請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41301完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林巍聳 | |
| dc.contributor.author | Hsien-Ping Chu | en |
| dc.contributor.author | 曲先平 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:15:29Z | - |
| dc.date.available | 2010-06-23 | |
| dc.date.copyright | 2009-06-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-16 | |
| dc.identifier.citation | References
[Continental, 2009] http://www.conti-online.com/. [Ford, 2009] http://www.fordvehicles.com/. [General, 2009] http://www.gm.com/. [Bosch, 2009] http://www.bosch.com/. [Anwar, 2004] Anwar, S. “An Anti-Lock Braking Control System for a Hybrid Electromagnetic/Electrohydraulic Brake-By-Wire System.” Proceeding of the 2004 American Control Conference. Boston, Massachusetts. [Austin, 2000] L Austin, D. M. “Recent advances in antilock braking systems and traction control systems.” Proceedings of the I MECH E Part D Journal of Automobile Engineering, Professional Engineering Publishing. 214: 625-638. [Bakker, 1987] Bakker, E., Nyborg, L., and Pacejka, H.B. “Tire Modeling for Use in Vehicle Dynamics Studies.” [Bakker, 1989] Bakker, E., Pacejka, H.B., and Linder, L. “A New Tire Model with an Application in Vehicle Dynamics Studies.” [Balazovic, 2004] Balazovic, P. “56F8300 Hybrid Controller Used in Control of Electro-Mechanical Brake.” Freescale Semiconductor Application Note. [Bayle, 1993] Bayle, P., Forissior, J.F., and Lafon S. “A New Tyre Model for Vehicle Dynamics Simulation.” Automotive Technology International. [Bernard, 1977] Bernard, J. E., Segel, L., and Wild, R.E. “Tire shear force generation during combined steering and braking maneuvres.” [Boada, 2006] M J L Boada, B. L. B., A Munoz, and V Diaz “Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic.” Proceedings of the IMECHE Part D Journal of Automobile Engineering. 220: 253-267. [Bretz, 2001] Bretz, E. A. “By-Wire Cars Turn the Corner.” IEEE Spectrum. [Buschmann, 1992] Gunther Buschmann, H.-T. E., and eiland Kuhn “Electronic Brake Force Distribution Control: a Sophisticated Addition to ABS.” International Congress & Exposition. Detroit, MI, USA, Society of Automobile Engineers: 93-100 [Canudas-de-Wit, 1999] Canudas-de-Wit, C. “Dynamic Tire Friction Models for Vehicle Traction Control.” Proceedings of the 38th Conference on Decision & Control Phoenix, Arizona USA. [Canudas-de-Wit, 2002] Carlot Canudas-de-Wit, P. T., Efstathios Velenis, Michel Basset, and Gerard Gissinger “Dynamic Friction Models for Road/Tire Longitudinal Interaction.” Vehicle System Dynamics 39(3): 189-226. [Chowanietz, 1995] Chowanietz, E. “Automobile Electronics” Society of Automotive Engineers, Inc. [Dugoff, 1970] Dugoff, H., Fancher, P.S., and Segel, L. “An analysis of tire traction properties and their influence on vehicle dynamics performance.” Proceedings FISITA Int. Auto. Safety Conference. [Guan, 1999] Guan, D. H., Shang, J., and Yam, L.H. “Modelling of Tire Cornering Properties with Experimental Modal Parameters.” [Hitachi, 2008] Hitachi “Ground speed sensor technology developed for motor vehicles using mm-wave radar.” Tokyo. [Huang, 2005] Guang-Bin Huang, P. S., and Narasimhan Sundararajan “A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation.” IEEE Transactions on Neural Networks 16(1): 57-67. [Hori, 1998] Yoichi Hori, Y. T. a. Y. T. “Traction control of electric vehicle based on the estimation of road surface condition-basic experimental results using the test EV UOT Electric March.” IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 34(5): 1131-1138. [Isermann, 2002] Rolf Isermann, R. S., Stefan Stolzl „Fault-tolerant drive-by-wire systems.” IEEE Control Systems Magazine. [Kaelbling,1996] Leslie Pack Kaelbling, M. L. L. “Reinforcement Learning: A Survey.” Journal of Artificial Intelligence Research 4: 237 – 285 [Kim, 2006] Donghyun Kim, H. K. “Vehicle stability control with regenerative braking and electronic brake force distribution for a four-wheel drive hybrid electric vehicle.” Proceedings of the IMECHE Part D Journal of Automobile Engineering. 220: 283-293. [Kobayashi, 1995] Kazuyuki Kobayashi, K. C. C., and Kajiro Watanabe “Estimation of Absolute Vehicle Speed using Fuzzy Logic Rule-Based Kalman Filter.” Proceedings of the American Control Conference. Seatle, Washington. [Lendaris, 1997] George G. Lendaris, C. P., and Thaddeus Shannon “More on Training Strategies for Critic and Action Neural Networks in Dual Heuristic Programming Method.” Proceedings of Systems Man & Cybernetics Society International Conference’97. Orlando, IEEE Press. [Lendaris, 2000] George G. Lendaris, L. S., and Thaddeus Shannon “Adaptive Critic Design for Intelligent Steering and Speed Control of a 2-Axle Vehicle.” Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Italy, IEEE Computer Society Washington, DC, USA. [Lendaris, 1998] George G. Lendaris, T. S. “Application Considerations for the DHP Methodology.” Proceedings of the International Joint Conference on Neural Networks. Anchorage, IEEE Press. 2: 1013-1018. [Lin, 2007a] Wei-Song Lin, P.-C. Y. “Adaptive critic anti-slip control of wheeled autonomous robot.” IEE/IET Control Theory and Applications 1(1): 51-57.. [Lin, 2007b] Wei-Song Lin, P.-C. Y. “DHP Adaptive Critic Motion Control of Autonomous Wheeled Mobile Robot.” IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning. Honolulu, HI, USA: 311-317. [Lin, 2008]Wei-Song Lin, P.-C. Y. (2008). 'Adaptive critic motion control design of autonomous wheeled mobile robot by dual heuristic programming.' Automatica 44(11): 2716-2723. [Milliken, 1995] Milliken, W. F. M. a. D. L. “Race Car Vehicle Dynamics,” Society of Automotive Engineers, Inc. [Niasar, 2003] A. Halvai Niasar, H. M., and R. Kazemi “Yaw Moment Control via Emotional Adaptive Neuro-Fuzzy Controller for Independent Rear Wheel Drives of an Electric Vehicle.” Proceedings of 2003 IEEE Conference on Control Applications. 1: 380-385. [Park, 1999] Jong Hyeon Park, W. S. A. “H-infinity Yaw-Moment Control with Brakes for mproving Driving Performance and Stability.” Proceedingsof the1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Atlanta,USA: 747-752. [Pacejka, 1993] Pacejka, H. B., and Bakker, E. “The Magic Formula tyre model” Vehicle System Dynamics 21. [Pacejka, 1996] Pacejka, H. B. “The Tyre as a Vehicle Component.” Proceedings of XXVI FISITA Congress, M. Apetaur, Prague [Pacejka, 2006] Pacejka, H. B. “Tire and Vehicle Dynamics.” Rotterdam, Society of Automotive Engineers, Inc. [Petersen, 2003] Petersen, I. “Wheel Slip Control in ABS Brakes Using Gain Scheduled Optimal Control with Constraints.” Department of Engineering Cybernetics. Trondheim, Norwegian University of Science and Technology. Ph.D. [Prokhorov, 1997] Danil V. Prokhorov, D. C. W. “Adaptive Critic Designs.” IEEE Transsactions on Neural Networks 8: 997-1007. [Prokhorov, 1995] Danil V. Prokhorov, R. A. S., and Donald C. Wunsh “Adaptive Critic Designs: A Case Study for Neuralcontrol.” Neural networks 8(9): 1367-1372. [Shang, 2002] Shang, J., Guan, D., and Yam, L.H. “Study on Tyre Dynamic Cornering Properties Using Experimental Modal Parameters.” Vehicle System Dynamics 37(2). [Shannon, 1999] Shannon, T. T. “Partial, Noisy and Qualitative Models for Adaptive Critic Based Neuro-control.” Proceedings of International Conference on Neural Networks, Washington, D.C., IEEE Press [Shannon, 2004] Shannon, T. T. “Linguistic Adaptive Critics for tuning fuzzy controllers.” Proc. IEEE Conf. North American Fuzzy Information Processing, Alberta, Canada. [Sutton, 1998] Richard S. Sutton, A. G. B. “Reinforcement Learning,” MIT Press. [Tseng, 1999] Hongtei Eric Tseng, B. A., Dinu Madau, Todd Allen Brown, and Darrel Recker “The Development of Vehicle Stability Control at Ford.” IEEE/ASME Transactions on Mechatronics 4(3): 223-234. [Webros, 1990] Webros, P. J. “A menu of designs for reinforcement learning over time.” Neural networks for control: 67-95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41301 | - |
| dc.description.abstract | 本研究針對線傳控制汽車發展一套自評煞車控制系統,目標是優化車輛的牽引力和循跡控制性能。該控制系統以雙啟發規劃法(dual heuristic dynamic programming)為基礎,搭配自組型徑向基底函數網路(radial basis function network)和梅基克式(Magic Formula)輪胎模型,達成用單一控制器整合防鎖控制、牽引力控制、煞車力分配和循跡控制的功能,使車輛能夠在自評過程中自動優化煞車控制器的性能。自評煞車控制系統具有自動追求優化的能力,能夠自動調整非線性控制器的參數,自組型徑向基底函數網路設有自動增減類神經元的訓練法則,可以自動組合最適用的網路結構。本研究完成自評煞車控制系統的各項設計,並且建立該控制器和汽車的整合模擬系統。藉由模擬系統檢驗自評煞車控制系統的性能表現,結果顯示在各種測試條件下,自評煞車控制系統都可以有效的達成優化車輛性能的目標。 | zh_TW |
| dc.description.abstract | This research develops an adaptive critic braking control system to optimize the traction and yaw control performance of by-wire braking cars. Underlying techniques are mainly the dual heuristic programming adaptive critic design, the self-organizing radial basis function network, and the Magic-Formula tire model. The adaptive critic braking control system is characterized by integrating the functions of antilock brake control, traction control, electronic brake-force distribution, and electronic stability program. The generalized growing-pruning mechanism of radial basis function networks and the adaptive critic design enable the system pursuing optimal performance. This thesis shows the detailed design of the adaptive critic braking control system. A simulation system involving an adaptive critic braking controller and a prototype car is developed. Simulation results show that, under variable test conditions, adaptive critic braking control system is significantly effective in optimizing traction and yaw performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:15:29Z (GMT). No. of bitstreams: 1 ntu-98-R95921001-1.pdf: 3031157 bytes, checksum: c0985cafbd68f95192d5e97349ae01ae (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要......................................................i
ABSTRACT................................................iii Chapter 1 .................................................1 Introduction..............................................1 1.1 Brake-by-wire technology..............................1 1.2 Adaptive Critic Design (ACD)..........................7 1.3 Motivation and Contribution...........................9 1.4 Organization of this thesis..........................10 Chapter 2 ................................................11 Vehicle Active Safety Systems............................11 2.1 Antilock Brake System (ABS)..........................11 2.2 Brake Assistant System (BAS).........................15 2.3 Electronic Brake-force Distribution (EBD)............18 2.4 Traction Control System (TCS)........................20 2.5 Electronic Stability Program (ESP)...................22 2.6 Summary..............................................23 Chapter 3 ................................................25 Adaptive Critic Design and Dual Heuristic Programming....25 3.1 Adaptive Critic Design (ACD).........................25 3.1.1 Preliminary of Mathematical Representation.........26 3.1.2 Overview of Adaptive Critic Design.................27 3.1.3 Mathematical Formulation of ACD....................31 3.1.4 Categories of ACD..................................33 3.2 Dual Heuristic Programming...........................37 3.2.1 Basic Concept of DHP...............................37 3.2.2 DHP Update Process.................................38 3.2.3 Summary of DHP Procedure...........................41 3.3 Radial Basis Function Network........................42 3.3.1 MLP and Batch Training.............................42 3.3.2 Online Incremental Learning RBFN...................44 3.3.3 GGP-RBFN...........................................46 3.4 Simulation Results of MLP and GGP-RBFN...............50 3.4.1 Simulation Results without Training................56 3.4.2 Simulation Results with Complete Training..........67 3.4.3 Simulation Results with Partial Training: Case I...77 3.4.4 Simulation Results with Partial Training: Case II..87 3.4.5 Simulation Results with Different Neuron Width and Discount Factor..........................................97 3.5 Summary.............................................104 Chapter 4 ...............................................107 Vehicle Dynamic Model and Tire Model....................107 4.1 Vehicle Dynamic Model...............................107 4.1.1 Vehicle Axis System...............................107 4.1.2 Load Transfer.....................................109 4.1.3 Equations of Motion...............................111 4.1.3 Ackermann Principle...............................113 4.2 Tire model..........................................115 4.2.1 Categories of Tire Models.........................116 4.2.2 The Magic Formula Tire Model......................118 4.3 Reference States and Control Inputs.................130 Chapter 5 ...............................................135 Adaptive Critic By-wire Braking Control System Design...135 5.1 Architecture and Updating Process of Complete System..................................................135 5.1.1 Architecture......................................135 5.1.2 Updating Process..................................137 5.2 Simulation Studies..................................137 5.2.1 Parameters........................................138 5.2.3 Training Process..................................141 5.2.4 Performance of Acceleration.......................149 5.2.5 Performance of Brake..............................152 5.2.6 Brake on Split Friction Coefficient Road Surface..155 5.2.7 Performance of Double Lane Change.................160 Chapter 6 ...............................................165 Conclusion..............................................165 References..............................................167 | |
| dc.language.iso | en | |
| dc.subject | 輪胎模型 | zh_TW |
| dc.subject | 雙啟發規劃法 | zh_TW |
| dc.subject | 車輛控制 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 自評控制 | zh_TW |
| dc.subject | neural network | en |
| dc.subject | tire model | en |
| dc.subject | dual heuristic programming | en |
| dc.subject | vehicle control | en |
| dc.title | 優化牽引力與循跡性能之自評煞車控制系統 | zh_TW |
| dc.title | Adaptive Critic Braking Control System to Optimize Vehicle’s Traction and Yaw Performance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文良,劉 霆,蕭耀榮 | |
| dc.subject.keyword | 雙啟發規劃法,車輛控制,類神經網路,自評控制,輪胎模型, | zh_TW |
| dc.subject.keyword | dual heuristic programming,vehicle control,tire model,neural network, | en |
| dc.relation.page | 174 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-06-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
