Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41211
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平
dc.contributor.authorWei-Jia Huangen
dc.contributor.author黃維嘉zh_TW
dc.date.accessioned2021-06-14T17:24:09Z-
dc.date.available2008-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation[1] Chris Stauffer, W.E.L. Grimson, 'Adaptive Background Mixture Models for Real-Time Tracking,' cvpr, p. 2246, 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'99) - Volume 2, 1999
[2] Kim K., Chalidabhongse T.H., Harwood D., Davis L. Real-time foreground–background segmentation using codebook model. Real-time Imaging 11(3), pp 172185, 2005
[3] Chan, L.-W., Chuang, Y.-F., Chia, Y.-W., Hung, Y.-P., and Hsu, J. 2007. A new method for multi-finger detection using a regular diffuser. In International Conference on Human-Computer Interaction.
[4] Jefferson Y. Han, Low-cost multi-touch sensing through frustrated total internal reflection, Proceedings of the 18th annual ACM symposium on User interface software and technology, October 23-26, 2005, Seattle, WA, USA
[5] Johannes Kopf , Daniel Cohen-Or , Oliver Deussen , Dani Lischinski, Recursive Wang tiles for real-time blue noise, ACM Transactions on Graphics (TOG), v.25 n.3, July 2006
[6] Daniel Dunbar , Greg Humphreys, A spatial data structure for fast Poisson-disk sample generation, ACM Transactions on Graphics (TOG), v.25 n.3, July 2006
[7] Michael F. Cohen , Jonathan Shade , Stefan Hiller , Oliver Deussen, Wang Tiles for image and texture generation, ACM Transactions on Graphics (TOG), v.22 n.3, July 2003
[8] W. T. Reeves, Particle Systems—a Technique for Modeling a Class of Fuzzy Objects, ACM Transactions on Graphics (TOG), v.2 n.2, p.91-108, April 1983
[9] Karl Sims, Particle animation and rendering using data parallel computation, ACM SIGGRAPH Computer Graphics, v.24 n.4, p.405-413, Aug. 1990
[10] John van der Burg, Building an Advanced Particle System. Available from Gamasutra.com at http://www.gamasutra.com/features/20000623/vanderburg_pfv.htm
[11] L. Latta, Building a million particle system. Proceedings of Game Developers Conference (2004) http://www.2ld.de/gdc2004/
[12] A. Kolb , L. Latta , C. Rezk-Salama, Hardware-based simulation and collision detection for large particle systems, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, August 29-30, 2004, Grenoble, France
[13] Peter Kipfer , Mark Segal , Rüdiger Westermann, UberFlow: a GPU-based particle engine, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, August 29-30, 2004, Grenoble, France
[14] Jeronimo S. Venetillo, Waldemar Celes, GPU-based particle simulation with inter- collisions, The Visual Computer, Volume 23, Numbers 9-11, September 2007
[15] L. Latta, Everything about particle effects, tutorial at the Game Developers Conference 2007, http://www.2ld.de/gdc2007/
[16] Houston, M. 2007. Welcome & overview. In ACM SIGGRAPH 2007 Courses (San Diego, California, August 05 - 09, 2007). SIGGRAPH '07. ACM, New York, NY, 1.
[17] Harris, M. 2007. GPU physics. In ACM SIGGRAPH 2007 Courses (San Diego, California, August 05 - 09, 2007). SIGGRAPH '07. ACM, New York, NY, 15.
[18] Owens, J. 2007. GPU architecture overview. In ACM SIGGRAPH 2007 Courses (San Diego, California, August 05 - 09, 2007). SIGGRAPH '07. ACM, New York, NY, 2.
[19] Drone, S. 2007. Real-time particle systems on the GPU in dynamic environments. In ACM SIGGRAPH 2007 Courses (San Diego, California, August 05 - 09, 2007). SIGGRAPH '07. ACM, New York, NY, 80-96.
[20] Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-noise for procedural fluid flow. ACM Trans. Graph. 26, 3 (Jul. 2007), 46.
[21] Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM Siggraph/Eurographics Symposium on Computer Animation (San Diego, California, July 26 - 27, 2003). Symposium on Computer Animation. Eurographics Association, Aire-la-Ville, Switzerland, 154-159.
[22] Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 ACM Siggraph/Eurographics Symposium on Computer Animation (Los Angeles, California, July 29 - 31, 2005). SCA '05. ACM, New York, NY, 219-228.
[23] Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., and Gross, M. 2005. Real-time ray-casting and advanced shading of discrete isosurfaces. In Eurographics, Blackwell Publishing, M. Alexa and J. Marks, Eds., vol. 24.
[24] NVIDIA OpenGL Extension Specifications, available at http://developer.download.nvidia.com/opengl/specs/nvOpenGLspecs.pdf
[25] GPGPU Website, http://www.gpgpu.org/
[26] NVIDIA Cg Website, http://developer.nvidia.com/object/cg_toolkit.html
[27] OpenGL Website, http://www.opengl.org/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41211-
dc.description.abstract近年來以電腦視覺為基礎的互動裝置越來越受歡迎,對於能給予使用者有趣互動體驗以及豐富視覺效果的應用軟體需求也因應而生。本研究開發出一個可被電腦視覺模組驅動的粒子系統,能輕易地被整合到各種電腦視覺的應用程式,提供多樣化的視覺特效和互動。另一方面,由於電腦視覺的輸出結果通常帶有一定程度的不確定性,粒子系統也為此提供了一個視覺化的方法,用粒子的分佈與擾動將這個模糊地帶顯現出來。本篇論文中,我們舉出三個整合範例,包括光學式多重觸控桌面系統i-m-Top,多重攝影機監控轉場系統,以及智慧型太極拳輔助教學系統,三種完全不同的應用程式皆可與我們提出的粒子系統輕易整合。為了達到更好的執行效率,我們在粒子系統的實作上採用新一代的繪圖處理器(GPU)來加速執行,此舉不但大幅擴張了粒子系統中能即時運算的粒子數量,同時也將中央處理器(CPU)的運算資源留給電腦視覺模組。另外我們也提出一個粒子間相互碰撞偵測的方法,利用統計的方式估算出粒子在空間中的密度分佈,並依此估計粒子所受到的碰撞效果。此方法讓粒子產生類似布朗運動的行為模式,並能快速地以繪圖處理器運算出結果。zh_TW
dc.description.abstractVision based interaction devices are getting more and more popular in recent years. Applications for these devices that can give users interesting interaction experiences and rich visual appearances are also on demand. In our work, we develop a particle system that can be driven by computer vision modules. It is easy to be integrated into other computer vision applications and provides varieties of visual effects and interactions to the users. On the other hand, results of computer vision process usually have some degrees of uncertainty. Our particle system also supplies a new way to visualize the fuzzy region by the motion of particles. In this paper, we introduce three integration examples, including a vision-based multi-touch tabletop system called i-m-Top, a multi-camera surveillance system with view transition, and an intelligent computer-aided Tai Chi Chuan learning system. All these three applications can be easily integrated with our particle system. To increase the system performance, we utilize the latest generation of graphic process unit (GPU) to implement our particle system. This implementation not only enlarges the number of particles we can simulate in real time, but also reserves the CPU computation power for the computer vision process. In addition, we propose an inter-particle collision detection method that estimates the spatial density distribution of particles by statistic method. Inter-particle collision responses are then computed according to the density distribution. This method makes particles have behaviors similar to the Brownian motion and can be done by GPU very efficiently.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:24:09Z (GMT). No. of bitstreams: 1
ntu-97-R95922120-1.pdf: 1609327 bytes, checksum: 1e5c9db6788f3d6ee5daea82798fd0f7 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1. Introduction 1
2. Related work 5
2.1 Computer vision 5
2.2 Particle system 6
2.3 Sampling method 8
3. System architecture 10
3.1 Computer vision Module 11
3.2 Sampling 11
3.2.1 Uniform sampling 13
3.2.2 Blue noise sampling 13
3.3 Attribute assignment 14
3.4 Particle updating 17
3.5 Rendering 17
4. Implementation of particle system on GPU 19
4.1 Why GPU ? 19
4.2 GPGPU 21
4.2.1 Rendering pipeline 22
4.2.2 Shader model 4.0 feature 24
4.3 Particle updating 26
4.3.1 Particle creation 27
4.3.2 Particle deletion 28
4.3.3 Particle dynamic 28
4.3.4 Inter-particle collision detection 31
4.4 Particle rendering 35
5. Applications 37
5.1 i-m-Top 37
5.2 View transition system 40
5.3 Tai Chi Chuan learning system 44
6. Conclusion and future work 49
7. Bibliography 51
dc.language.isozh-TW
dc.subject粒子系統zh_TW
dc.subject電腦視覺zh_TW
dc.subject繪圖處理器通用計算zh_TW
dc.subjectGPGPUen
dc.subjectParticle Systemen
dc.subjectComputer visionen
dc.title可被電腦視覺模組驅動的粒子系統之開發zh_TW
dc.titleOn Developing a Particle System Driven by Computer Vision Modulesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊永裕,張鈞法,石勝文,徐繼聖
dc.subject.keyword粒子系統,電腦視覺,繪圖處理器通用計算,zh_TW
dc.subject.keywordParticle System,Computer vision,GPGPU,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved