Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41213Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張文章 | |
| dc.contributor.author | Ya-Ting Yang | en |
| dc.contributor.author | 楊雅婷 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:24:16Z | - |
| dc.date.available | 2011-07-30 | |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | 1 Farley, B. M. and Ryder, S. P. (2008) Regulation of maternal mRNAs in early development. Critical reviews in biochemistry and molecular biology. 43, 135-162
2 Latham, K. E. and Schultz, R. M. (2001) Embryonic genome activation. Front Biosci. 6, D748-759 3 Potireddy, S., Vassena, R., Patel, B. G. and Latham, K. E. (2006) Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Developmental biology. 298, 155-166 4 Jurisicova, A., Latham, K. E., Casper, R. F., Casper, R. F. and Varmuza, S. L. (1998) Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Molecular reproduction and development. 51, 243-253 5 Pelegri, F. (2003) Maternal factors in zebrafish development. Dev Dyn. 228, 535-554 6 Stitzel, M. L. and Seydoux, G. (2007) Regulation of the oocyte-to-zygote transition. Science (New York, N.Y. 316, 407-408 7 Schier, A. F. (2007) The maternal-zygotic transition: death and birth of RNAs. Science (New York, N.Y. 316, 406-407 8 Tadros, W., Westwood, J. T. and Lipshitz, H. D. (2007) The mother-to-child transition. Developmental cell. 12, 847-849 9 Padmanabhan, K. and Richter, J. D. (2006) Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes & development. 20, 199-209 10 Vasudevan, S., Seli, E. and Steitz, J. A. (2006) Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes & development. 20, 138-146 11 Meijer, H. A., Radford, H. E., Wilson, L. S., Lissenden, S. and de Moor, C. H. (2007) Translational control of maskin mRNA by its 3' untranslated region. Biology of the cell / under the auspices of the European Cell Biology Organization. 99, 239-250 12 Richter, J. D. (2007) CPEB: a life in translation. Trends in biochemical sciences. 32, 279-285 13 Pique, M., Lopez, J. M., Foissac, S., Guigo, R. and Mendez, R. (2008) A combinatorial code for CPE-mediated translational control. Cell. 132, 434-448 14 Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D. and Knowles, B. B. (2006) Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes & development. 20, 2713-2727 15 Detwiler, M. R., Reuben, M., Li, X., Rogers, E. and Lin, R. (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Developmental cell. 1, 187-199 16 Mendez, R. and Richter, J. D. (2001) Translational control by CPEB: a means to the end. Nature reviews. 2, 521-529 17 Miller, M. A., Nguyen, V. Q., Lee, M. H., Kosinski, M., Schedl, T., Caprioli, R. M. and Greenstein, D. (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science (New York, N.Y. 291, 2144-2147 18 Malcuit, C., Kurokawa, M. and Fissore, R. A. (2006) Calcium oscillations and mammalian egg activation. Journal of cellular physiology. 206, 565-573 19 Bowerman, B. and Kurz, T. (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development (Cambridge, England). 133, 773-784 20 Mendez, R., Barnard, D. and Richter, J. D. (2002) Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. The EMBO journal. 21, 1833-1844 21 Foe, V. E. and Alberts, B. M. (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. Journal of cell science. 61, 31-70 22 Edgar, B. A. and Schubiger, G. (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell. 44, 871-877 23 Heikinheimo, O. and Gibbons, W. E. (1998) The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Molecular human reproduction. 4, 745-756 24 Graindorge, A., Thuret, R., Pollet, N., Osborne, H. B. and Audic, Y. (2006) Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray. Nucleic acids research. 34, 986-995 25 Alizadeh, Z., Kageyama, S. and Aoki, F. (2005) Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Molecular reproduction and development. 72, 281-290 26 Bradbury, J. (2004) Small fish, big science. PLoS biology. 2, E148 27 Knoll-Gellida, A., Andre, M., Gattegno, T., Forgue, J., Admon, A. and Babin, P. J. (2006) Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC genomics. 7, 46 28 Lucitt, M. B., Price, T. S., Pizarro, A., Wu, W., Yocum, A. K., Seiler, C., Pack, M. A., Blair, I. A., Fitzgerald, G. A. and Grosser, T. (2008) Analysis of the zebrafish proteome during embryonic development. Mol Cell Proteomics 29 Kimmel, C. B. (1989) Genetics and early development of zebrafish. Trends Genet. 5, 283-288 30 Brownlie, A., Donovan, A., Pratt, S. J., Paw, B. H., Oates, A. C., Brugnara, C., Witkowska, H. E., Sassa, S. and Zon, L. I. (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nature genetics. 20, 244-250 31 Grosser, T., Yusuff, S., Cheskis, E., Pack, M. A. and FitzGerald, G. A. (2002) Developmental expression of functional cyclooxygenases in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 99, 8418-8423 32 Love, D. R., Pichler, F. B., Dodd, A., Copp, B. R. and Greenwood, D. R. (2004) Technology for high-throughput screens: the present and future using zebrafish. Current opinion in biotechnology. 15, 564-571 33 Pini, B., Grosser, T., Lawson, J. A., Price, T. S., Pack, M. A. and FitzGerald, G. A. (2005) Prostaglandin E synthases in zebrafish. Arteriosclerosis, thrombosis, and vascular biology. 25, 315-320 34 Ton, C., Stamatiou, D., Dzau, V. J. and Liew, C. C. (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochemical and biophysical research communications. 296, 1134-1142 35 Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z. and Peng, J. (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome research. 13, 455-466 36 Linney, E., Dobbs-McAuliffe, B., Sajadi, H. and Malek, R. L. (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol. 138, 351-362 37 Mathavan, S., Lee, S. G., Mak, A., Miller, L. D., Murthy, K. R., Govindarajan, K. R., Tong, Y., Wu, Y. L., Lam, S. H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E. T. and Lufkin, T. (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS genetics. 1, 260-276 38 Jekosch, K. (2004) The zebrafish genome project: sequence analysis and annotation. Methods in cell biology. 77, 225-239 39 Link, V., Carvalho, L., Castanon, I., Stockinger, P., Shevchenko, A. and Heisenberg, C. P. (2006) Identification of regulators of germ layer morphogenesis using proteomics in zebrafish. Journal of cell science. 119, 2073-2083 40 Link, V., Shevchenko, A. and Heisenberg, C. P. (2006) Proteomics of early zebrafish embryos. BMC developmental biology. 6, 1 41 Tay, T. L., Lin, Q., Seow, T. K., Tan, K. H., Hew, C. L. and Gong, Z. (2006) Proteomic analysis of protein profiles during early development of the zebrafish, Danio rerio. Proteomics. 6, 3176-3188 42 Kanaya, S., Ujiie, Y., Hasegawa, K., Sato, T., Imada, H., Kinouchi, M., Kudo, Y., Ogata, T., Ohya, H., Kamada, H., Itamoto, K. and Katsura, K. (2000) Proteome analysis of Oncorhynchus species during embryogenesis. Electrophoresis. 21, 1907-1913 43 Pineiro, C., Vazquez, J., Marina, A. I., Barros-Velazquez, J. and Gallardo, J. M. (2001) Characterization and partial sequencing of species-specific sarcoplasmic polypeptides from commercial hake species by mass spectrometry following two-dimensional electrophoresis. Electrophoresis. 22, 1545-1552 44 Bradley, B. P., Shrader, E. A., Kimmel, D. G. and Meiller, J. C. (2002) Protein expression signatures: an application of proteomics. Marine environmental research. 54, 373-377 45 Hogstrand, C., Balesaria, S. and Glover, C. N. (2002) Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comparative biochemistry and physiology. 133, 523-535 46 Kjaersgard, I. V. and Jessen, F. (2003) Proteome analysis elucidating post-mortem changes in cod (Gadus morhua) muscle proteins. Journal of agricultural and food chemistry. 51, 3985-3991 47 Martin, S. A., Vilhelmsson, O., Medale, F., Watt, P., Kaushik, S. and Houlihan, D. F. (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochimica et biophysica acta. 1651, 17-29 48 Chen, T. Y., Shiau, C. Y., Wei, C. I. and Hwang, D. F. (2004) Preliminary study on puffer fish proteome-species identification of puffer fish by two-dimensional electrophoresis. Journal of agricultural and food chemistry. 52, 2236-2241 49 Martinez, I. and Jakobsen Friis, T. (2004) Application of proteome analysis to seafood authentication. Proteomics. 4, 347-354 50 Wang, N., Mackenzie, L., De Souza, A. G., Zhong, H., Goss, G. and Li, L. (2007) Proteome profile of cytosolic component of zebrafish liver generated by LC-ESI MS/MS combined with trypsin digestion and microwave-assisted acid hydrolysis. Journal of proteome research. 6, 263-272 51 Lemeer, S., Pinkse, M. W., Mohammed, S., van Breukelen, B., den Hertog, J., Slijper, M. and Heck, A. J. (2008) Online Automated in Vivo Zebrafish Phosphoproteomics: From Large-Scale Analysis Down to a Single Embryo. Journal of proteome research 52 Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L. and Humphery-Smith, I. (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 16, 1090-1094 53 Monte, W. (1995) The Zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). EufeneL Univ. of Oregon Press 54 Reisner, A. H., Nemes, P. and Bucholtz, C. (1975) The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Analytical biochemistry. 64, 509-516 55 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72, 248-254 56 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685 57 Syrovy, I. and Hodny, Z. (1991) Staining and quantification of proteins separated by polyacrylamide gel electrophoresis. Journal of chromatography. 569, 175-196 58 Rosenfeld, J., Capdevielle, J., Guillemot, J. C. and Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical biochemistry. 203, 173-179 59 Hellman, U., Wernstedt, C., Gonez, J. and Heldin, C. H. (1995) Improvement of an 'In-Gel' digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Analytical biochemistry. 224, 451-455 60 Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E. and Apweiler, R. (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics. 4, 1985-1988 61 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 25, 25-29 62 Solnica-Krezel, L. and Driever, W. (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development (Cambridge, England). 120, 2443-2455 63 Gundel, U., Benndorf, D., von Bergen, M., Altenburger, R. and Kuster, E. (2007) Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: a proteomic approach. Proteomics. 7, 4541-4554 64 Oehninger, S. (2003) Biochemical and functional characterization of the human zona pellucida. Reproductive biomedicine online. 7, 641-648 65 Mann, K. and Siedler, F. (2004) Ostrich (Struthio camelus) eggshell matrix contains two different C-type lectin-like proteins. Isolation, amino acid sequence, and posttranslational modifications. Biochimica et biophysica acta. 1696, 41-50 66 Dong, C. H., Yang, S. T., Yang, Z. A., Zhang, L. and Gui, J. F. (2004) A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Developmental biology. 265, 341-354 67 Schultz, R. M. (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human reproduction update. 8, 323-331 68 Minami, N., Suzuki, T. and Tsukamoto, S. (2007) Zygotic gene activation and maternal factors in mammals. The Journal of reproduction and development. 53, 707-715 69 Zhao, T., Singhal, S. S., Piper, J. T., Cheng, J., Pandya, U., Clark-Wronski, J., Awasthi, S. and Awasthi, Y. C. (1999) The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Archives of biochemistry and biophysics. 367, 216-224 70 Rhee, S. G., Chae, H. Z. and Kim, K. (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free radical biology & medicine. 38, 1543-1552 71 Agarwal, A., Gupta, S. and Sharma, R. K. (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 3, 28 72 Maga, G. and Hubscher, U. (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of cell science. 116, 3051-3060 73 Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F. and O'Rand, M. G. (2000) Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. The Journal of biological chemistry. 275, 30378-30386 74 Richardson, R. T., Alekseev, O. M., Grossman, G., Widgren, E. E., Thresher, R., Wagner, E. J., Sullivan, K. D., Marzluff, W. F. and O'Rand, M. G. (2006) Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. The Journal of biological chemistry. 281, 21526-21534 75 DeRenzo, C. and Seydoux, G. (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends in cell biology. 14, 420-426 76 Zhang, Y., Yang, Z. and Wu, J. (2007) Signaling pathways and preimplantation development of mammalian embryos. The FEBS journal. 274, 4349-4359 77 Carroll, J. (2001) The initiation and regulation of Ca2+ signalling at fertilization in mammals. Seminars in cell & developmental biology. 12, 37-43 78 Ramadan, K., Bruderer, R., Spiga, F. M., Popp, O., Baur, T., Gotta, M. and Meyer, H. H. (2007) Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature. 450, 1258-1262 79 Meyer, H. and Popp, O. (2008) Role(s) of Cdc48/p97 in mitosis. Biochemical Society transactions. 36, 126-130 80 Donaldson, M. M., Tavares, A. A., Hagan, I. M., Nigg, E. A. and Glover, D. M. (2001) The mitotic roles of Polo-like kinase. Journal of cell science. 114, 2357-2358 81 McClung, J. K., Jupe, E. R., Liu, X. T. and Dell'Orco, R. T. (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Experimental gerontology. 30, 99-124 82 Rajalingam, K. and Rudel, T. (2005) Ras-Raf signaling needs prohibitin. Cell cycle (Georgetown, Tex. 4, 1503-1505 83 Rajalingam, K., Wunder, C., Brinkmann, V., Churin, Y., Hekman, M., Sievers, C., Rapp, U. R. and Rudel, T. (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nature cell biology. 7, 837-843 84 Penaloza, C., Lin, L., Lockshin, R. A. and Zakeri, Z. (2006) Cell death in development: shaping the embryo. Histochemistry and cell biology. 126, 149-158 85 Negron, J. F. and Lockshin, R. A. (2004) Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn. 231, 161-170 86 Eckert, D., Buhl, S., Weber, S., Jager, R. and Schorle, H. (2005) The AP-2 family of transcription factors. Genome biology. 6, 246 87 Li, Q. and Dashwood, R. H. (2004) Activator protein 2alpha associates with adenomatous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell factor transcriptional activity in colorectal cancer cells. The Journal of biological chemistry. 279, 45669-45675 88 Seng, S., Avraham, H. K., Jiang, S., Yang, S., Sekine, M., Kimelman, N., Li, H. and Avraham, S. (2007) The nuclear matrix protein, NRP/B, enhances Nrf2-mediated oxidative stress responses in breast cancer cells. Cancer research. 67, 8596-8604 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41213 | - |
| dc.description.abstract | 在母體生成卵子的過程中,母體會製造核醣核酸和蛋白質儲存在成熟的卵子內,這些核醣核酸和蛋白質就稱為母體因子。在脊椎動物的胚胎發育過程中,受精後的胚胎基因組(zygotic genome)並未能在一開始就立即的被活化且進行作用,因此母體因子主導胚胎最初期的發育過程。在不同的物種中,母體因子對於胚胎發育的影響也有所不同。較為低等的動物,譬如無脊椎動物(果蠅、線蟲),或是低等脊椎動物(蛙)等,對於母體因子的依賴時間較長,直到胚胎分裂至數千個以上的細胞時,受精後胚胎基因組才會被活化。以斑馬魚的胚胎發育過程來說,其胚胎基因組約在胚胎分裂至一千個細胞(約3小時)左右時開始表現。在此時期之後,母體因子對於胚胎的控制會逐漸地被胚胎基因體所表現的因子所取代,因此,此時期又稱為母體轉換合子的過渡時期 (MZT)。在受精之後,這些母體因子啟動胚胎發育的程式來完成胚胎的生長與分化。為了能夠了解這些母體因子在胚胎發育時期的變化,我們利用蛋白質體學的方式來分析斑馬魚早期胚胎發育,特別針對受精前後(卵母細胞轉換胚胎;(OET))以及母體轉換合子(MZT)的兩個過渡時期之中,蛋白質種類的變化。結合一維膠電泳(1D SDS-PAGE)與串聯式質譜法(LC-MS/MS)方法,我們鑑定出1109個蛋白質並依其生物功能分類。我們發現,在上述之胚胎時期,均能偵測到許多負責蛋白質轉譯與轉譯後修飾功能的蛋白質。結果顯示,母體核醣核酸在受精後,便立即被轉譯成蛋白質,以供後續發育過程使用。我們也發現在這兩個過渡時期中,一些調控細胞週期、胚胎發育以及胚胎基因體活化機制的蛋白質,其表現量會有增減的現象。將我們蛋白質體學的結果和之前在基因體學上研究的資料做比較,我們發現一些來自母體的蛋白質,其核醣核酸並沒有在這些時期被偵測到。也就是說,這些蛋白質和與其對應的核醣核酸在這些時期的表現量並不一致。這個現象更證實了蛋白質體學和基因體學資料互補的重要性。總而言之,我們提供了新的研究資料以便篩選出在脊椎動物早期胚胎發育的過程中,具有調控性的重要蛋白質,藉此進行下一步的標的定量及更加精確的系統性遺傳學分析。 | zh_TW |
| dc.description.abstract | All processes that occur before the activation of the zygotic genome at midblustula transition are driven by maternally inherited products, which have been synthesized and stored in mature oocytes during oogenesis. After fertilization, these maternal factors initiate developmental cascades that carry out the embryonic developmental program. To investigate the dynamic expressed pattern of these maternal factors, total proteomic analysis was performed during two transitions, oocyte-to-embryo transition (OET) and maternal-to-zygotic transition (MZT), in zebrafish early development. Using 1D SDS-PAGE and LC-MS/MS, we identified 1109 proteins and categorized them based on their biological functions. Many proteins involved in translation or post-translational modification were actively expressed during the selected five stages. This result implied that maternal mRNAs required for subsequent developmental processes were translated rapidly under well control after fertilization. Some of the proteins with differential expression during OET or MZT are proteins involved in cell-cycle regulation, development processes, and zygotic genome activation. The dynamic expressions of these proteins assisted embryos in progressing these two important transitions and subsequent developmental program. A comparison of our proteomic results with transcriptomic data obtained in other studies revealed that some of the proteins are maternally deposited since no transcripts can be detected in these selected stages. In other words, these protein levels did not correspond to their mRNAs amounts during these stages. This result confirmed idea that proteomics or transcriptomics approach alone cannot reveal the complete picture about any biological process; instead, both approaches are complementary and essential for the description of biological events at molecular levels. In this study, we provide a new resource for the selection of candidate proteins for targeted quantitation and refined systematic genetic network analysis in vertebrate development in biology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:24:16Z (GMT). No. of bitstreams: 1 ntu-97-R95B46002-1.pdf: 2124874 bytes, checksum: 8b17bca8b1e5d05183ac0d136ef88a46 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Acknowledgement………… i
Abstract(Chinese)………ii Abstract(English)………iv Contents……………….…vi List of abbreviations..vii 1.Introduction……….....1 1.1 Maternal factors…...1 1.2 Oocyte-to-embryo transition (OET)………3 1.3 Maternal-zygotic transition (MZT)………6 1.4 Zebrafish………….………………………….8 1.5 Zebrafish maternal factors……........10 1.6 Proteomics………………………………....13 1.7 Specific aims of the study…..…… ….14 2. Materials and Methods.…………………….15 2.1 Preparation of zebrafish embryonic samples…………15 2.2 Protein quantification………………………15 2.3 SDS-PAGE and in-gel trypsin digestion of proteins…16 2.4 LC-MS/MS…………………....……………...17 2.5 Analysis of LC-MS/MS data and protein identification.…19 2.6 Protein classification and annotation…………19 3. Results and discussions…………………..21 3.1 General protein expression profiles during early developmental stage……………………….…22 3.1.1 Vitellogenin (Vtg)……………..……..23 3.1.2 Zona pellucid and C-type lectin-like protein groups…24 3.1.3 Other proteins that stably expressed…..........26 3.2 Differential protein expression during OET…....…31 3.3 Differential protein expression during MZT…………35 3.4 Classification of expressed protein population……39 3.5 Conclusion…….……43 4. Tables…………………45 5. Figures………….……70 6. References……………91 7. Supplementary data…98 8. Appendix………….…148 | |
| dc.language.iso | en | |
| dc.subject | 卵母細胞轉換胚胎之過渡時期 | zh_TW |
| dc.subject | 母體因子 | zh_TW |
| dc.subject | 母體轉換合子之過渡時期 | zh_TW |
| dc.subject | 斑馬魚胚胎早期發育 | zh_TW |
| dc.subject | 串聯式質譜法 | zh_TW |
| dc.subject | oocyte-to-embryo transition (OET) | en |
| dc.subject | Maternal factor | en |
| dc.subject | Zebrafish early embryonic development | en |
| dc.subject | maternal-to-zygotic transition (MZT) | en |
| dc.subject | LC-MS/MS | en |
| dc.title | 斑馬魚早期胚胎之蛋白質體之研究 | zh_TW |
| dc.title | Proteomic Analysis of Protein Expression Profiles during Early Developmental Stages of Zebrafish, Danio rerio | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡振寧 | |
| dc.contributor.oralexamcommittee | 李明亭,阮雪芬 | |
| dc.subject.keyword | 斑馬魚胚胎早期發育,母體因子,卵母細胞轉換胚胎之過渡時期,母體轉換合子之過渡時期,串聯式質譜法, | zh_TW |
| dc.subject.keyword | Zebrafish early embryonic development,Maternal factor,oocyte-to-embryo transition (OET),maternal-to-zygotic transition (MZT),LC-MS/MS, | en |
| dc.relation.page | 155 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-26 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| Appears in Collections: | 生化科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 2.08 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
