analysis……………………………………………..………... 118
5.1 Introduction……………………………..............................................…... 118
5.2 Experiments……………………………………………………………… 118
5.3 Electron Accepter Characteristics…………………………….………... 119
5.4 Carrier Transport………………………………………………………..…121
5.5 Summary…………………………………………………………………. 123
References……………………………………………………………………. 124
Chapter 6 Conclusion…………………………………………………....………... 137
Appendixes……………………………………………………………………….139
A.1 Electron-Only Device ……………………………………………………….139
A.2 FTIR and Absorption Analysis and Simulation …….……..………………….145
A.3 Temperature-Dependant PL and TR-PL…………………………………….153
A.4 Publications………………………………………………………………….166
dc.language.isoen
dc.subject太陽能電池zh_TW
dc.subject光伏效應zh_TW
dc.subject有機太陽能電池zh_TW
dc.subjectorganic solar cellsen
dc.subjectorganic photovoltaicen
dc.title鎂摻雜8-羥基奎林鋁之光電物理特性及其有機太陽能電池之應用zh_TW
dc.titleThe Photophysical Properties of Magnesium Modified Alq3 for Solar Cell Applicationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳貴賢(Kuei-Hsien Chen),林麗瓊(Li-Chyong Chen),王俊凱(Juen-Kai Wang),黃智賢(Jih-Shang Hwang),戴龑(Yian Tai),王立義(Leeyih Wang)
dc.subject.keyword太陽能電池,光伏效應,有機太陽能電池,zh_TW
dc.subject.keywordorganic solar cells,organic photovoltaic,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2009-05-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved