請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41335完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | |
| dc.contributor.author | Yu-Wei Chang | en |
| dc.contributor.author | 張育瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:16:04Z | - |
| dc.date.available | 2011-06-23 | |
| dc.date.copyright | 2009-06-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-09 | |
| dc.identifier.citation | [1] “Assembly and Packaging,” in The International Technology Roadmap for Semiconductors, 2005 ed: Semiconductor Industry Association, 2005.
[2] Gaensslen F.H., “MOS Devices and Integrated Circuits at Liquid Nitrogen Temperature,” 1980 IEEE ICCD Proceedings, pp. 450-452, 1980. [3] Jaeger R.C., “Development of Low Temperature CMOS for High Performance Computer Systems,” IEEE International Conference on Computer Design: VLSI in Computers, pp. 128-130, 1986. [4] Taur Y. and Nowak E.J., “CMOS Devices Below 0.1 pm: How High Will Performance Go?”, Electron Devices Meeting Technical Digest, pp. 215-218, 1997. [5] Harper D.R. and Brown, “Mathematical Equations for Heat Conduction in the Fins if Air Cooled Engines,” NACA Report No.158, 1922. [6] Murray M.N., “Heat Transfer Through an Annular Disk or Fin of Uniform Thickness,” Trans. ASME, J. Applied Mech., 60, A78, 1938. [7] Strassberg D., 'Cooling Hot Microprocessor,' EDN, Vol. 39, pp. 40-50, 1994. [8] Chu R.C., “Thermal management roadmap cooling electronic products from handheld device to supercomputers,” MIT Rohsenow Symposium, Cambridge, MA, May 2002. [9] Chu R.C., Gupta O.R., Hwang U.P., Moran K.P., and Simons R.E., ”Liquid Cooling Technology for High-Performance Packages and Systems,’’ IBM TR 00.1945, 1969. [10] Bergles A.E., Bar-Cohen A., “Direct liquid cooling of microelectronic components,” in Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds. New York: ASME Press, 1990, vol. 2, pp. 233–342. [11] Bergles A.E., Bar-Cohen A., “Immersion cooling of digital computers,” in Cooling of Electronic Systems, S. Kakac, H. Yuncu, and K. Hijikata, Eds. Boston, MA: Kluwer, pp. 539–621, 1994. [12] Incropera F.P., 'Liquid Immersion Cooling of Electronic Components,' Heat Transfer in Electronic and Microelectronic Equipment, A. E. Bergles (ed.), Washington, D.C.: Hemisphere Publishing Corporation, pp. 407-444, 1990. [13] Nakayama W. and Bergles A.E., 'Cooling of Electronic Component: Past, Present and Future,' Heat Transfer in Electronic and Microelectronic Equipment, A. E. Bergles (ed.), Washington, D.C.: Hemisphere Publishing Corporation, pp. 3-39, 1990. [14] Bar-Cohen A., 'Thermal Management Electronic Components with Dielectric Liquids,' International Journal of JSME, Ser. B, Vol. 16, No. 1, pp. 1-25, 1993. [15] 邱治凱,「毛細熱板性能之研究」,碩士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)。 [16] Tuckerman D.B. and Pease R.F.W., “High-performance heat sinking for VLSI,” IEEE Electron. Device Lett., vol. EDL-2, pp. 126–129, 1981. [17] Hoopman T.L., “Micromachined Structures,” Microstructures, Sensors and Actuators, ASME DSC-19, 117-174, 1990. [18] Bier W., Keller W., Linder G., Siedel D., and Schubert K., “Manufacturing and Testing of Compact Micro Heat Exchangers with High Volumetric Heat Transfer Coefficients.” Microstructures, Sensors and Actuators, ASME DSC-19, 189-197, 1990. [19] Kolodzey J.S., “Cray-1 computer technology,” IEEE Trans. Compon.,Hybrids, Manufact. Technol., vol. CHMT-4, no. 2, pp. 181–186, Jun. 1981. [20] Ashraf N.S., Carter H.C., Casey K., Chow L.C., Corban S., Drost M.K., Gumm A.J., Hao Z., Hasan A.Q., Kapat J.S., Kramer L., Newton M., Sundaram K.B., Vaidya J., Yerkes K., and Wong C.C., “Design and Analysis of a Meso-Scale Refrigerator,” in ASME International Mechanical Engineering Congress & Exposition, Nashville, Tennessee, November 1999. [21] Carter H.C., Chow L.C., Kapat J.S., Laveau A., Sundaram K.B., and Vaidya J., “Component Fabrication and Testing for a Meso-Scale Refrigerator,”, AIAA Paper no. 99-4514, 1999. [22] Shannon M.A., Philpott M.L., Miller N.R., Bullard C.W., Beebe D.J., Jacobi A. M., Hrnjak P.S., Saif T., Aluru N., Sehitoglu H., Rockett A., and Economy J., “Integrated Mesoscopic Cooler Circuits (IMCCS),” in Proceedings of the ASME Advanced Energy Systems Division, vol. AES-39, pp. 75–82, 1999. [23] Laveau A., Kapat J.S., Chow L.C., Enikov E., and Sundaram K.B., “Design, Analysis and Fabrication of a Meso-Scale Centrifugal Compressor,” in ASME International Mechanical Engineering Congress & Exposition, Orlando, Florida, November 5-10, 2000. [24] Trujillo R., Mou J.I., Phelan P.E., and Chau D.S., “A Prototype Mesoscale Compressor Using Electrostrictive Actuation,” Energy Conversion & Management, 2001, submitted for publication. [25] Nolas G.S., Slack G.A., Cohn J.L., and Schujman S.B., 'The Next Generation of Thermoelectric Materials,' Proceedings of the 17th International Conference on Thcrmoclcctrics, pp. 294-297, 1998. [26] Kraus AD., “Cooling Electronic Equipment,” Prcntice-Hall, New York, NY, 1965. [27] Kolander W.L., and Lyon H.B., 'Thermoelectric Cooler Utility for Electronic Applications,' ASME HTD-Vol. 239, National Heat Transfer Conference, Vol. 7, 1996. [28] Vandersande J.W., and Fleurial J.P., 'Thermal Management of Power Electronics Using Thermoelectric Coolers,' Proceedings of the 15th International Conference on Thermoelectrics, pp. 252-255, 1996. [29] Stockholm J.G., 'Current State of Peltier Cooling,' Proceedings of the 16th International Conference on Thermoelectrics, pp. 37-46, 1997. [30] Morelli D.T., 'Potential Applications of Advanced Thermoclectrics in the Automobile Industry,' Procecdings of the 13th International Conference on Thermoclcctrics, pp. 383-386, 1996. [31] Fleurial J.P., Borshchevsky A., Caillat T., and Ewell R., “New Material and Devices for Thermoelectric Applications,” IECEC, ACS Paper No. 97419, pp. 1080-1085, 1997. [32] Dresselhaus M.S., Koga T., Sun X., Cronin S.B., Cronin S.B., Wang K.L., and Chen G., 'Low Dimensional Thermoelectrics,' Proceedings of the 16th International Conference on Thermoelectrics, pp. 12-20, 1997. [33] Hillhouse H.W. et al., “Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous films,” Microporous and Mesoporous Materials, Vol. 47, pp. 39-50, 2001. [34] 邱瑞易, 簡瑞與, “薄膜式熱電致冷器之性能探討”, http://www.hvac.org.tw/hvac/mesg/file/1401a4-1.pdf. [35] Min G, Rowe D.M., “Improved model for calculating the coefficient of performance of a Peltier module,” Energy Conversion and Management, Vol. 43, pp. 221-228, 2000. [36] Xuan X.C., “Investigation of Thermal Contact Effect on Thermoelectric Coolers,” Energy Conversion and Management, Vol. 44, pp. 399-410, 2003. [37] Huang B.J., Chin C.J., and Duang C.L., “A Design Method of Thermoelectric Coolers,” International Journal of Refrigeration, Vol. 23, pp. 208-218, 2000 [38] Chen K et al., “Analysis of the Heat Transfer Rate and Efficiency of Thermoelectric Cooling Systems,” International Journal of Energy Research, Vol. 20(5), pp. 399-417, 1996. [39] Goktun S., “Optimal Performance of Thermoelectric Refrigerator,” Energy Sources, Vol. 18, pp. 531-536, 1996. [40] Gilley et al. 1999. “Thermoelectric refrigerator with evaporating/condensing heat exchanger,” United States Patent, No. 6003319, December 21. [41] Riffat S.B., Omer S.A., Ma X., “A Novel Thermoelectric Refrigeration System employing Heat Pipes and a Phase Material: an Experimental Investigation,” Renewable Energy, Vol. 23, pp. 313-323, 2001. [42] Astrain D., Vián J.G., Domínguez M., “Increase the COP in the Thermoelectric Refrigeration by the Optimization of Heat Dissipation,” Applied Thermal Engineering, Vol. 23, pp. 2183-2200, 2003. [43] Hammoud J.Y., Abazardia N., “Effects of the Liquid Inlet Temperature on the Thermoelectric Cooler Performance in a Liquid-TEC Thermal System”, 21st International Conference on Thermoelectrics, pp. 506-510, 2002. [44] Callen H. B., “The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects,” Physical Review, Vol. 73, No. 11, 1948. [45] Drabkin I.A., Yershova L.B., Kondratiev D.A., Gromov G.G., “The effect of the substrates two-dimensional temperature distribution on the TEC performance”, Proceeding of 8th European Workshop on Thermoelectrics 12, 2004. [46] Lee S., Van Au S.S., Moran K.P., “Constriction/ Spreading resistance model for electronics packing,” ASME/JSME Thermal Engineering Conference: Volume 4, 1995. [47] Yovanovich M.M., Culham J.R. and Teertstra P., “Calculating interface resistance,” Electronics Cooling, Vol.3, No.2, 1997. [48] Cengel Y.A., “Heat Transfer A Practical Approach”, pp.177-192, 350-363, 1998. [49] Copeland D., “Optimization of parallel plate heat sinks for forced convection,” in: Proceedings of 16th IEEE SEMITHERM Symposium, San Jose, pp. 266–272, 2000. [50] Duan Z., Muzychka Y.S., “Experimental investigation of heat transfer in impingement air cooled plate heat sinks”, Transactions of the ASME Vol. 128, pp.412-418, 2006. [51] Zheng N., Wirtz R.A., “A Hybrid Thermal Energy Storage Device, Part 1: Design Methodology”, Journal of Electronic Packaging, Vol.126, pp.1-7, 2004. [52] Zheng N., Wirtz R.A., “A Hybrid Thermal Energy Storage Device, Part 2: Thermal Performance Figures of Merit”, Journal of Electronic Packaging, Vol.126, pp.8-13, 2004. [53] Tan F.L., and Tso C.P., “Cooling of mobile electronic devices using phase change materials”, Applied Thermal Engineering, Vol.24, pp.159-169, 2004. [54] Leland J. and Recktenwald G., “Optimization of a Phase Change Heat Sink for Extrem Enviroment”, 19th IEEE SEMI-THERM Symposium, 2003. [55] Yoo D.W. and Joshi Y.K., “Energy Efficient Thermal Management of Electronic Component Using Solid-Liquid Phase Change Material”, IEEE Transaction on device and material reliability, Vol.4 No.4, pp.641-649. [56] Krishnan S. and Garimella S.V., “Thermal Management of Transient Power Spikes in Electronics-Phase Change Energy Storage or Copper Heat Sinks?”,Journal of Electronic Packaging, Vol.126, pp.308-316, 2004. [57] Lee W.S., Chen B.R. and Chen S.L., 2006, “Latent Heat Storage in a Two-Phase Thermosyphon Solar Water Heater”, Int. J. Solar Energy Engineering, ASME, Vol.128, No.1, pp.69-76. [58] Alawadhi E.M., “Temperature regulator unit for Fluid flow in a channel using phase change material”, Applied Thermal Engineering, Vol.25, pp.435-449, 2005. [59] Gu Z., Liu H., Li Y., “Thermal energy recovery of air conditioning system ––heat recovery system calculation and phase change materials development”, Applied Thermal Engineering, Vol.24, pp.2511-2526, 2004. [60] Seeniraj R.V., Velraj R., and Narasimhan N.L., “Heat Transfer Enhancement Study of a LHTS Unit Containing Dispersed High Conductivity Particles”, Journal of Solar Energy Engineering, Vol.24, pp.243-249, 2002. [61] Abhat A., “Low Temprature Latent Heat Thermal Energy Storage : HeatStorage Materials”, Solar Energy, Vol. 30, No.4, pp. 313-332, 1983. [62] Zalba B., Marin J.M., Cabeza L.F., and Mehling H., “Review on thermal energy storage with phase change:materials, heat transfer analysis and applications”, Applied Thermal Engineering, Vol.23, pp.251-283, 2003. [63] Sari A., “Thremal reliability test of some fatty acid as PCMs used for solar thermal latent heat storage applications”, Energy Conversion and Management, Vol.44, pp.2277-2287, 2003. [64] Tuncbilek K., Sari A., Tarhan S., Ergunes G., and Kaygusuzc K., “Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications”, Energy, Vol.30, pp.677-692, 2005. [65] Sharma A., “From-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage:preparation and thermal properties”, Energy Conversion and Management, Vol.45, pp.2033-2042, 2004. [66] Bo H., Mari Gustafsson E., and Setterwall F., “Tetradecane and hexadecane binary mixtures as phase change materials(PCMs)for cool storage in district cooling systems”, Energy, Vol.24, pp.1015-1028, 1999. [67] Saito A., Okawa S., Shintani T., and Iwamoto R., “On the removal characteristics and the analytical model of a thermal energy storage capsule using gelled Glauber’s salt as the PCM”, Int. J. Heat Mass Tran., Vol.44, pp.4693-4701, 2001. [68] Alawadhi E.M., “Temperature regulator unit for Fluid flow in a channel using phase change material”, Applied Thermal Engineering, Vol.25, pp.435-449, 2005. [69] Sari A., and Kaygusuz K., “Thermal performance of a eutectic mixture of lauric and stearic acids as pcm encapsulated in the annulus of two concentric pipes”, Solar Energy, Vol.72, No.6, pp.493-504, 2002. [70] Sharma A., Sharma S.D., and Buaahi D., “Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications”, Energy Conversion and Management, Vol.43, pp.1923-1930, 2002. [71] Sharma S.D., Buddhi D., and Sawhney R.L., “Accelerated thermal cycle test of Latent heat-storage Materials”, Solar Energy, Vol.66, No.6, pp.483-490, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41335 | - |
| dc.description.abstract | 隨著電子產業製程技術的進步及人們對電子產品功能上的需求,電子晶片在製造上趨於輕薄短小而功能強大;然而,這也造成嚴重的電子熱傳問題。目前主要的電子散熱方案為在晶片上安裝散熱鰭片以導出晶片上的熱,再利用風扇引起空氣流將熱散至外界。但是氣冷式散熱技術己達到了瓶頸,己無法作為下一世代電子晶片的散熱方案,所以許多研究人員致力於新散熱技術的開發,熱電致冷技術為其中的一種。熱電致冷(thermoelectric cooling)技術是藉由輸入電流造成珀爾帖效應(Peltier effect)將熱量由低溫端傳至高溫端,以降低熱源溫度。本論文首先對熱電晶片(thermoelectric cooler)進行理論分析,並建立一套實驗方法求出其性能參數。接著,本論文將熱電晶片與氣冷式鰭片、水冷散熱模組、嵌入式熱管散熱模組、及蒸氣腔體整合為熱電散熱模組,藉由實驗研究及理論分析探討熱源加熱功率、電熱晶片輸入電流對於熱電散熱模組的影響,進而找出各散熱模組與熱電晶片整合後能有效提升原本散熱器性能的有效操作範圍。此外,本論文亦發展了適用於CFD商用軟體的熱電晶片數值模擬模型,可供研究人員在進行相關的研究之用。
結果顯示欲使電熱晶片的COP大於1,則冷熱端溫差必須控制在10℃以內。而在散熱模組實驗方面,熱電散熱模組性能在低加熱功率下會有較好的表現,且在各加熱功率下存在著最佳化操作電流以達到在該加熱功率下的最佳性能,在本研究中,各熱電晶片搭配散熱模組的最佳電流操作點約為6~7A。研究結果也顯示出與熱電晶片整合後不一定能提升散熱器的熱傳性能,本研究歸納實驗結果找出各熱電散熱模組的有效操作範圍,在此操作範圍內散熱器加上熱電晶片後能夠有效的提升其熱傳性能。由有效操作範圍的結果得知,各熱電散熱模組都存在著加熱功率極限,當高於此加熱功率極限,與熱電晶片整合後的性能會比未與熱電晶片整合時還差。可提升散熱效果的有效加熱功率極限,當熱源面積為30×30mm2時,在氣冷熱電模組為57W,在水冷熱電模組為57W,蒸氣腔體散熱電模組為58W,而嵌入式熱管為60W。本論文也提供了一個半經驗關係式可預測此有效加熱功率極限。本研究建立了適用於熱電散熱模組的熱網路理論分析模式,實驗結果顯示此理論分析模式所得到的結果與實驗結果相吻合。此外,本研究所發展之數值模擬模型的模擬結果與理論分析模式的預測結果相當吻合,這兩個理論分析模式可供熱電晶片相關設計者作為設計上的參考。 | zh_TW |
| dc.description.abstract | Owing to the growth of electronic manufacture and the requirement for electronic product performance, micro-chip is produced in small size with powerful performance, which causes serious electronic cooling problem. Among nowadays electronic cooling solutions, air-cooling is the most popular. In air-cooling solution, heat is conducted through heat sink and then released into air by forced convection. Nevertheless, air-cooling solution counters its performance limit in recent years. It is no longer the cooling solution for next generation micro-chips. Therefore, a lot of pioneers dedicate in developing new cooling technologies, and thermoelectric cooling is one of them. Thermoelectric cooling employs Peltier effect, which is caused by input electric current, to lower heat source temperature. Firstly, this thesis theoretically analyzes thermoelectric cooler and develops an experimental method to measure the physical properties. This thesis, then, integrates thermoelectric cooler with different heat sinks as thermoelectric cooling modules. Those heat sinks are air-cooling heat sink, water-cooling module, heat pipe embedded heat sink, and vapor chamber heat sink. The impacts of heating power and input electric current on thermal performance are experimentally and theoretically studied. Furthermore, this investigation figures out the effective operating range under which the performance of heat sink with thermoelectric cooler can be better than without thermoelectric cooler. Besides, this study proposes numerical model of thermoelectric cooler for CFD commercial package. The model could be an aid for simulation involving thermoelectric cooler.
The result shows that the temperature difference between thermoelectric sides must be less than 10oC to achieve the COP larger than one. The total thermal resistance of thermoelectric cooling module increases with increasing heating power at a specific input current. An optimal input current exists for lowest total thermal resistance under every heating power. In this study, the optimal input currents of thermoelectric cooling modules are 6-7A. Being integrated with thermoelectric cooler does not guarantee the performance improvement of heat sink. There exists maximal heating power over which heat sinks perform worse when integrated with thermoelectric cooler. In this investigation, the maximal heating power is 57W for air-cooling, 57W for water-cooling, 58W for vapor chamber, and 60W for heat pipe embedded heat sink when the heating area is 30 mm square. Furthermore, this thesis develops a theoretical analysis model, and the prediction by the model matches the experimental result. And also, the simulation result by the proposed numerical model highly matches the prediction by the theoretical model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:16:04Z (GMT). No. of bitstreams: 1 ntu-98-D93522015-1.pdf: 2119776 bytes, checksum: 756f560a62ba461099d325505bac36f9 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT III 目錄 V 圖目錄 VII 表目錄 X 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與方法 6 第二章 熱電致冷晶片性能分析 11 2.1 熱電效應原理 11 2.1.1 焦耳效應(Joule effect) 11 2.1.2 塞貝克效應(Seebeck effect) 11 2.1.3 珀爾帖效應(Peltier effect) 12 2.1.4 湯姆生效應(Thomson effect) 12 2.1.5 熱電效應之熱力學關係 12 2.2 熱電晶片原理 14 2.2.1 熱電晶片之熱力學關係 14 2.2.2 熱電晶片性能分析 17 2.3 熱電性能參數實驗 19 2.3.1 性能參數實驗系統與設備 19 2.3.2 實驗程序 21 2.4 結果與討論 22 2.4.1 熱電性能參數 22 2.4.2 冷熱端溫差與輸入電流之性能曲線 22 2.4.3 熱電晶片之效率 22 第三章 熱電致冷散熱模組理論模式 30 3.1 熱電致冷散熱模組熱網路分析模式 30 3.1.1 界面熱阻 31 3.1.2 熱電晶片冷端擴散熱阻 32 3.1.3 收縮熱阻 34 3.1.4 熱沈熱阻 35 3.1.5 熱電晶片性能指標 35 3.1.6 理論模式計算方法 36 3.2 熱電散熱模組無因次化性能分析 37 第四章 熱電致冷散熱模組性能實驗研究 47 4.1 散熱器熱沈熱阻性能實驗 47 4.1.1 實驗與量測設備建立及實驗步驟 47 4.1.2 實驗結果 51 4.2 熱電致冷散熱模組性能實驗 54 4.2.1 實驗與量測設備建立與實驗步驟 54 4.2.2 實驗結果與討論 56 4.3 理論分析結果與實驗結果比較 59 4.3.1 熱網路理論模式計算結果與實驗結果之比較 59 4.3.2 有效加熱功率極限值及最佳操作電流與實驗比較結果 61 第五章 熱電致冷晶片數值模型建立 97 5.1 熱電致冷晶片數值模型建立方法 97 5.2 氣冷熱電散熱模組數值模擬 100 第六章 結論與建議 110 參考文獻 112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱電致冷 | zh_TW |
| dc.subject | 熱阻模型 | zh_TW |
| dc.subject | 電子散熱 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | thermal resistance model | en |
| dc.subject | thermoelectric cooling | en |
| dc.subject | electronic cooling | en |
| dc.subject | numerical simulation | en |
| dc.title | 熱電致冷散熱模組理論分析及實驗研究 | zh_TW |
| dc.title | Theoretical and Experimental Investigation of Thermoelectric cooling module | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳文方,柯明村,卓清松,李文興,江沅晉,陳輝俊 | |
| dc.subject.keyword | 熱電致冷,熱阻模型,電子散熱,數值模擬, | zh_TW |
| dc.subject.keyword | thermoelectric cooling,thermal resistance model,electronic cooling,numerical simulation, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-06-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
