請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41205
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹美華(Mei-Hwa Jan) | |
dc.contributor.author | Han-Yu Chen | en |
dc.contributor.author | 陳翰裕 | zh_TW |
dc.date.accessioned | 2021-06-14T17:23:46Z | - |
dc.date.available | 2008-09-11 | |
dc.date.copyright | 2008-09-11 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | 1. Backhaus M, Burmester GR, Gerber T, Grassi W, Machold KP, Swen WA, Wakefield RJ, Manger B. Guidelines for musculoskeletal ultrasound in rheumatology. Ann Rheum Dis 60: 641-649, 2001
2. Brody LT, Thein JM. Nonoperative treatment for patellofemoral pain. J Orthop Sports Phys Ther 28: 336-344, 1998 3. Cavanagh PR, Komi PV: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol 42: 159 –163, 1979 4. Chan A YF, Lee F LL, Wong PK, et al: Effects of knee angles and fatigue on the neuromuscular control of vastus medialis oblique and vastus lateralis muscle in humans. Eur J Appl Physiol 84: 36-41, 2001 5. Cowan SM, Bennell GKL, Hodges PW, et al: Delay onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil 82: 183-189, 2001 6. Crossley KM, Green SE, Cowan SM, et al: Physical therapy for patellofemoral pain. Am J Sports Med 30: 857-865, 2002 7. Douchette SA, Goble EM. The effect of exercise on patellar tracking in lateral patellar compression syndrome. Am J Sports Med 20: 434-440, 1992 8. Ducomp C, Mauriege P, Darche B, Combes S, Lebas F, and Doutreloux JP. Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: role of collagen. Acta Physiol Scand 178: 215-224, 2003 9. Eliasson P, Fahlgren A, Pasternak B, Aspenberrg P. Unload rat Achilles tendons continue to grow, but lose viscoelasticity. J Appl Physiol 103: 459-463, 2007 10. Fukashiro S, Ito M, Ichinose Y, Kawakami Y, Fukunaga T. Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 71: 555-557, 1995 11. Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. In vivo behaviour of human muscle-tendon during walking. Proceedings of the Royal Society of London B 268: 229–233, 2001 12. Fulkerson JP: Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med 30: 447-456, 2002 13. Fulkerson JP, Arendt EA: Anterior knee pain in females. Clin Orthop Relat Res 372: 69–73, 2000 14. Fulkerson JP: Anterolateralization of the tibial tubercle. Tech Orthop 12: 165–169, 1997 15. Georgoulis AD, Ristanis S, Papadonikolakis A, et al: Electromechanical delay of the knee extensor muscles is not altered after harvesting the patellar tendon as a graft foe ACL reconstruction: implication for sports performance. Knee Surg Sports Traumatol Arthrosc 13: 437-443, 2005 16. Girnyk S, Barannik A, Barannik E, Tovstiak V, Marusenko A, Volokhov V. The estimation of elasticity and viscosity of soft tissue in vitro using the data of remote acoustic palpation. Ultrasound Med Biol 32: 211-219, 2006 17. Gleeson NP, Reilly T, Mercer TH, et al: Influence of acute endurance activity on leg neuromuscular and musculoskeletal performance. Med Sci Sports Exerc 30: 596-608, 1998 18. Grabiner MD, Koh TJ, Draganich LF: Neuromechanics of the patellofemoral joint. Med Sci Sports Exerc 26:10-21, 1994 19. Grabiner MD, Koh TJ, Miller GF. Fatigue rates of vastus medialis oblique and vastus lateralis during static and dynamic knee extension. J Orthop Res 9: 391-397, 1991 20. Grelsamer RP: Current concepts review: Patellar malalignment. J Bone Joint Surg 82A: 1639–1650, 2000 21. Herrington L, McEwan I, Thom J. Quantification of patella position by ultrasound scanning and its criterion validity. Ultrasound Med Biol 32: 1833-1836, 2006 22. Isabelle M, Sylvie Q, Chantal P: Electromechanical assessment of ankle stability. Eur J Appl Physiol 88: 558-564, 2003 23. Jannapureddy SR, Patel ND, Hwang W, Boriek AM. Selected Contribution: Merosin deficiency leads to alterations in passive and active skeletal muscle mechanics. J Appl Physiol 94: 2524-2533, 2003. 24. Kajer M. Role of Extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84: 649-698, 2004 25. Kaneko F, Onari K, Kawaguchi K, et al: Electromechanical delay after ACL reconstruction: an innovative method for investigating central and peripheral contributions. J Orthop Sports Phys Ther 32: 158-165, 2002 26. Karst GM, Willett GM: Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome. Phys Ther 75: 813-823, 1995 27. Katz B, Miledi R: The measurements of synaptic delay and the time course of acetylcholine release as the neuromuscular junction. Proc R Soc Lond Ser A 161: 483-495, 1965 28. Koh TJ, Grabiner MD, DeSwart RJ: In vivo tracking of the human patella. J Biomech 25: 637-643, 1992 29. Kubo K, Akima H, Kouzaki M, et al: Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 83: 463–468, 2000 30. Kubo K, Kanehisa H, Fukunaga T: Effects of transient muscle contractions and stretching of the tendon structures in vivo. Acta Physiol Scand 175: 157-164, 2002a 31. Kubo K, Kanehisa H, Ito M, et al. Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol 91: 26-32, 2001 32. Kubo K, Kawakami Y, Fukunaga T. Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol 87: 2090-2096, 1999 33. Kubo K, Kawakami Y, Kanehisa H, Fukunaga T. Measurement of viscoelastic properties of tendon structures in vivo. Scand J Med Sci Sports 12: 3-8, 2002b 34. Kubo K, Komuro T, Ishiguro N, et al: Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 22: 112-119, 2006 35. Kuo PL, Li PC, Shun CT, Lai JS. Strain measurements of rabbit Achilles tendons by ultrasound. Ultrasound Med Biol 25: 1241-1250,1999 36. Kuo PL, Li PC, Li ML. Elastic properties of tendon measured by two different approaches. Ultrasound Med Biol 27: 1275-1284, 2001 37. Li L, Landin D, Grodesky J, Myers J. The function of gastrocnemius as a knee flexor at selected knee and ankle angles. J Electromyogr Kinesiol 12: 385-390, 2002 38. Maganaris CN. Validity of procedures involved in ultrasound-based measurement of human plantarflexor tendon elongation on contraction. J Biomech 38: 9-13, 2005 39. Maganaris CN, Paul JP. Load-elongation characteristics of in vivo human tendon and aponeurosis. J Exp Biol 203: 751-756, 2000 40. Maganaris CN, Paul JP. Tensile properties of the in vivo human gastrocnemius tendon. J Biomech 35: 1639-1646, 2002 41. Maganaris CN, Reeves ND, Rittweger J, et al: Adaptive response of human tendon to paralysis. Muscle Nerve 33: 85-92, 2006 42. Matsumoto F, Trudel G, Uhthoff HK, et al: Mechanical effects of immobilization on the Achilles' tendon. Arch Phys Med Rehabil 84: 662-667, 2003 43. Muir IW, Chesworth BM, Vandervoort AA. Effect of a static calf-stretching exercise on the resistive torque during passive ankle dorsiflexion in healthy subjects. J Orthop Sports Phys Ther 29: 106-115, 1999 44. Muraoka T, Muramatsu T, Fukunaga T, et al: Influence of tendon slack on electromechanical delay in the human medial gastrocnemius in vivo. J Appl Physiol 96: 540-544, 2004 45. Narici MV, Landoni L, Minetti AE. Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65: 438-444, 1992 46. Narici MV, Maganaris CN: Adaptability of elderly human muscles and tendons to increased loading. J Anat 208: 433-443, 2006 47. Osu R, Franklin DW, Kato H, et al: Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol 88: 991-1004, 2002 48. Perotto A, Delagi EF, Iazzetti J, Morrison D. Anatomical guide for the electromyographer: the limbs and trunk. Charles C Thomas Publisher. Springfield, Illinois, USA. 1994 49. Politti JC, Felice CJ, Valentinuzzi ME. Arm EMG during abduction and adduction: hysteresis cycle. Med Eng Phys 25: 317-320, 2003 50. Powers CM, Landel RF, Perry J: Timing and intensity of vastus muscle activity during functional activities in subjects with and without patellofemoral pain. Phys Ther 76: 946-955, 1996 51. Powers CM, Maffucci R, Hampton S: Rearfoot posture in subjects with patellofemoral pain. J Orthop Sports Phys Ther 22: 155-160, 1995 52. Rafael C, Gonzalez RC, Woods RE: Digital Image Processing, Second Edition, pp.125~127. Prentice-Hall Inc. 2002 53. Reeves ND: Adaptation of the tendon to mechanical usage. J Musculoskelet Neuronal Interact 6: 174-180, 2006 54. Reeves ND, Maganaris CN, Ferretti G, et al: Influence of 90-day stimulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl physiol 98: 2278-2286, 2005 55. Reeves ND, Maganaris CN, Narici MV: Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol (Lond) 548: 971-981, 2003 56. Reeves ND, Narici MV, Maganaris CN: In vivo human muscle structure and function: adaptions to resistance training in old age. Exp Physiol 89: 675-689, 2004 57. Russ DW, Vandenborne K, Binder-Macleod SA. Factors in fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 93: 469-478, 2002 58. Samozino P, Horvais N, Hintzy F: Why does power output decrease at high pedaling rates during sprint cycling? Med Sci Sports Exerc 39: 680-687, 2007 59. Schulthies SS, Francis RS, Fisher AG, et al: Does the Q angle reflect the force on the patella in the frontal plane? Phys Ther 75: 24-30, 1995 60. Shih YF, Bull AM, McGregor AH, Amis AA. Active patellar tracking measurement: a novel device using ultrasound. Am J Sports Med 32: 1209-1217, 2004 61. Shih YF, Bull AM, McGregor AH, Humphries K, Amis AA. A technique for the measurement of patellar tracking during weight-bearing activities using ultrasound. Proc Inst Mech Eng [H] 217: 449-457, 2003 62. Solomonow M, Eversull E, Zhou BH, Baratta RV, Zhu M. Neuromuscular neutral zones associated with viscoelastic hysteresis during cyclic lumbar flexion. Spine 26: E314-E324, 2001 63. Souza DR, Gross MT. Comparison of vastus medialis oblique: vastus lateralis muscle integrated electromyographic ratios between healthy subjects and patients with patellofemoral pain. Phys Ther 71: 310-316, 1991 64. Stanek JM, McLoda TA, McCaw S, et al: The effects of external support on electromechanical delay of the peroneus longus muscle. Electromyogr Clin Neurophysiol 46: 349-354, 2006 65. Stemper BD, Yoganandan N, Cusick JF, et al: Stabilizing effect of precontracted neck musculature in whiplash. Spine 31: E733-E738, 2006 66. Thomee R, Augustsson J, Karlsson J. Patellofemoral pain syndrome: a review of current issues. Sports Med 28: 245-262, 1999 67. Vaes P, Van Gheluwe B, Duquet W: Control of acceleration during sudden ankle supination in people with unstable ankles. J Orthop Sport Phys Ther 31: 741-752, 2001 68. Vint PF, Mclean SP, Harron GM. Electromechanical delay in isometric actions initiated from nonresting levels. Med Sci Sports Exerc 33: 978-983, 2001 69. Voight M, Weider D: Comparative reflex response times of the vastus medialis and the vastus lateralis in normal subjects and subjects with extensor mechanism dysfunction. Am J Sports Med 10: 131-137, 1991 70. Vos EJ, Harlaar J, van Ingen Schenau GJ. Electromechanical delay during knee extensor contractions. Med Sci Sports Exerc 23: 1187-1193, 1991 71. Weller R, Pfau T, Ferrari M, Griffith R, Bradford T, Wilson A. The determination of muscle volume with a freehand 3D ultrasonography system. Ultrasound Med Biol 33: 402-407,2007 72. Westfall DC, Worrell TW: Anterior knee pain syndrome: Role of the vastus medialis oblique. J Sports Rehabil 1: 317-325, 1992 73. Witvrouw E, Sneyers C, Lysens R, et al: Reflex response times of vastus medialis oblique and vastus lateralis in normal subjects with patellofemoral pain syndrome. J Orthop Sports Phys Ther 24: 160-165, 1996 74. Ying M, Yeung E, Li B, Li W, Lui M, Tsoi CW. Sonographic evaluation of the size of Achilles tendon: the effect of exercise and dominance of the ankle. Ultrasound Med Biol 29: 637-642, 2003 75. Yeung SS, Au AL, Chow CC: Effects of fatigue on the temporal neuromuscular control of vastus medialis muscle in humans. Eur J Appl Physiol Occup Physiol 80: 379–385, 1999 76. Zhang LQ, Wang G, Nuber GW, Press JM, Koh JL. In vivo load sharing among the quadriceps componeents. J Orthop Res 21: 565-571, 2003 77. Zhou S, Carey MF, Snow RJ, et al: Effects of muscle fatigue and temperature on electromechanical delay. Electromyogr Clin Neurophysiol 38: 67–73, 1998 78. Zhou S, Lawson DL, Morrison WE, et al: Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. Eur J Appl Physiol Occup Physiol 70: 138–145, 1995 79. Zhou S, McKenna MJ, Lawson DL, et al: Effects of fatigue and sprint training on electromechanical delay of knee extensor muscles. Eur J Appl Physiol Occup Physiol 72: 410–416, 1996 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41205 | - |
dc.description.abstract | 本研究是探討髕股關節疼痛症候群患者的股內側肌與股外側肌之機械特性,所研究的機械特性包括電-力學延遲及黏彈特性。並且在回顧文獻時,發現過去的實驗在量測電-力學延遲及黏彈特性所使用的方法並不完善,而可能導致誤解。因此本研究分成三階段的實驗來逐步探討股內側肌與股外側肌之電-力學延遲及黏彈特性。
在第一階段的實驗中,電-力學延遲的測量是由肌電訊號的起始到力學反應的起始。然而,過去的測量方法皆是以膝伸直力量的起始當作股內側肌和股外側肌的力學反應,如此並無法獲得這兩股肌肉個別的電-力學延遲。因此本階段實驗的目的便是發展一個新的方法,可以量測股內側肌與股外側肌個別的電-力學延遲。十二位健康受試者參與本實驗,以電刺激器刺激受試者的動作點而引發肌肉抽動,同時,電刺激的訊號並聯至一定製的電路做去電流和降電壓的處理後,經由心電圖的輸入端導入超音波掃瞄儀,以做為同步之用。超音波掃瞄儀是用來擷取股內側肌或股外側肌抽動所引起的髕骨動作,測量電刺激訊號的起始到髕骨動作的起始之時間差即為電-力學延遲。實驗結果顯示以此新方法所測得的股內側肌與股外側肌電-力學延遲的重製率良好,其級內相關係數都超過0.8。股內側肌與股外側肌的電-力學延遲分別為18.3 ± 2.2 ms和24.8 ± 5.8 ms。此新的量測方法因為是以髕骨活動的起始當作股內側肌和股外側肌的力學反應,而可以比較準確的量測電-力學延遲。 在第二階段的實驗中,12位髕股關節疼痛症候群患者以及12位性別、年齡、身高和體重與病人受試者相當的健康者參與本實驗。將第一階段所發展的新方法應用在這些受試者上,測量他們的股內側肌與股外側肌之電-力學延遲,並加以比較兩組受試者之間的差異。實驗的結果顯示病人組的股內側肌之電-力學延遲比股外側肌大的人數比例顯著的比健康組多。根據這個結果,作者推論髕股關節疼痛症候群患者的股內側肌與股外側肌之電-力學延遲可能有適應性改變的情況。 在第三階段的實驗中,作者進一步探討電-力學延遲的長短與肌肉黏彈特性的關聯性。過去的學者認為電-力學延遲主要是耗費在肌肉的收縮性部分牽拉彈性串列部分。因此,電-力學延遲的長短便與肌肉的彈性串列部分之黏彈特性有關。而負載-卸載迴圈的面積大小可代表遲滯現象的大小,並與肌腱結構的黏彈特性有關。因此在此階段的實驗目的,便是測量股內側肌與股外側肌肌腱結構之負載-卸載迴圈面積大小,並加以比較兩組受試者之間的差異。此外,肌腱結構的延長是形成負載-卸載迴圈的一部分。然而在過去的實驗中,將股外側肌肌腱結構在肌肉收縮時的移動量當作延長量,如此可能造成數據上的誤差。因此作者修正過去的實驗方法,而可以比較準確的測量股內側肌與股外側肌之肌腱結構在肌肉收縮時的延長量。以等速肌力測量儀提供阻力,讓受試者施行漸進式的等長膝伸直運動,同時,記錄股內側肌與股外側肌的肌電訊號。並且以B模式的超音波影像擷取股內側肌與股外側肌之肌腱結構在用力時的延長狀況,然後以30Hz的頻率錄在磁帶中。以一定製的開關將肌電訊號和超音波影像作同步處理。實驗的結果顯示,病人組的股內側肌肌腱結構的遲滯迴圈面積大於股外側肌的人數明顯多於健康組受試者。根據這個結果,作者推論髕股關節疼痛症候群患者的股內側肌與股外側肌之黏彈特性有適應性改變的現象。患者的股內側肌在日常活動中收縮所三師的能量可能較股外側肌多,而使肌力的傳遞速率降低。因此造成股內側肌的電-力學延遲大於股外側肌,如此可能使不正常的髕骨滑行軌道更加惡化。 | zh_TW |
dc.description.abstract | This dissertation was designed to investigate the mechanical properties of the vastus medialis and the vastus lateralis in patients with patellofemoral pain syndrome. In this dissertation, the mechanical properties indicated the electromechanical delay and the viscoelasticity of the tendon structures of the vastus medialis and the vastus lateralis. From the literature review, the measurements for the electromechanical delay and viscoelasticity of the vastus medialis and the vastus lateralis were questionable. Hence the study was divided into three stages for three purposes.
In the first stage, the electromechanical delay of the vastus medialis and vastus lateralis is determined by measuring the interval between the time of onset of muscle activities and the time of onset of mechanical output. However, individual mechanical output of the vastus medialis and vastus lateralis cannot be obtained with the conventional method because of regarding the knee extension force as the mechanical output. Therefore, the objective of this stage study was to develop a new method for measuring the electromechanical delay of the vastus medialis and vastus lateralis individually. Twelve healthy volunteers participated in the experiment. The motor point of the target muscle was electrically stimulated to evoke a muscle twitch. Simultaneously, the electrical stimulation signal was transmitted to ultrasound apparatus via the electrocardiography input channel. The ultrasound apparatus was used to capture the patellar movement elicited by the muscle twitch. The electromechanical delay was measured from the onset of the electrical stimulation to the onset of patellar movement. The results showed that the intra-class correlation coefficients for the reproducibility of the electromechanical delay measurements of the vastus medialis and vastus lateralis were greater than 0.8. The electromechanical delay of the vastus medialis and vastus lateralis were 18.3 ± 2.2 ms and 24.8 ± 5.8 ms, respectively. This new method provides a more precise measurement of the electromechanical delay in the vastus medialis and vastus lateralis than does the conventional method because of the use of patellar movement as the mechanical output. In the second stage, twelve patellofemoral pain syndrome patients and twelve healthy subjects with gender, age, height and weight matched were recruited to participate to the study. The new method was applied to all the subjects and the resultant electromechanical delay of the vastus medialis and vastus lateralis were compared between these two groups. The result of this stage study was demonstrated that the percentage of people whose the electromechanical delay of vastus medialis being larger than that of vastus lateralis in subjects with patellofemoral pain syndrome are significantly greater than those in healthy individuals. According to the result, we speculated that the mechanical properties of vastus medialis and vastus lateralis might have adaptive changes in patients with patellofemoral pain syndrome. In the third stage, we further investigated the relationships of the length of electromechanical delay and the viscoelasticity of musculature. Previous scholars believed that the time taken for the stretching of the series elastic component by the contractile element is considered a major portion of electromechanical delay. Therefore, the viscoelasticity of the series elastic component is related to the length of electromechanical delay. The area of load-unload loop is an index of hysteresis and related to the viscoelasticity of tendon structures. Therefore, the area of load-unload loop of the vastus medialis and vastus lateralis was measured and compared between healthy individuals and patellofemoral pain syndrome patients. The elongation of the tendon structures is one part to form the load-unload loop. In previous studies, however, the measurement of the elongation of tendon structures is questionable due to the displacement of the tendon structures of vastus lateralis being measured. We would like to modify the previous method to measure the more precise elongation of the tendon structures of vastus medialis and vastus lateralis. The isokinetic dynamometer was used to provide the resistance during subject performing ramped isometric knee extension exercise; simultaneously, the muscle activities of the vastus medialis and vastus lateralis were detected by the electromyography recording system. Besides, the elongations of the tendon structures of the vastus medialis and vastus lateralis during ramped isometric contraction were captured by the B mode ultrasonography. A customized switch was used to synchronize the signals of muscle activity and the ultrasonography. The results of this stage study were showed that the percentage of people whose the area ratio of hysteresis loop of vastus medialis being larger than that of vastus lateralis in subjects with patellofemoral pain syndrome are significantly greater than those in healthy individuals. According to the result, we speculated that the viscoelasticity of vastus medialis and vastus lateralis might have a change in patellofemoral pain syndrome patients. The greater energy loss of vastus medialis contraction in daily activity and the decreased speed of muscle force transmission in patellofemoral pain syndrome patients. Consequently, the electromechanical delay of vastus medialis is smaller than that of vastus lateralis and that might deteriorate the abnormal patellar tracking. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:23:46Z (GMT). No. of bitstreams: 1 ntu-97-D93428005-1.pdf: 1074450 bytes, checksum: d97989b1f542ffeeab80d749d9a53fcd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝…………………………………………………………………. i 中文摘要……………………………………………………………. iii 英文摘要……………………………………………………………. vi 第一章 背景 (Background)………………………………………………………. 1 第二章 量測股內側肌與股外側肌之電-力學延遲的新方法 (A Novel Method for Measuring Electromechanical Delay of the Vastus Medialis and Vastus Lateralis)………………… 7 第三章 髕股關節疼痛症候群患者之股內側肌與股外側肌的電-力學延遲 (The Electromechanical Delay of the Vastus Medialis and the Vastus Lateralis in Patients with Patellofemoral Pain Syndrome) ………………………………………………………… 26 第四章 髕股關節疼痛症候群患者之股內側肌與股外側肌肌腱結構的黏彈特性 (The Viscoelasticity of the Tendon Structures of the Vastus Medialis and the Vastus Lateralis in Patients with Patellofemoral Pain Syndrome)……………………………… 43 第五章 結論 (Summary) ……………………………………………………… 60 參考文獻………………………………………………………… 62 附錄 | |
dc.language.iso | en | |
dc.title | 髕股關節疼痛症候群患者之股內側肌與股外側肌的機械特性 | zh_TW |
dc.title | The Mechanical properties of Vastus Medialis and Vastus Lateralis in Subjects with Patellofemoral Pain Syndrome | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 徐阿田(Ar-Tyan Hsu),林永福(Yeong-Fwu Lin),施怡芬(Yi-Fen Shih),廖建忠(Jiann-Jong Liau),林居正(Jiu-Jenq Lin) | |
dc.subject.keyword | 電-力學延遲,黏彈特性,肌腱結構,超音波影像,負載-卸載迴圈,髕股關節疼痛症候群, | zh_TW |
dc.subject.keyword | electromechanical delay,viscoelasticity,tendon structures,ultrasonography,load-unload loop,patellofemoral pain syndrome, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。