Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立(Nei-Li Chan)
dc.contributor.authorMu-Sen Liuen
dc.contributor.author劉沐森zh_TW
dc.date.accessioned2021-06-15T00:15:26Z-
dc.date.available2016-08-15
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citation1Burg, M. B. Molecular basis of osmotic regulation. Am J Physiol 268, 983-996 (1995).
2Kempf, B. & Bremer, E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170, 319-330 (1998).
3Poolman, B. et al. How do membrane proteins sense water stress? Mol Microbiol 44, 889-902 (2002).
4Wood, J. M. et al. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130, 437-460 (2001).
5Wood, J. M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63, 230-262 (1999).
6Record, M. T., Jr., Courtenay, E. S., Cayley, D. S. & Guttman, H. J. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 23, 143-148 (1998).
7Tanghe, A., Dijck, P. V. & Thevelein, J. M. Why do microorganisms have aquaporins? Trends Microbiol 14, 78-85 (2006).
8Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J Biol Chem 283, 7309-7313 (2008).
9Empadinhas, N. & da Costa, M. S. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11, 151-161 (2008).
10Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 208, 2819-2830 (2005).
11Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222 (1982).
12Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol Rev 87, 1441-1474 (2007).
13Bolen, D. W. & Rose, G. D. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77, 339-362 (2008).
14Arakawa, T. & Timasheff, S. N. The stabilization of proteins by osmolytes. Biophys J 47, 411-414 (1985).
15Bolen, D. W. & Baskakov, I. V. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310, 955-963 (2001).
16Capp, M. W. et al. Interactions of the osmolyte glycine betaine with molecular surfaces in water: thermodynamics, structural interpretation, and prediction of m-values. Biochemistry 48, 10372-10379 (2009).
17Ignatova, Z. & Gierasch, L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci U S A 103, 13357-13361 (2006).
18Street, T. O., Bolen, D. W. & Rose, G. D. A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103, 13997-14002 (2006).
19Timothy O. Street, K. A. K., Jorg Rosgen, D. Wayne Bolen, and David A. Agard. Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci. 19, 57-65 (2009).
20da Costa, M. S., Santos, H. & Galinski, E. A. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61, 117-153 (1998).
21Pfluger, K. & Muller, V. Transport of compatible solutes in extremophiles. J Bioenerg Biomembr 36, 17-24 (2004).
22Roberts, M. F. Osmoadaptation and osmoregulation in archaea. Front Biosci 5, 796-812 (2000).
23Blomberg, A. Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae. Electrophoresis 18, 1429-1440 (1997).
24Lang, F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26, 613S-623S (2007).
25BOONE, D. R. et al. Isolation and Characterization of Methanohalophilus portucalensis sp. nov. and DNA Reassociation Study of the Genus Methanohalophilus. Int J Syst Bacteriol. 43, 430-437 (1993).
26Mathrani, I. M. & Boone, D. R. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50, 140-143 (1985).
27Ollivier, B., Caumette, P., Garcia, J. L. & Mah, R. A. Anaerobic bacteria from hypersaline environments. Microbiol Rev 58, 27-38 (1994).
28Lai, M. C. & Gunsalus, R. P. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J Bacteriol 174, 7474-7477 (1992).
29Robertson, D. E., Noll, D., Roberts, M. F., Menaia, J. A. & Boone, D. R. Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol 56, 563-565 (1990).
30Lai, S. J. & Lai, M. C. Characterization of the osmolyte betaine synthesizing enzymes glycine sarcosine methyltransferase and sarcosine dimethylglycine methyltransferase from halophilic methanogen Methanohalophilus portucalensis (submitted). Environmental Microbiology (2011).
31Woodard, R. W., Tsai, M. D., Floss, H. G., Crooks, P. A. & Coward, J. K. Stereochemical course of the transmethylation catalyzed by catechol O-methyltransferase. J Biol Chem 255, 9124-9127 (1980).
32Burgie, E. S. & Holden, H. M. Three-dimensional structure of DesVI from Streptomyces venezuelae: a sugar N,N-dimethyltransferase required for dTDP-desosamine biosynthesis. Biochemistry 47, 3982-3988 (2008).
33Hagemann, M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35, 87-123 (2011).
34Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276, 307-326 (1997).
35Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol Biol 426, 419-435 (2008).
36Jennifer L Martin & McMillan, F. M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Current Opinion in Structural Biology 12, 783-793 (2002).
37Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 (2004).
38DeLano, W. L. http://www.pymol.org/ (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41298-
dc.description.abstract當微生物面臨外在環境劇烈的變化,如鹽濃度的改變所造成的滲透壓力,它們能夠藉由累積細胞內的滲透壓調節物質(又可稱為相容性溶質)以適應高滲透壓的外在環境。嗜鹽性甲烷古生菌 Methanohalophilus portucalensis FDF1T 可以生長在鹽濃度 1.2-2.9 M 的環境中,在高鹽環境下M. portucalensis FDF1T 不僅能自行合成相容性溶質,例如 glycine betaine、 β-glutamine、 β-glutamate、和 Nε-acetyl-β-lysine 等小分子,並且會從外在環境中吸收這些物質或其合成前驅物,而吸收的同時伴隨著鉀離子的進入,其在細胞內部累積可以減少水分的流失和幫助細胞膨壓的維持。在這些滲透壓調節物質中, glycine betaine (N, N, N-trimethylglycine) 簡稱為 betaine,為最廣泛使用的調節物質之一。 Betaine 在細菌、古生菌、真菌、植物、和動物中具有重要的滲透壓調節保護的功能。 Betaine 除了可以藉由 choline 去氫酶經過兩步驟的催化反應生合成,在一些中度或極度嗜鹽性甲烷古生菌中,亦可藉由將 glycine 進行三次的甲基轉移生合成。如 M. portucalensis 中有兩個甲基轉移酶參與此催化反應,一個為 glycine sarcosine methyltransfease (GSMT),將 glycine 甲基化形成 sarcosine,再將 sarcosine 甲基化形成 dimethylglycine;另一個為 sarcosine dimethylglycine methyltransferase (SDMT),將 sarcosine 甲基化形成 dimethylglycine,最後將 dimethylglycine 甲基化形成 betaine。
本篇論文的主要目的是藉由 X-射線晶體學解析 M. portucalensis 的 MpGSMT 之蛋白結構,利用蒸氣擴散結晶技術,我們成功地獲得 MpGSMT 的晶體,在此篇論文中,我們會解析出兩個晶體結構,分別為 ligand-free MpGSMT 和MpGSMT-AdoMet (S-Adenosyl-L-methionine) 複合體的結構。MpGSMT 的晶體結構解析度為 1.9 Å,其結構包含一個保留性的結構核心(AdoMet 結合的 Rossmann 摺疊構型功能區)和一個受質結合的輔助功能區,此輔助功能區在甲基轉移酶中扮演辨識受質的角色。 MpGSMT 的結構和受質同為 glycine 的 glycine N-methyltransferase (GNMT) 非常的相似,因此我們認為 MpGSMT 應屬於小分子類的甲基轉移酶。將此 MpGSMT 晶體浸泡入含有 glycine 和 AdoMet 的溶液,經由 X- 射線繞射分析也成功得到了 MpGSMT-AdoMet 複合體結構,其解析度為 2.88 Å。然而我們尚未觀察找到 glycine 在 MpGSMT 中的結合位置,但有趣地是,當 AdoMet 一結合到 MpGSMT 上, His138 會轉向活化區,由此推測 His138 可能為催化反應中關鍵的胺基酸之一。
zh_TW
dc.description.abstractMicroorganisms need to adapt rapidly to extreme variations in salinity, temperature or osmolarity to survive. To avoid dehydration or swelling, the cells adjust their intracellular solute pool in response to environmental changes. Many organisms have developed similar strategies to counteract high osmolarity through the intracellular accumulation of osmolytes, which are often referred to as compatible solute. The halophilic methanoarchaeon Methanohalophilus portucalensis strain FDF1T can grow optimally over the salt range of 1.2-2.9 M. Under the hypersaline environment, M. portucalensis FDF1T not only synthesizes low molecular weight compatible solutes such as glycine betaine, β-glutamine, β-glutamate, and Nε-acetyl-β-lysine, but also uptakes osmolytes and theirs precursors from surrounding environment. Intracellular accumulation of these organic molecules along with potassium ions minimizes water loss and helps to maintain the cellular turgor pressure. Among these osmolyts, glycine betaine (N, N, N-trimethylglycine), often referred to simply as betaine, is one of the most widely adopted compatible solutes. Betaine plays a crucial osmoprotective function in bacteria, archaea, fungi, plants, and animal cells. Betaine is synthesized from choline by oxidation. A choline dehydrogenase has been shown to catalyze the two-step reaction of choline to betaine in many microbes. Moreover, the moderately and extremely halophilic methanoarchaea also synthesize betaine de novo for use as a compatible solute. Two methyltransferase genes involved in betaine biosynthesis are present in M. portucalensis. One of the gene products (GSMT) catalyzed the methylation reactions of glycine and sarcosine to sarcosine and dimethlglycine, respectively, whereas the other one (SDMT) catalyzed the methylations of sarcosine and dimethylglycine to dimethylglycine and betaine.
The goal of my thesis research is to determine the structure of GSMT from M. portucalensis by X-ray crystallography. Using vapor-diffusion crystallization technique, we have successfully obtained crystals of MpGSMT. Here we report two crystal structures: native MpGSMT and MpGSMT in complex with S-Adenosyl-L-methionine (SAM/AdoMet). The crystal structure of the native MpGSMT was solved at a resolution of 1.9 Å. The MpGSMT structure consists the consensus structural core, the AdoMet-binding Rossmann fold domain, and a substrate-binding auxiliary domain that are inserted throughout the methyltransferase fold and appear to play roles in substrate recognition. Rossmann fold domain comprises a seven-stranded β sheet with a central topological switch-point and a characteristic reversed β hairpin at the carboxyl terminal end of the sheet. This sheet is flanked by α helices to form a doubly wound open αβα sandwich. Substrate-binding auxiliary domain comprises a four-stranded anti-parallel β sheet. The MpGSMT structure is similar to that of glycine N-methyltransferase (GNMT), whose substrate is also glycine. Our study revealed that MpGSMT structure resembles those seen in the small molecular methlytransferase superfamily. We also obtained MpGSMT-AdoMet binary complex structure by soaking the cofactor into the pre-grown crystals with glycine-AdoMet-containing buffer. The crystal structure of the MpGSMT-AdoMet was solved at a resolution of 2.88 Å. However, the binding site of glycine has not yet been observed. Interestingly, His138 faces toward active site upon AdoMet binding, we speculate that His138 may be a key catalytic residue.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:15:26Z (GMT). No. of bitstreams: 1
ntu-100-R98442015-1.pdf: 3320435 bytes, checksum: 1db0f6c3062df10cfd51f5539decfd7a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書...............................ii
誌謝...........................................iii
中文摘要.......................................iv
英文摘要.......................................vi
目錄...........................................viii
圖目錄.........................................x
表目錄.........................................xii
縮寫表.........................................xiii
一、前言.......................................1
1-1外界環境水分壓力對微生物的影響..............1
1-2有機的滲透壓調節物質的特性..................1
1-3有機的滲透壓調節物質的保護機制..............2
1-3-1擾動性溶質和相容性溶質....................2
1-3-2相容性溶質對於天然蛋白質結構的穩定........2
1-4Glycine betaine 之來源......................3
1-5嗜鹽性甲烷古生菌 FDF1T......................3
1-6MpGSMT之結構及生化特性功能..................4
1-7本篇研究的目的..............................5
二、材料與方法.................................7
2-1 蛋白表現質體之構築與製備...................7
2-1-1pET28a(+)-MpGSMT 質體之構築...............7
2-1-2pET28a(+)-MpGSMT 質體之製備...............7
2-2 蛋白表現量的測試...........................9
2-2-1 pET28a(+)-MpGSMT 蛋白之表達..............9
2-3 蛋白純化...................................11
2-3-1 MpGSMT蛋白之純化.........................11
2-4 蛋白質濃縮與定量...........................14
2-5 蛋白晶體培養...............................14
2-5-1 PCT (Pre-crystallization Test) ..........14
2-5-2 晶體生長條件測試.........................14
2-5-3 微調養晶條件.............................15
2-5-4 晶體浸泡入 (soak in) 配體 (ligand).......15
2-5-5 添加物試驗...............................15
2-6 蛋白質晶體之 X-ray 繞射數據的分析與收集....16
2-6-1 蛋白質晶體冷凍保護 (cryo-protection) ....16
2-6-2 單晶繞射實驗.............................16
三、結果.......................................18
3-1 MpGSMT 蛋白之表現..........................18
3-1-1 MpGSMT 蛋白之表現........................18
3-1-2 MpGSMT 蛋白之純化........................18
3-1-3 MpGSMT 蛋白晶體之培養以及 MpGSMT-AdoMet-glycine 三重複合體晶體之製備.................................19
3-1-4 MpGSMT 蛋白晶體之撈取與繞射數據收集分析..19
四、討論.......................................22
4-1 MpGSMT 蛋白................................22
圖.............................................25
表.............................................48
附錄...........................................55
參考文獻.......................................56
dc.language.isozh-TW
dc.subject嗜鹽性甲烷古生菌zh_TW
dc.subject甲基轉移&#37238zh_TW
dc.subjectMethanohalophilus portucalensisen
dc.subjectglycine sarcosine methyltransferaseen
dc.subjectGSMTen
dc.title以X-射線晶體學探討嗜鹽性甲烷古生菌 Methanohalophilus portucalensis 甘胺酸肌胺酸甲基轉移酶之結構與功能zh_TW
dc.titleStructural analysis of glycine sarcosine methyltransferase from archaea Methanohalophilus portucalensisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪慧芝(Hui-Chih Hung),?駿森(Chun-Hua Hsu)
dc.subject.keyword甲基轉移&#37238,嗜鹽性甲烷古生菌,zh_TW
dc.subject.keywordglycine sarcosine methyltransferase,GSMT,Methanohalophilus portucalensis,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved