Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41218
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韋文誠(Wen-Cheng Wei)
dc.contributor.authorSung-En Linen
dc.contributor.author林頌恩zh_TW
dc.date.accessioned2021-06-14T17:24:35Z-
dc.date.available2008-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation[1] T. W. Chen, , Fabrication and Characterization of Silica Photonic Bandgap Crystal, Master Thesis, M.S.E., National Taiwan University, Taiwan (2002).
[2] J. M. Sung, S. E. Lin, and W. C. J. Wei, “Synthesis and Reaction Kinetics for Monodispersive Y2O3:Tb3+ Spherical Phosphor Particles,” J. Eurpo. Ceram. Soc., 27, 2605-2611 (2007).
[3] H. S. Kang, Y. C. Kang, H. D. Park, and Y. G. Shul, “Y2SiO5:Tb Phosphor Particles Prepared From Colloidal and Aqueous Solution by Spray Pyrolysis,” Appl. Phys. A, 80, 347-351 (2005).
[4] A. H. Kitai, “Oxide Phosphor and Dielectric Thin Films for Electro- luminescent Devices”, Thin Solid Films, 445, 367-376 (2003).
[5] S. E. Lin and W. C. J. Wei, “Synthesis and Growth Kinetics of Monodispersive Indium Hydrate Particles,” J. Am. Cera. Soc., 89 [2] 527-533 (2006).
[6] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[7] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattice,” Phys. Rev. Lett. 58, 2486 (1987).
[8] J. D. Joannopoulos, Pierre R. Villeneuve, and S. Fan, “Photonic Crystals: Putting a New Twist on Light,” Nature, 386 [13] 143-149 (1997).
[9] B. Temelkuran, S. D. Hart, G. Benolt, J. D. Joannopoulos, and Y. Fink, “Wavelength-Scalable Hollow Optical Fibers with Large Photonic Bandgaps for CO2 Laser Transmission,” Nature, 420 650 (2002).
[10] E. Yablonovitch, T. Gmitter, and K. Leung, “Photonic Band Structure: the Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett., 67, 2295-2298 (1991).
[11] S. G., Johnson and J. D. Joannopoulos, “Designing Synthetic Optical Media: Photonic Crystals,”Acta Mater., 51, 5823-5835 (2003).
[12] R. Tao and J. M. Sun, “Three-Dimensional Structure of Induced Electrorheological Solid,” Appl. Phys. Lett., 67 [3] 398-401 (1991).
[13] R. Tao and D. Xiao, “Three-Dimensional Dielectric Photonic Crystals of Body- Centered-Tetragonal Lattice Structure,” Appl. Phys. Lett., 80 [25] 4702- 4704 (2002).
[14] F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D Metallic Photonic Crystal by X-ray Lithography,” Microelectron. Eng., 67-68, 479-486 (2003).
[15] A. Chelnokov, K. Wabg, S. Rowson, P. Garoche, and J. M. Lourtioz, “Near-Infrared Yablonovite-Like Photonic Crystals by Focused-Ion-Beam Etching of Macroporous Silicon,” Appl. Phys. Lett., 77, 2943 (2000).
[16] S. M. Yang, H. Miguez, and G. A. Ozin, “Opal Circuits of Light-Planarized Microphotonic Crystal Chips,” Adv. Funct. Mater., 12 [6+7] June 425-431 (2002).
[17] A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-Directed Colloidal Crystallization,” Nature, 385 [23] 312-324 (1997).
[18] K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, and D. A. Weitz, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett., 85 [8] 1770-1773 (2000).
[19] F. G. Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, “Nanorobotic Manipulation of Microspheres for On-Chip Diamond Architectures,” Adv. Mater., 14 [16] 1144-1147 (2002).
[20] Y. Masuda, K. Tomimoto, and K. Koumoto, “Two-Dimensional Self- Assembly Spherical Particles Using a Liquid Mold and Its Drying Process,” Langmuir, 19 [13] 5179-5183 (2003).
[21] D. Nagao, T. Satoh, and M. Konno, “A Generalized Model for Describing Particle Formation in the Synthesis of Monodisperse Oxide Particles Based on the Hydrolysis and Condensation of Tetraethyl Orthosilicate,” J. Colloid Interface Sci., 232, 102-110 (2000).
[22] G. A. Ozin and Yang, S. M., “The Race for the Photonic Chip: Colloidal Crystal Assembly in Silicon Wafers,” Adv. Funct. Mater., 11 [2] April 95-104 (2001).
[23] Z. Y. Li and Z. Q. Zhang, “Fragility of Photonic Band Gaps in Inverse-Opal Photonic Crystals,” Phys. Rev. B, 62, 1516-1519 (2000).
[24] F. Garcia-Santamaria, C. Lopez, and F. Meseguer, “Opal-Like Photonic Crystal with Diamond Lattice,” Appl. Phys. Lett., 79 [15] 2309-2311 (2001).
[25] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-Chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature, 414 [15] 289-293 (2001).
[26] G. C. Ansell and E. Dickinson, “Sediment Formation by Brownian Dynamics Simulation: Effect of Colloidal and Hydrodynamic Interactions on the Sediment Structure,” J. Chem. Phys., 85 [7] 4079-4086 (1986).
[28] C. W. Hong, “New Concept for Simulating Particle Packing in Colloidal Forming Processes,” J. Am. Ceram. Soc., 80 [10] 2517-2524 (1997).
[29] C. W. Hong, “From Long-Range Interaction to Solid-Body Contact Between Colloidal Surfaces During Forming,” J. Europ. Ceram. Soc., 18, 2159-2167 (1998).
[30] J. F. Li, C. S. Chen, B. Y. Yu, and W. C. J. Wei, “Simulation of Colloidal Particle Packing for Photonic Bandgap Crystal,” J. Am. Ceram. Soc., 89 [4] 1257- 1265 (2006).
[31] H. Löwen, “Colloidal Soft Matter under External Control,” J. Phys: Condens. Matter, 13, R415-432 (2001).
[32] R. G. Horn, “Surface Forces and Their Action in Ceramic Materials,” J. Am. Ceram. Soc., 73 [5] 1117-1135 (1990).
[33] P. C. Heimenz, Principles of Colloid and Surface Chemistry, (Third edition), Marcel Dekker, New York (1997).
[34] B. Derjaguin and L. Landau, “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes,” Actz. Physicochim., 14, 663-672 (1941).
[35] E. J. W. Verwey, J. Th, and G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).
[36] R. J. Hunter, Foundations of Colloid Science, 2nd edition, Oxford University Press (2001).
[37] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Chapter 3 (1989).
[38] D. L. Ermak and H. Buckholz, “Numerical Integration of the Langevin Equation: Monte Carlo Simulation,“ J. Comput. Phys., 35, 169-182 (1979).
[39] H. Markus, Brownian Dynamics Simulation of Stable and of Coagulating Colloids in Aqueous Suspension, Ph.D dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland (1999).
[40] M. Trau, D. A. Saville, and I. A. Aksay, “Field-Induced Layering of Colloidal Crystals,” Science, 272 [5262] 706-709 (1996).
[41] R. J. Hunter, Zeta Potential in Colloidal, Academic Press, New York (1981).
[42] J. F. Li, Study of Heterogeneous Aggregation, Packing, and Self-Assembly of Colloids using Discrete Elements, Ph.D. dissertation, Department of Civil Engineering, National Taiwan University, Taiwan.
[43] E. Matijević, “Monodispersed Colloids: Art and Science,” Langmuir, 2, 12-20 (1986).
[44] E. Matijević, “Preparation and Properties of Uniform Size Colloids,” Chem. Mater., 5, 412-426 (1993).
[45] W. Stöber, A. Fink, and E. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” J. Colloid Interface Sci., 26, 62-69 (1968).
[46] P. A. Buining, L. M. Liz-Marzan, and A. P. Philipse, “A Simple Preparation of Small, Smooth Silica Spheres in a Seed Alcosol for Stöber Synthesis,” J. Colloid Interface Sci., 179, 318-321 (1996).
[47] R. Vacassy, J. Flatt, H. Hofmann, K. S. Choi, and R. K. Singh, “Synthesis of Microporous Silica Spheres,” J. Colloid Interface Sci., 232, 76-80 (2000).
[48] V. K. La Mer, “Nucleation in Phase Transition,” Ind. Eng. Chem., 44 [6] 1270-1277 (1952).
[49] K. D. Kim and H. T. Kim, “New Procecss for the Preparation of Monodispersed, Spherical Silica Particles,” J. Am. Ceram. Soc., 85 [5] 1107-1113 (2002).
[50] N. Enomoto, A. Kumagai, and J. Hojo, “Aging Effect of Starting Solutions for Spherical Silica Synthesis,” J. Ceram. Soc. Jap., 113 [5] 340-343 (2005).
[51] E. Matijević, “Uniform Inorganic Colloid Dispersions. Achievements and Challenges,” Langmuir, 10, 8-16 (1994).
[52] X. Jing, T. Ireland, C. Gibbons, D. J. Barber, J. Silver, A. Vecht, G. Fern, and P. Trowga, D. C. Morton, “Control of Y2O3:Eu Spherical Phosphor Size, Assembly Properties, and Performance for FED and HDTV,” J. Electrochemical Society., 146 [12] 4654-4658 (1999).
[53] M. I. Martinez-Rubio, T. G. Ireland, J. Silver, G. Fern, C. Gibbons, and A. Vecht, “Effect of EDTA on Controlling Nucleation and Morphology in the Synthesis of Ultrafine Y2O3:Eu Phosphor,” Electrochemical Solid-State Letters, 3 [9] 446-449 (2000).
[54] M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A New Application for Microgels: Novel Method for the Synthesis of Spherical Particles of the Y2O3:Eu Phosphor Using a Copolymer Microgel of NIPAM and Acrylic Acid,” Langmuir, 17, 7145-7149 (2001).
[55] J. Silver, T. G. Ireland, and R. Withnall, “Fine Control of the Dopant Level in Cubic Y2O3:Eu3+ Phosphors,” J. Electrochemical Society, 151 [3] H66-H68 (2004).
[56] J. M. Sung, Fabrication and Characterization of Photonic Bandgap Crystal with Designed Pattern by Laser Diffraction Method, Master Thesis, M.S.E., National Taiwan University, Taiwan (2006).
[57] C. Lin, H. Wang, D. Kong, M. Yu, X. Liu, Z. Wang, and J. Lin, “Silica Supported submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ Spherical Particles with a Core-Shell Structure: Sol-Gel Synthesis and Characterization.” Eur. J. Inorg. Chem, 3667-3675 (2006).
[58] T. J. Aitasalo, Hölsä, M. Lastusaari, J. Niittykoski, and F. Pellé, “Delayed Luminescence of Ce3+ doped X1 form of Y2SiO5,” Optical Materials, 27, 1511-1515 (2005).
[59] J. A. Gonzalez- Ortega, E. M. Tejeda, N. Perea, G. A. Hirata, E. J. Bosze, and J. McKittrick, “White Light Emission From Rare Earth Activated Yttrium Silicate Nanocrystalline Powders and Thin Films,” Optical Materials, 27, 1221-1227 (2005).
[60] Y. Zhao, Z. Zhang, Z. Wu, and H. Dang, “Synthesis and Characterization of Single-Crystalline In2O3 Nanocrystals via Solution Dispersion,” Langmuir, 20, 27-29 (2004).
[61] C. Liang, G. Meng, Y. Lei, F. Phillipp, and Z. Lide, “Catalytic Growth of Semiconducting In2O3 Nanofiber”, Adv. Mater., 13 [17] September 3 1330-1333 (2000).
[62] W. S. Seo, H. H. Jo, and K. Lee, and J. T. Park, “Preparation and Optical Properties of Highly Crystalline, Colloidal and Size-Controlled Indium Oxide Nanoparticles”, Adv. Mater., 15 [10] May 16 (2003).
[63] D. Yu, S. H. Yu, S. Zhang, J. Zuo, D. Wang, and Y. Qian, “Metastable Hexagonal In2O3 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure,” Adv. Funct. Mater., 13 [6] June 497-501 (2003).
[64] X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, “Fabrication and Photoluminescence Characteristics of Single Crystalline In2O3 Nanowires,” Chem. Phys. Lett., 373, 28-32 (2003).
[65] L. Hong and E. Ruckenstein, “Conductivity Coating Films Based on Low Density In2O3 Powders and Polymer Latexes,” J. Appl. Polymer Sci., 61, 901-909 (1996).
[66] M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, and S. K. Min, “Characterization of the Oxidized Indium Thin Films with Thermal Oxidation”, Thin Solid Films, 279, 1-3 (1996).
[67] R. B. H. Tahar, T. Ban, Y. Ohya, and T. Takahashi, “Optical, Structural, and Electrical Properties of Indium Oxide Thin Films Prepared by the Sol-Gel Method,” J. Appl. Phys., 82 [2] July 865-869 (1997).
[68] J. H. Lee and B. O. Park, “Transparent Conducting In2O3 Thin Films Prepared by Ultrasonic Spray Pyrolysis,” Surface and Coatings Technology, 184, 102- 107 (2004).
[69] K. Soulantica, S. Erades, F. Senocq, A. Maisonnat, and B. Chaudret, “Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and their Application for Gas Sensing,” Adv. Funct. Mater., 13 [7] July 553-557 (2003).
[70] A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, and P. Siciliano, “Polycrystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol-Gel Method and their Gas-Sensing Properties,” Chem. Mater., 15, 4377-4384 (2003).
[71] D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, “Doping Dependent NH3 Sensing of Indium Oxide Nanowires,” Appl. Phys. Lett., 83 [9] September 1845-1847 (2003).
[72] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, and J. Han, “In2O3 Nanowires as Chemical Sensors”, Appl. Phys. Lett., 82 [10] March 1613-1615 (2003).
[73] Z. Zhan, D. Jiang, and J. Xu, “Investigation of a New In2O3-based Selective H2 Gas Sensor with Low Power Consumption,” Mater. Chem. Phys., 90, 250-254 (2005).
[74] T. Ishida, K. Kuwabara, and K. Koumoto, J. Ceram. Soc. Jpn., 106, 381 (1998).
[75] K. Yura, K. C. Fredrikson, and E. Matijevic, “Preparation and Properties of Uniform Colloidal Indium Compounds of Different Morphologies,” Colloids and Surfaces, 50, 281-293 (1990).
[75] S. Avivi, Y. Mastai, and A. Gedanken, “Sonohydrolysis of In3+ Ions: Formation of Needlelike Particles of Indium Hydroxide,” Chem. Mater., 12, 1229-1233 (2000).
[76] L. A. Perez-Maqueda, L. Wang, and E. Matijević, “Nanosize Indium Hydroxide by Peptization of Colloidal Precipitates,” Langmuir, 14, 4397-4401 (1998).
[77] H. Zhu, K. Yao, Y. Wo, and N. Wang, “Hydrothermal Synthesis of Single Crystalline In(OH)3 Nanorods and their Characterization”, Semicond. Sci. Tech., 19, 1020-1023 (2004).
[78] S. E. Lin and W. C. J. Wei, “Synthesis and Characterization of Monodispersive In2O3 Particles“, Key Eng. Mater., 280-283, 499-504 (2005).
[79] S. E. Lin, Synthesis and Characterization of Monodispersive Indium oxide-In2O3 and Strontium Indate-SrIn2O4, Master Thesis, M.S.E., National Taiwan University, Taiwan (2004).
[80] S. Hamada, Y. Kudo, and T. Kobayashi, “Precipitation of Uniform Indium Hydroxide Particles from Indium 2-Aminobutyrato Complex Solutions,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 79, 227-232 (1993).
[81] X. H. Zhang, S. Y. Xie, Z. M. Ni, X. Zhang, Z. Y. Jiang, X. Xie, R. B. Huang, and L. S. Zheng, “Controllable Growth of In(OH)3 Nanorods with Rod-In-Rod Structure in a Surfactant Solution,” Inorganic Chem. Communications, 6, 1445-1447 (2003).
[82] B. Djuričić, S. Pickering, D. McGarry, P. Glaude, P. Tambuyser, and K. Schuster, “The Properties of Zirconia Powders Produced by Homogeneous Precipitation,” Ceram. International, 21, 195-206 (1995).
[83] R. F. de Farias and C. Airoldi, “Spherical Particles of Zirconia-Titania of Hexagonal Structure From a Neutral Amine Route,” J. Colloid Interface Sci., 220, 255-259 (1999).
[84] http://psroc.phys.ntu.edu.tw/bimonth/v26/599. pdf
[85] E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-Assembled 3D Photonic Crystals from ZnO Colloidal Spheres,” Mater. Chem. Phys., 80, 257-263 (2003).
[86] J. Xie, H. Deng, Z. Q. Xu, Y. Li, and J. Huang, “Growth of ZnO Photonic Crystals by Self-Assembly,” J. Crys. Growth, 292, 227-229 (2006).
[87] http://www.azom.com/details.asp?ArticleID=1179
[88] J. H. Jean and T. A. Ring, “Nucleation and Growth of Monosized TiO2 Powders from Alcohol Solution,” Langmuir, 2, 251-255 (1986).
[89] M. Keshmiri and T. Troczynski, “Synthesis of Narrow Size Distribution Sub-Micron TiO2 Spheres,” J. Non-Crystalline Solids, 311 89-92 (2002).
[90] X. Jiang, T. Herricks, and Y. Xia, “Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization,” Adv. Mater., 15 [14] 1205-1209 (2003).
[91] A. Stein, “Sphere Templating Methods for Periodic Porous Solids,” Microporous and Mesoporous Mater., 44-45, 227-239 (2001).
[91] H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres”, Langmuir, 13, 6009-6011 (1997).
[92] D. J. Norris and Y. A. Vlasov, “Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals,” Adv. Mater., 13 [6] March 16, 371-376 (2001).
[93] http://www.com.dtu.dk/English/Education/
[94] http://www.sandia.gov/mstc/technologies/
[95] http://photonics.tfp.uni-karlsruhe.de/research.html
[96] J. S. Reed, Principle of Ceramics Processing, 2nd edition, John Wiley and Sons., (1995).
[97] V. Mizeikis, S. Juodkazis, A. Marcinkevičius, S. Matsuo, and H. Misawa, “Tailloring and Characterization of Photonic Crystals,” J. Photochem. Phtotbio. C: Photochem. Rev., 2, 35-69 (2001).
[98] C. López, “Materials Aspects of Photonic Crystals,” Adv. Mater., 15 [20] October 16, 1679-1704 (2004).
[99] T. Kawakatsu, M. Nakajima, S. I. Nakao, and S. Kimura, “Three-Dimensional Simulation of Random Packing and Pore Blocking Phenomena During Microfiltration,” Desalination, 101, 203-209 (1995).
[100] F. G. Santamaria, C. Lopez, and F. Meseguer, “Opal-like Photonic Crystal with Diamond Lattice,” Appl. Phys. Lett., 79 [15] 2309-2311 (2001).
[101] T. W. Chen and W. C. J. Wei, “Synthesis and Characterization of Mono-Sized SiO2,” Ceramic Particles in Meso-Structure,” Ceram. Nanomater. Nanotech. Ceram. Trans., 137, 23-31 (2002).
[102] http://www. daviddarling.info/encyclopedia/C/carboxyl.html
[103] M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Buterworth- Heinemann Ltd., Oxford, UK (1995).
[104] D. He, N. N. Ekere, and L. Cai, ”New Statistic Techniques for Structure Evaluation of Particle Packing,” Mater. Sci. Engine., A298, 209-215 (2001).
[105] 楊適存, The Preparation and Photoluminescence of Y2O3 Phosphors Doped Eu3+ and Sm3+ Ions, Master Thesis, M.S.E., National Taipei Technology University, Taiwan (2002).
[106] H. Taguchi, S. I. Matsu-Ura, and M. Nagao, “Synthesis of LaMnO3+
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41218-
dc.description.abstract近年來用於新型顯示器之螢光粉體除了顏色純度、發光效率、熱及化學穩定度外,因為解析度要求的關係,粉體的尺寸(如奈米精控等級)、外形(如球形)以及粒徑分佈(窄分佈)也相形重要。在本研究中,我們亦嘗試製備出三種接近單一尺寸之球形次微米氧化物粉體,包括氧化銦(In2O3),氧化釔(Y2O3),及以表面鍍有氧化釔或矽酸釔之氧化矽(SiO2),並經由摻雜稀土族(rare earth)元素以及適當之熱處理,使之成為螢光體。其中球形之氧化銦於酸鹼析出反應的同時,需藉由添加特定之羧酸(carboxylic acid),例如檸檬酸(citric acid)才可得到,本研究深入研究合成成因,探討其反應動力學,以粉體之微結構為佐證。在球形氧化釔的例子中,於反應的同時,藉由添加銪(Eu)或鋱(Tb)產生共同析出,再經過適當的熱處理,可得到接近單一粒徑之次微米球形之螢光粉體,其粒徑分佈(dispersity)最佳可達8%。而具有紅、綠或是藍光螢光性質之光子晶體則是利用自組裝法所堆積形成之氧化矽光子晶體,在其表面上鍍膜及熱處理,形成殼核結構(core-shell),按熱處理溫度的不同,產生連續且厚度不到10奈米之氧化釔或矽酸釔(Y2SiO5)殼。光子晶體本身的特性加強了螢光體的發光效率亦於本研究中討論之。除了球形顆粒的合成外,本研究也利用基本幾何分析以及電腦模擬的方式,得到膠體顆粒形成完美堆積之途徑。若利用特殊設計之矽晶底版,有機會得到完美無缺陷之體心正方體(Body-centered tetragonal, BCT)光子晶體。本研究經由調整前人所建立之電腦模擬工具,完成數種特定之膠體顆粒積堆模擬。zh_TW
dc.description.abstractFor the application of phosphors in the field of modern displays, excellent color purity, high luminescent efficiency and good temperature and chemical stability are necessary. However, recently, the size, shape and size distribution of the phosphors are getting more attention because of the necessary of high resolution and performance in fashion displays. In this study, three spherical phosphors In2O3, Y2O3, and SiO2 coated by Y2O3 or Y2SiO5 spheres in submicron scale are synthesized. The results showed that In2O3 spheres in submicron scale was obtained by acid-base precipitation method with the addition of specific di- or tri-carboxylic acids, such as citric acid. The reaction kinetics and microstructure of the In2O3 spheres have been studied and discussed. For the case of Y2O3 spheres, by doping with rear earth element (RE, such as Eu3+ or Tb3+), uniform and submicron spherical Y2O3 phosphors could be obtained. Additionally, SiO2-based photonic bandgap (PBG) crystal with photo-luminescence (PL) property was obtained as coating an Y2O3 phosphor layer on SiO2 spheres. PBG crystals with red, green, or blue emitting properties were prepared by coating Y2O3:RE on the surface of the SiO2 spheres. Depending on calcination temperature, a core-shell structure consisted of a continuous Y2O3 or Y2SiO5:Re3+ shell layer of 10 nm or less thickness was prepared. The enhancement of PL properties by PBG crystal due to band-edge effect was discussed. In addition to synthesis procedure, computer simulation was used to study the packing behavior of colloids in water system. With the aid of geometric analysis and computer simulation, body-centered tetragonal (BCT) structure was proven to be a possible structure for domain-free PBG crystal. This study modify previous computer program and simulate several colloidal packing cases.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:24:35Z (GMT). No. of bitstreams: 1
ntu-97-D93527004-1.pdf: 26119149 bytes, checksum: b2b01ccef336b97c5686b3731ee41fb8 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 I
ABSTRACT II
CONTENT III
LIST OF FIGURES VI
LIST OF TABLES XV
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
CHAPTER 2 LITERATURE REVIEW 7
2.1 Photonic Bandgap Crystal (PBG Crystal) 7
2.1.1 Band Structure 8
2.1.2 Bandgap Diagram for BCT Structure 9
2.1.3 Fabrication Methods 10
2.2 DEM for Colloidal Simulation 12
2.2.1 Particle Forces 13
2.2.2 Brownian Effect 14
2.2.3 Effect of External Force on Colloidal Packing Behavior 16
2.2.4 Development of DEM Simulation for Colloidal Packing 18
2.3 Synthesis of Spherical Particles or Phosphors for PBG Crystal 25
2.3.1 Synthesis of Mono-Dispersed SiO2 Spheres 25
2.3.2 Synthesis of Mono-Dispersed Y2O3 Spheres 27
2.3.3 Synthesis of Y2SiO5:Re3+ Phosphors 28
2.3.4 Synthesis of Mono-Dispersed In2O3 29
2.3.5 Synthesis of SiO2-based Core-shell Phosphors 31
2.3.6 Synthesis of Other Spheres 32
CHAPTER 3 GEOMETRIC ANALYSIS OF ASSEMBLED STRUCTURES 55
3.1 Introduction 55
3.2 Square Array Template 57
3.3 Hexagonal Array Template 59
CHAPTER 4 EXPERIMENTAL PROCEDURE 68
4.1 Synthesis of Mono-dispersed Spherical Particles 68
4.1.1 Synthesis of SiO2 Sphere 68
4.1.2 Synthesis of Y2O3 Phosphor Particles 68
4.1.3 Synthesis of In2O3 Mono-sized Spherical Particles 73
4.1.4 Synthesis of SiO2@Y2O3 / Y2SiO5:Re Phosphors 83
4.2 Simulation of Particle Assembly 86
4.2.1 Simulation Parameters 89
4.2.2 Simulation Process 89
4.2.3 Free Packing without Template 93
4.2.4 Packing with Square Array Template 93
4.2.5 Packing with Hexagonal Array Template 94
4.2.6 Assembly Simulation with External Force by Electromagnetic Field 97
4.3 Characterization of Synthesized Samples 99
CHAPTER 5 RESULTS AND DISCUSSIONS 101
5.1 Synthesis of SiO2 Spheres 101
5.2 Synthesis of Y2O3 Spheres 103
5.2.1 Synthesis of Y2O3:Eu Spheres 104
5.2.2 Synthesis of Y2O3:Tb Particles 108
5.2.3 Synthesis of Y2O3:Re2 Particles 121
5.2.4 Sectional Summary 122
5.3 Synthesis of In2O3 Spheres 126
5.3.1 Effect of Citric Acid 126
5.3.2 Reaction Kinetics and Mechanism 151
5.3.3 Effect of CA on the Nucleation and Growth 160
5.3.4 Effect of Tartaric Acid and Malic Acid 163
5.3.5 Effect of Other Carboxylic Acids 169
5.3.6 Sectional Summary 176
5.4 Synthesis of SiO2@Y2O3/Y2SiO5:Re Phosphors with PBG Structure 177
5.4.1 SiO2@Y:Eu System 177
5.4.2 SiO2@Y2O3/Y2SiO5:Tb System 184
5.4.3 SiO2@Y:Ce System 185
5.4.4 Sectional Summary 203
5.5 Simulation of Particle Packing 204
5.5.1 Free Packing without Template 204
5.5.2 Packing on Square Array Template 207
5.5.3 Packing on Hexagonal Array Template 216
5.5.4 Discussion of BCT Structure 223
5.5.5 Assembly Simulation in 2D with External Electric-Field 232
CHAPTER 6 CONCLUSIONS 236
REFERENCE 238
dc.language.isoen
dc.subject殼核結構zh_TW
dc.subject矽酸釔zh_TW
dc.subject氧化釔zh_TW
dc.subject氧化銦zh_TW
dc.subject螢光粉體zh_TW
dc.subject電腦模擬zh_TW
dc.subject體心正方結構zh_TW
dc.subjectPhosphorsen
dc.subjectIn2O3en
dc.subjectY2O3en
dc.subjectY2SiO5en
dc.subjectcore-shell structureen
dc.subjectcomputer simulationen
dc.subjectBCT structureen
dc.title單一粒徑次微米球形氧化物螢光粉體之製備與分析zh_TW
dc.titleSynthesis and Properties Investigation of Mono-dispersed Submicron Spherical Oxide Phosphor Particlesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee顏富士,呂宗昕,劉如熹,陳俊杉
dc.subject.keyword螢光粉體,氧化銦,氧化釔,矽酸釔,殼核結構,電腦模擬,體心正方結構,zh_TW
dc.subject.keywordPhosphors,In2O3,Y2O3,Y2SiO5,core-shell structure,computer simulation,BCT structure,en
dc.relation.page275
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
25.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved