請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41245
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范正成 | |
dc.contributor.author | Che-Hsin Liu | en |
dc.contributor.author | 劉哲欣 | zh_TW |
dc.date.accessioned | 2021-06-15T00:14:42Z | - |
dc.date.available | 2009-07-03 | |
dc.date.copyright | 2009-07-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-06-24 | |
dc.identifier.citation | 1.王如意、易任(1979),「應用水文學(上)」,國立編譯館,台北市。
2.行政院農業委員會(1996),「台灣地區土石流危險溪流分佈圖」。 3.行政院農業委員會水土保持局(2003),「以降雨因子進行土石流警戒基準值訂定(第一年)」。 4.行政院農業委員會水土保持局(2007),「以降雨因子進行土石流警戒基準值訂定」(第五年)。 5.何春蓀,「台灣地質概論台灣地質說明書」,經濟部中央地質調查所。 6.林美聆、游繁結、林炳森、范正成、王國隆(2000),「集集震後土石流二次災害危險性之評估」,地工技術,81:97-104。 7.范正成、吳明峰、彭光宗(1999),「豐丘土石流發生臨界降雨線之研究」,地工技術,74:39-46。 8.范正成、劉哲欣、吳明峰(2002),「南投地區土石流發生臨界降雨線之設定及其集集大地震後之修正」,中華水土保持學報,33(1):31-38。 9.洪如江(1997),「台灣地區工程地質分區分佈圖」,1997年修訂。 10.高子劍(2001),「機率式土石流臨界降雨線之研究」,國立台灣大學農業工程研究所碩士論文。 11.陳榮河(1999),「土石流之發生機制」,地工技術,74:21-28。 12.國家地震工程研究中心(2000),「921集集大地震震災調查總結報告」。 13.劉哲欣(2000),「土石流潛在勢能及預警之研究」,國立台灣大學農業工程研究所碩士論文。 14.蔡玉琴(1997),「淡水河流域降雨時空分析及推估─地理資訊系統的應用」,師大地理研究報告,第二十六期。 15.謝正倫(1991),「土石流預警系統之研究」,成大水工試驗所,研究試驗報告第130號。 16.謝金德(2000),「九二一地震山坡地災害及對水土保持之衝擊」,台灣水土保持,pp.4-14。 17.羅俊雄、溫國樑、簡文郁、柴駿甫、鄧崇任、饒瑞鈞(2000),「考慮區域近斷層效應及均佈危險度之設計地震力需求」,內政部建築研究所專題研究計畫成果報告,pp.3-1∼3-5。 18.青木佑久(1980),「過去土石流災害降雨特徵之研究」,土木技術資料,22-2,pp.71-76。 19.瀨尾克美、橫部幸裕(1978),「土砂害降雨量之研究」,新砂防,Vol.108, pp. 14-18。 20.Aoki, S. (1998) “Geological features and underground water investigation of landslide ground.” Proceedings of the Conference on Plan and Mitigation Technology of Landslides. Taichung, Taiwan, September 17: 2-1~20. 21.Bertram, G.E. (1973) “Field tests for compacted rockfill. In R.C. Hirchfeld & S.J. Poulos, eds.” Embankment-Dam Engineering. New York: John Wiley & Sons Inc., 1-19. 22.Chang, T. C. & Chien, Y. H., (2007) “The application of genetic algorithm in debris flows prediction.” Environmental Geology, 53:339-347. 23.Caine, N. (1980) “The Rainfall Intensity Duration Control of Shallow Landslides and Debris Flows.” Geografiska Annaler Vol.62, pp.23-27. 24.Cannon, S.H. and S.D. Ellen (1985), “Rainfall Conditions for Abundant Debris Avalanches in San Francisco Bay Region California”, California Geology, Vol.38, No.12, pp.267-272. 25.Chen, R. H., Lin, M.L. & Chen, H., (1995) “Mechanism of initiation of debris flow. In F.Y. Cheng & M.S. Sheu, eds.” Urban Disaster Mitigation the Role of Engineering and Technology. New York: Elsevier, 231-243. 26.Das BM (1998) “Principles of Geotechnical Engineering”, 4th edn. PWS, Boston, p.567-626. 27.Fan, J. C., Liu, C. H. & Wu, M. F. (2003), “Determination of critical rainfall thresholds for debris-flow occurrence in central Taiwan and their revision after the 1999 Chi-Chi great earthquake.” Proceeding of 3rd International DFHM Conference, Davos, Switzerland, 103-114. 28.Fedora, M.A. and R.L.Beschta. (1989) “Storm Runoff Simulation Using an Antecedent Precipitation Index(API) Model”, Journal of Hydrology, Vol 112, pp. 121-133. 29.Fan , J.C, C.H. Liu, C.H. Yang, H.Y. Huang. (2009) “A Laboratory Study on Groundwater Quality and Mass Movement Occurrence.” Environmental Geology, Vol 57, pp. 1509. 30.Houston, S. L. & Walsh, K.D., (1993) “Compaction of rock correction methods for compaction of clayey soil.” Journal of Geotechnical Engineering 119 (4): 763-778. 31.Ibe, K. M. Sr. & Ebe, A. M., (2000) “Impacts of debris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the cross-river catchment, SE, Nigeria.” Environmental Monitoring and Assessment 64: 449-456. 32.Keefer, D.K., R.C.Wilson, R.K. Mark, E.E. Brabb, W.M.Brown, S.D. Ellen, E.L. Harp, G.F.Wieczorek, C.S. Alger, and R.S Zatkin. (1987) “Real-Time Landslide Warning During Heavy Rainfall”, Science, Vol.238, pp.921-925. 33.Lambe TW, Whitman RV (1979) Soil Mechanics, SI version. JOHN WILEY & SONS, New York, p.352-373. 34.Lin, P.S. (1986) “A study on engineering properties of compacted lateritic gravels.” Journal of Chinese Institute of Engineers.9 (6): 533-545. 35.Parsons RL, Foster DH, Cross, SA (2001) “Compaction and Settlement of Existing Embankment.” Report No. K-TRAN: KU-00-8. Lawrence: The University of Kansas. 36.Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soil. ASTM Designation: D2850-03a, February 2, 2003. 37.Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM Designation: D3080-04, November 1, 2004. 38.Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. ASTM Designation: D4767-04, November 1, 2004. 39.Standard Method of Test for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. AASHTO Designation: T-245, January 1, 1997. 40.Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus (6 inch-Diameter Specimen). ASTM Designation: D5581-96, January 1, 2001. 41.Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM Designation: D1557, November 10, 2002. 42.Takahashi T. (1978), “Mechanical Characteristics of Debris flow”, J. Hydraulics Div, ASAE, Vo1.104, noHY8. 43.Takahashi T. (1981), “Debris flow and Debris Torrents in Southern Canadian Cordillrea”, Can. Geotech. J., Vo1.22, pp.44-68. 44.Wieczorek, G.F. (1987), “Effect of Rainfall Intensity and Duration on Debris Flows in Central Santa Cruz Mountains”, California, Flows/Avalanches : Process, Recognition and Mitigation, Geological Society of America, Reviews in Engineering Geology, Vol.7, pp.93-104. 45.水土保持局網站:http://www.swcb.gov.tw。 46.中央地質調查所網站:http://www.moeacgs.gov.tw。 47.經濟部水利署網站:http://www.wra.gov.tw。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41245 | - |
dc.description.abstract | 本研究主要分為兩個部分,其一為推估土石流發生的臨界降雨量基準,另外即針對因地下水位上升導致邊坡崩塌所引發的土石流,進行地下水的監測分析。
在土石流發生臨界降雨基準部分,以1999年集集大地震前台灣南投地區28條一級溪流為樣本,分析得到與土石流發生較為相關的五個影響因子,經由三維費雪區別函數分析而得此地區之土石流發生臨界降雨基準預測公式。並以此預測公式為基礎,提出機率化階段式臨界降雨基準的方法。為反應集集大地震對土石流發生的影響,乃對上述臨界降雨基準預測公式做若干的修正。修正的因素包括地震時當地之地表最大加速度和地震後隨時間增加而恢復的影響。此外,本研究亦將地震後之颱風雨量資料加以分析和驗證,以瞭解臨界降雨基準修正後之適用性。從整個研究結果,略可推論研究區域內之土石流發生臨界降雨基準已因集集大地震之發生而大幅下降,且隨著大地震後時間之增加而逐漸提升;另外,本研究所提出之土石流發生臨界降雨基準和有效雨量路徑可作為對土石流發生與否及發生時間的預測,且其預測結果與事實相近。 另外研究中以台灣南投地區神木村及豐丘村土石流潛勢溪流的土壤樣本進行室內滲流箱試驗。模擬邊坡崩塌時,觀測邊坡位移、滲流水水質與邊坡崩塌的關係。試驗的結果顯示,邊坡發生崩塌前,依位移量大小明顯分成初始破壞位移區和主要破壞位移區兩個階段,若位移量進入到主要破壞位移區時,則邊坡發生崩塌破壞的機率將大增。且崩塌前滲流水中的電導度值及硫酸根離子有明顯的上升。而滲流水電導度開始明顯上升的時間,較邊坡有明顯位移的時間來得早。因此若以防災應變的觀點來看,有其較長的應變時間。 | zh_TW |
dc.description.abstract | The contents of this study are mainly divided into two parts. One is to evaluate the critical rainfall threshold of debris-flow occurrence. The other one is to monitor and analyze the groyndwater quality during the slope failures which were triggered by groundwater level rise and consequently induced the occurrence of debris flow.
In the first parts of this study, twenty-eight first order streams in the Nan-Tou area of Taiwan were chosen as the samples. After analyses, five factors of the stream samples were found to be higher related to the occurrence of debris flow. Through the analyses of three dimensional Fisher’s linear discriminant function, the predicting equations for the critical rainfall threshold of debris flow occurrence in this area were obtained. To reflect the effect of the great 1999 Chi-Chi earthquake on the occurrence of debris flow, some modifications were made for the aforementioned predicting equations. The modifications included the peak ground acceleration (PGA) during earthquake and the effect of the time increase after the Chi-Chi earthquake on the thixotropy. Aside from these, in this study, the rainfall data of some typhoons occurred after the great earthquake were used for analyses and tests. From the results obtained in this study, it might be concluded that the critical rainfall threshold of debris flow occurrence dropped noticeably right after the Chi-Chi earthquake, the critical rainfall threshold was elevated gradually. In addition, the critical rainfall threshold of debris flow occurrence and the effective rainfall path proposed in this study might be used for predicting the occurrence of debris flow and its occurring time. The predictions were found to be very close to the facts. As for the second parts, soil samples were used in this study for seepage tank tests in the laboratory were collected from the sides of two streams with high debris flow potential at Shenmu and Fengchiou village in Nantou County, Taiwan. While the tests were being conducted, observations were made to investigate the relationships among displacement of the slope, quality of the seepage water and occurrence of mass movement. The results showed that according to the change rate, displacement could be divided into two stages, namely, the initial failure displacement stage and primary failure displacement stage. While the displacement of the slope was in primary failure displacement stages, the probability of slope failure became much higher. Before general slope failure, electrical conductivity (EC) and sulfate ion (SO42-) concentration of the seepage water increased significantly. The time when EC of the seepage water started to increase rapidly was much earlier than that when displacement of the slope started to increase significantly. Therefore, from the hazard mitigation view, there will be a longer time for response if EC of the seepage water was monitored. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:14:42Z (GMT). No. of bitstreams: 1 ntu-98-D91622002-1.pdf: 2469600 bytes, checksum: 7248cd422e039d3f4c013983ebf1d561 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要 Ⅰ
Abstract Ⅱ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章 前言 1 第二章 研究區域概述 3 2.1研究區域簡介 3 2.2研究區域地質概述 5 2.2研究區域斷層概述 9 第三章 土石流發生警戒基準設定、修正及驗證 12 3.1土石流發生雨量警戒基準研究流程 13 3.2分析樣本溪流選定及土石流發生記錄 15 3.2.1樣本溪流選定 15 3.2.2土石流發生記錄 18 3.3土石流發生相關因子之選定 19 3.3.1土地利用因子 19 3.3.2集水區地文因子 21 3.3.3土壤力學參數 24 3.3.4水文因子 28 3.4土石流發生影響因子之分析 30 3.4.1影響因子之分析方法 30 3.4.2各影響因子分析結果 31 3.5地震前臨界降雨基準之設定 33 3.5.1雨場劃分 34 3.5.2有效降雨時間及有效累積雨量 35 3.5.3雨場數化 36 3.5.4雨場資料取捨 37 3.5.5費雪區別函數分析 38 3.5.6南投地區土石流臨界降雨基準 40 3.6臨界降雨基準於集集地震後之適用情形 41 3.7地震後臨界降雨基準之修正 43 3.7.1地震對樣本溪流集水區之影響 43 3.7.2隨時間衰減之影響 44 3.8土石流發生雨場驗證 46 3.8.1桃芝颱風雨場驗證 47 3.8.2納莉颱風雨場驗證 48 3.8.3馬莎颱風及0609豪雨雨場驗證 49 3.9階段式臨界降雨基準 51 3.9.1階段式臨界降雨基準之假設 52 3.9.2階段式臨界降雨基準機率值之概念 53 3.9.3二維常態分佈理論 56 3.9.4資料的標準化 57 3.9.5階段式臨界降雨基準各階段之計算 59 3.9.6階段式臨界降雨基準值分析與警戒、避難分區 64 第四章 地下水監測與土石流 67 4.1研究方法 68 4.1.1試驗土樣 70 4.1.2試驗設計 73 4.1.3試樣製作 74 4.2邊坡位移時滲流水電導度之變化 76 4.2.1滲流水位之變化 76 4.2.2位移分析 78 4.2.3電導度分析 79 4.2.4邊坡破壞與地下水電導度值關係 82 4.3邊坡位移時滲流水離子濃度之變化 84 4.4綜合討論 87 第五章 結論與建議 86 5.1土石流發生雨量警戒基準設定、修正及驗證 89 5.2地下水監測與土石流 88 參考文獻 94 附錄一、水質檢測方法 | |
dc.language.iso | zh-TW | |
dc.title | 利用降雨及地下水水質資料進行土石流發生之監測及分析 | zh_TW |
dc.title | Using Rainfall and Groundwater Quality Data to Monitor and Analyze the Occurrence of Debris Flows | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林炳森,李達源,陳榮河,鄭克聲 | |
dc.subject.keyword | 土石流,臨界降雨基準,有效雨量路徑,崩塌,電導度,硫酸根離子, | zh_TW |
dc.subject.keyword | debris flow,critical rainfall threshold,effective rainfall path,mass movement,electrical conductivity,sulfate ion, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-06-24 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。