Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41213
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張文章
dc.contributor.authorYa-Ting Yangen
dc.contributor.author楊雅婷zh_TW
dc.date.accessioned2021-06-14T17:24:16Z-
dc.date.available2011-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation1 Farley, B. M. and Ryder, S. P. (2008) Regulation of maternal mRNAs in early development. Critical reviews in biochemistry and molecular biology. 43, 135-162
2 Latham, K. E. and Schultz, R. M. (2001) Embryonic genome activation. Front Biosci. 6, D748-759
3 Potireddy, S., Vassena, R., Patel, B. G. and Latham, K. E. (2006) Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Developmental biology. 298, 155-166
4 Jurisicova, A., Latham, K. E., Casper, R. F., Casper, R. F. and Varmuza, S. L. (1998) Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Molecular reproduction and development. 51, 243-253
5 Pelegri, F. (2003) Maternal factors in zebrafish development. Dev Dyn. 228, 535-554
6 Stitzel, M. L. and Seydoux, G. (2007) Regulation of the oocyte-to-zygote transition. Science (New York, N.Y. 316, 407-408
7 Schier, A. F. (2007) The maternal-zygotic transition: death and birth of RNAs. Science (New York, N.Y. 316, 406-407
8 Tadros, W., Westwood, J. T. and Lipshitz, H. D. (2007) The mother-to-child transition. Developmental cell. 12, 847-849
9 Padmanabhan, K. and Richter, J. D. (2006) Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes & development. 20, 199-209
10 Vasudevan, S., Seli, E. and Steitz, J. A. (2006) Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes & development. 20, 138-146
11 Meijer, H. A., Radford, H. E., Wilson, L. S., Lissenden, S. and de Moor, C. H. (2007) Translational control of maskin mRNA by its 3' untranslated region. Biology of the cell / under the auspices of the European Cell Biology Organization. 99, 239-250
12 Richter, J. D. (2007) CPEB: a life in translation. Trends in biochemical sciences. 32, 279-285
13 Pique, M., Lopez, J. M., Foissac, S., Guigo, R. and Mendez, R. (2008) A combinatorial code for CPE-mediated translational control. Cell. 132, 434-448
14 Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D. and Knowles, B. B. (2006) Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes & development. 20, 2713-2727
15 Detwiler, M. R., Reuben, M., Li, X., Rogers, E. and Lin, R. (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Developmental cell. 1, 187-199
16 Mendez, R. and Richter, J. D. (2001) Translational control by CPEB: a means to the end. Nature reviews. 2, 521-529
17 Miller, M. A., Nguyen, V. Q., Lee, M. H., Kosinski, M., Schedl, T., Caprioli, R. M. and Greenstein, D. (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science (New York, N.Y. 291, 2144-2147
18 Malcuit, C., Kurokawa, M. and Fissore, R. A. (2006) Calcium oscillations and mammalian egg activation. Journal of cellular physiology. 206, 565-573
19 Bowerman, B. and Kurz, T. (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development (Cambridge, England). 133, 773-784
20 Mendez, R., Barnard, D. and Richter, J. D. (2002) Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. The EMBO journal. 21, 1833-1844
21 Foe, V. E. and Alberts, B. M. (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. Journal of cell science. 61, 31-70
22 Edgar, B. A. and Schubiger, G. (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell. 44, 871-877
23 Heikinheimo, O. and Gibbons, W. E. (1998) The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Molecular human reproduction. 4, 745-756
24 Graindorge, A., Thuret, R., Pollet, N., Osborne, H. B. and Audic, Y. (2006) Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray. Nucleic acids research. 34, 986-995
25 Alizadeh, Z., Kageyama, S. and Aoki, F. (2005) Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Molecular reproduction and development. 72, 281-290
26 Bradbury, J. (2004) Small fish, big science. PLoS biology. 2, E148
27 Knoll-Gellida, A., Andre, M., Gattegno, T., Forgue, J., Admon, A. and Babin, P. J. (2006) Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC genomics. 7, 46
28 Lucitt, M. B., Price, T. S., Pizarro, A., Wu, W., Yocum, A. K., Seiler, C., Pack, M. A., Blair, I. A., Fitzgerald, G. A. and Grosser, T. (2008) Analysis of the zebrafish proteome during embryonic development. Mol Cell Proteomics
29 Kimmel, C. B. (1989) Genetics and early development of zebrafish. Trends Genet. 5, 283-288
30 Brownlie, A., Donovan, A., Pratt, S. J., Paw, B. H., Oates, A. C., Brugnara, C., Witkowska, H. E., Sassa, S. and Zon, L. I. (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nature genetics. 20, 244-250
31 Grosser, T., Yusuff, S., Cheskis, E., Pack, M. A. and FitzGerald, G. A. (2002) Developmental expression of functional cyclooxygenases in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 99, 8418-8423
32 Love, D. R., Pichler, F. B., Dodd, A., Copp, B. R. and Greenwood, D. R. (2004) Technology for high-throughput screens: the present and future using zebrafish. Current opinion in biotechnology. 15, 564-571
33 Pini, B., Grosser, T., Lawson, J. A., Price, T. S., Pack, M. A. and FitzGerald, G. A. (2005) Prostaglandin E synthases in zebrafish. Arteriosclerosis, thrombosis, and vascular biology. 25, 315-320
34 Ton, C., Stamatiou, D., Dzau, V. J. and Liew, C. C. (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochemical and biophysical research communications. 296, 1134-1142
35 Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z. and Peng, J. (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome research. 13, 455-466
36 Linney, E., Dobbs-McAuliffe, B., Sajadi, H. and Malek, R. L. (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol. 138, 351-362
37 Mathavan, S., Lee, S. G., Mak, A., Miller, L. D., Murthy, K. R., Govindarajan, K. R., Tong, Y., Wu, Y. L., Lam, S. H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E. T. and Lufkin, T. (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS genetics. 1, 260-276
38 Jekosch, K. (2004) The zebrafish genome project: sequence analysis and annotation. Methods in cell biology. 77, 225-239
39 Link, V., Carvalho, L., Castanon, I., Stockinger, P., Shevchenko, A. and Heisenberg, C. P. (2006) Identification of regulators of germ layer morphogenesis using proteomics in zebrafish. Journal of cell science. 119, 2073-2083
40 Link, V., Shevchenko, A. and Heisenberg, C. P. (2006) Proteomics of early zebrafish embryos. BMC developmental biology. 6, 1
41 Tay, T. L., Lin, Q., Seow, T. K., Tan, K. H., Hew, C. L. and Gong, Z. (2006) Proteomic analysis of protein profiles during early development of the zebrafish, Danio rerio. Proteomics. 6, 3176-3188
42 Kanaya, S., Ujiie, Y., Hasegawa, K., Sato, T., Imada, H., Kinouchi, M., Kudo, Y., Ogata, T., Ohya, H., Kamada, H., Itamoto, K. and Katsura, K. (2000) Proteome analysis of Oncorhynchus species during embryogenesis. Electrophoresis. 21, 1907-1913
43 Pineiro, C., Vazquez, J., Marina, A. I., Barros-Velazquez, J. and Gallardo, J. M. (2001) Characterization and partial sequencing of species-specific sarcoplasmic polypeptides from commercial hake species by mass spectrometry following two-dimensional electrophoresis. Electrophoresis. 22, 1545-1552
44 Bradley, B. P., Shrader, E. A., Kimmel, D. G. and Meiller, J. C. (2002) Protein expression signatures: an application of proteomics. Marine environmental research. 54, 373-377
45 Hogstrand, C., Balesaria, S. and Glover, C. N. (2002) Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comparative biochemistry and physiology. 133, 523-535
46 Kjaersgard, I. V. and Jessen, F. (2003) Proteome analysis elucidating post-mortem changes in cod (Gadus morhua) muscle proteins. Journal of agricultural and food chemistry. 51, 3985-3991
47 Martin, S. A., Vilhelmsson, O., Medale, F., Watt, P., Kaushik, S. and Houlihan, D. F. (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochimica et biophysica acta. 1651, 17-29
48 Chen, T. Y., Shiau, C. Y., Wei, C. I. and Hwang, D. F. (2004) Preliminary study on puffer fish proteome-species identification of puffer fish by two-dimensional electrophoresis. Journal of agricultural and food chemistry. 52, 2236-2241
49 Martinez, I. and Jakobsen Friis, T. (2004) Application of proteome analysis to seafood authentication. Proteomics. 4, 347-354
50 Wang, N., Mackenzie, L., De Souza, A. G., Zhong, H., Goss, G. and Li, L. (2007) Proteome profile of cytosolic component of zebrafish liver generated by LC-ESI MS/MS combined with trypsin digestion and microwave-assisted acid hydrolysis. Journal of proteome research. 6, 263-272
51 Lemeer, S., Pinkse, M. W., Mohammed, S., van Breukelen, B., den Hertog, J., Slijper, M. and Heck, A. J. (2008) Online Automated in Vivo Zebrafish Phosphoproteomics: From Large-Scale Analysis Down to a Single Embryo. Journal of proteome research
52 Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L. and Humphery-Smith, I. (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 16, 1090-1094
53 Monte, W. (1995) The Zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). EufeneL Univ. of Oregon Press
54 Reisner, A. H., Nemes, P. and Bucholtz, C. (1975) The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Analytical biochemistry. 64, 509-516
55 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72, 248-254
56 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685
57 Syrovy, I. and Hodny, Z. (1991) Staining and quantification of proteins separated by polyacrylamide gel electrophoresis. Journal of chromatography. 569, 175-196
58 Rosenfeld, J., Capdevielle, J., Guillemot, J. C. and Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical biochemistry. 203, 173-179
59 Hellman, U., Wernstedt, C., Gonez, J. and Heldin, C. H. (1995) Improvement of an 'In-Gel' digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Analytical biochemistry. 224, 451-455
60 Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E. and Apweiler, R. (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics. 4, 1985-1988
61 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 25, 25-29
62 Solnica-Krezel, L. and Driever, W. (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development (Cambridge, England). 120, 2443-2455
63 Gundel, U., Benndorf, D., von Bergen, M., Altenburger, R. and Kuster, E. (2007) Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: a proteomic approach. Proteomics. 7, 4541-4554
64 Oehninger, S. (2003) Biochemical and functional characterization of the human zona pellucida. Reproductive biomedicine online. 7, 641-648
65 Mann, K. and Siedler, F. (2004) Ostrich (Struthio camelus) eggshell matrix contains two different C-type lectin-like proteins. Isolation, amino acid sequence, and posttranslational modifications. Biochimica et biophysica acta. 1696, 41-50
66 Dong, C. H., Yang, S. T., Yang, Z. A., Zhang, L. and Gui, J. F. (2004) A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Developmental biology. 265, 341-354
67 Schultz, R. M. (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human reproduction update. 8, 323-331
68 Minami, N., Suzuki, T. and Tsukamoto, S. (2007) Zygotic gene activation and maternal factors in mammals. The Journal of reproduction and development. 53, 707-715
69 Zhao, T., Singhal, S. S., Piper, J. T., Cheng, J., Pandya, U., Clark-Wronski, J., Awasthi, S. and Awasthi, Y. C. (1999) The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Archives of biochemistry and biophysics. 367, 216-224
70 Rhee, S. G., Chae, H. Z. and Kim, K. (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free radical biology & medicine. 38, 1543-1552
71 Agarwal, A., Gupta, S. and Sharma, R. K. (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 3, 28
72 Maga, G. and Hubscher, U. (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of cell science. 116, 3051-3060
73 Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F. and O'Rand, M. G. (2000) Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. The Journal of biological chemistry. 275, 30378-30386
74 Richardson, R. T., Alekseev, O. M., Grossman, G., Widgren, E. E., Thresher, R., Wagner, E. J., Sullivan, K. D., Marzluff, W. F. and O'Rand, M. G. (2006) Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. The Journal of biological chemistry. 281, 21526-21534
75 DeRenzo, C. and Seydoux, G. (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends in cell biology. 14, 420-426
76 Zhang, Y., Yang, Z. and Wu, J. (2007) Signaling pathways and preimplantation development of mammalian embryos. The FEBS journal. 274, 4349-4359
77 Carroll, J. (2001) The initiation and regulation of Ca2+ signalling at fertilization in mammals. Seminars in cell & developmental biology. 12, 37-43
78 Ramadan, K., Bruderer, R., Spiga, F. M., Popp, O., Baur, T., Gotta, M. and Meyer, H. H. (2007) Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature. 450, 1258-1262
79 Meyer, H. and Popp, O. (2008) Role(s) of Cdc48/p97 in mitosis. Biochemical Society transactions. 36, 126-130
80 Donaldson, M. M., Tavares, A. A., Hagan, I. M., Nigg, E. A. and Glover, D. M. (2001) The mitotic roles of Polo-like kinase. Journal of cell science. 114, 2357-2358
81 McClung, J. K., Jupe, E. R., Liu, X. T. and Dell'Orco, R. T. (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Experimental gerontology. 30, 99-124
82 Rajalingam, K. and Rudel, T. (2005) Ras-Raf signaling needs prohibitin. Cell cycle (Georgetown, Tex. 4, 1503-1505
83 Rajalingam, K., Wunder, C., Brinkmann, V., Churin, Y., Hekman, M., Sievers, C., Rapp, U. R. and Rudel, T. (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nature cell biology. 7, 837-843
84 Penaloza, C., Lin, L., Lockshin, R. A. and Zakeri, Z. (2006) Cell death in development: shaping the embryo. Histochemistry and cell biology. 126, 149-158
85 Negron, J. F. and Lockshin, R. A. (2004) Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn. 231, 161-170
86 Eckert, D., Buhl, S., Weber, S., Jager, R. and Schorle, H. (2005) The AP-2 family of transcription factors. Genome biology. 6, 246
87 Li, Q. and Dashwood, R. H. (2004) Activator protein 2alpha associates with adenomatous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell factor transcriptional activity in colorectal cancer cells. The Journal of biological chemistry. 279, 45669-45675
88 Seng, S., Avraham, H. K., Jiang, S., Yang, S., Sekine, M., Kimelman, N., Li, H. and Avraham, S. (2007) The nuclear matrix protein, NRP/B, enhances Nrf2-mediated oxidative stress responses in breast cancer cells. Cancer research. 67, 8596-8604
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41213-
dc.description.abstract在母體生成卵子的過程中,母體會製造核醣核酸和蛋白質儲存在成熟的卵子內,這些核醣核酸和蛋白質就稱為母體因子。在脊椎動物的胚胎發育過程中,受精後的胚胎基因組(zygotic genome)並未能在一開始就立即的被活化且進行作用,因此母體因子主導胚胎最初期的發育過程。在不同的物種中,母體因子對於胚胎發育的影響也有所不同。較為低等的動物,譬如無脊椎動物(果蠅、線蟲),或是低等脊椎動物(蛙)等,對於母體因子的依賴時間較長,直到胚胎分裂至數千個以上的細胞時,受精後胚胎基因組才會被活化。以斑馬魚的胚胎發育過程來說,其胚胎基因組約在胚胎分裂至一千個細胞(約3小時)左右時開始表現。在此時期之後,母體因子對於胚胎的控制會逐漸地被胚胎基因體所表現的因子所取代,因此,此時期又稱為母體轉換合子的過渡時期 (MZT)。在受精之後,這些母體因子啟動胚胎發育的程式來完成胚胎的生長與分化。為了能夠了解這些母體因子在胚胎發育時期的變化,我們利用蛋白質體學的方式來分析斑馬魚早期胚胎發育,特別針對受精前後(卵母細胞轉換胚胎;(OET))以及母體轉換合子(MZT)的兩個過渡時期之中,蛋白質種類的變化。結合一維膠電泳(1D SDS-PAGE)與串聯式質譜法(LC-MS/MS)方法,我們鑑定出1109個蛋白質並依其生物功能分類。我們發現,在上述之胚胎時期,均能偵測到許多負責蛋白質轉譯與轉譯後修飾功能的蛋白質。結果顯示,母體核醣核酸在受精後,便立即被轉譯成蛋白質,以供後續發育過程使用。我們也發現在這兩個過渡時期中,一些調控細胞週期、胚胎發育以及胚胎基因體活化機制的蛋白質,其表現量會有增減的現象。將我們蛋白質體學的結果和之前在基因體學上研究的資料做比較,我們發現一些來自母體的蛋白質,其核醣核酸並沒有在這些時期被偵測到。也就是說,這些蛋白質和與其對應的核醣核酸在這些時期的表現量並不一致。這個現象更證實了蛋白質體學和基因體學資料互補的重要性。總而言之,我們提供了新的研究資料以便篩選出在脊椎動物早期胚胎發育的過程中,具有調控性的重要蛋白質,藉此進行下一步的標的定量及更加精確的系統性遺傳學分析。zh_TW
dc.description.abstractAll processes that occur before the activation of the zygotic genome at midblustula transition are driven by maternally inherited products, which have been synthesized and stored in mature oocytes during oogenesis. After fertilization, these maternal factors initiate developmental cascades that carry out the embryonic developmental program. To investigate the dynamic expressed pattern of these maternal factors, total proteomic analysis was performed during two transitions, oocyte-to-embryo transition (OET) and maternal-to-zygotic transition (MZT), in zebrafish early development. Using 1D SDS-PAGE and LC-MS/MS, we identified 1109 proteins and categorized them based on their biological functions. Many proteins involved in translation or post-translational modification were actively expressed during the selected five stages. This result implied that maternal mRNAs required for subsequent developmental processes were translated rapidly under well control after fertilization. Some of the proteins with differential expression during OET or MZT are proteins involved in cell-cycle regulation, development processes, and zygotic genome activation. The dynamic expressions of these proteins assisted embryos in progressing these two important transitions and subsequent developmental program. A comparison of our proteomic results with transcriptomic data obtained in other studies revealed that some of the proteins are maternally deposited since no transcripts can be detected in these selected stages. In other words, these protein levels did not correspond to their mRNAs amounts during these stages. This result confirmed idea that proteomics or transcriptomics approach alone cannot reveal the complete picture about any biological process; instead, both approaches are complementary and essential for the description of biological events at molecular levels. In this study, we provide a new resource for the selection of candidate proteins for targeted quantitation and refined systematic genetic network analysis in vertebrate development in biology.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:24:16Z (GMT). No. of bitstreams: 1
ntu-97-R95B46002-1.pdf: 2124874 bytes, checksum: 8b17bca8b1e5d05183ac0d136ef88a46 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgement………… i
Abstract(Chinese)………ii
Abstract(English)………iv
Contents……………….…vi
List of abbreviations..vii
1.Introduction……….....1
1.1 Maternal factors…...1
1.2 Oocyte-to-embryo transition (OET)………3
1.3 Maternal-zygotic transition (MZT)………6
1.4 Zebrafish………….………………………….8
1.5 Zebrafish maternal factors……........10
1.6 Proteomics………………………………....13
1.7 Specific aims of the study…..…… ….14
2. Materials and Methods.…………………….15
2.1 Preparation of zebrafish embryonic samples…………15
2.2 Protein quantification………………………15
2.3 SDS-PAGE and in-gel trypsin digestion of proteins…16
2.4 LC-MS/MS…………………....……………...17
2.5 Analysis of LC-MS/MS data and protein identification.…19
2.6 Protein classification and annotation…………19
3. Results and discussions…………………..21
3.1 General protein expression profiles during early developmental stage……………………….…22
3.1.1 Vitellogenin (Vtg)……………..……..23
3.1.2 Zona pellucid and C-type lectin-like protein groups…24
3.1.3 Other proteins that stably expressed…..........26
3.2 Differential protein expression during OET…....…31
3.3 Differential protein expression during MZT…………35
3.4 Classification of expressed protein population……39
3.5 Conclusion…….……43
4. Tables…………………45
5. Figures………….……70
6. References……………91
7. Supplementary data…98
8. Appendix………….…148
dc.language.isoen
dc.subject卵母細胞轉換胚胎之過渡時期zh_TW
dc.subject母體因子zh_TW
dc.subject母體轉換合子之過渡時期zh_TW
dc.subject斑馬魚胚胎早期發育zh_TW
dc.subject串聯式質譜法zh_TW
dc.subjectoocyte-to-embryo transition (OET)en
dc.subjectMaternal factoren
dc.subjectZebrafish early embryonic developmenten
dc.subjectmaternal-to-zygotic transition (MZT)en
dc.subjectLC-MS/MSen
dc.title斑馬魚早期胚胎之蛋白質體之研究zh_TW
dc.titleProteomic Analysis of Protein Expression Profiles during Early Developmental Stages of Zebrafish, Danio rerioen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor蔡振寧
dc.contributor.oralexamcommittee李明亭,阮雪芬
dc.subject.keyword斑馬魚胚胎早期發育,母體因子,卵母細胞轉換胚胎之過渡時期,母體轉換合子之過渡時期,串聯式質譜法,zh_TW
dc.subject.keywordZebrafish early embryonic development,Maternal factor,oocyte-to-embryo transition (OET),maternal-to-zygotic transition (MZT),LC-MS/MS,en
dc.relation.page155
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
2.08 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved