請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41192
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪挺軒 | |
dc.contributor.author | Hsiao-Ying Yang | en |
dc.contributor.author | 楊小瑩 | zh_TW |
dc.date.accessioned | 2021-06-14T17:22:56Z | - |
dc.date.available | 2011-09-29 | |
dc.date.copyright | 2008-07-27 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | 王仁晃。2001。木瓜輪點病毒對番木瓜抗感病品種(系)光合成的影響。碩士論文。臺灣大學。86頁。
王啟正。1997。番木瓜抗木瓜輪點病毒遺傳差異性之硏究。碩士論文。臺灣大學。107頁。 王惠亮、王金池、邱人璋、孫明賢。1978。台灣番木瓜輪點病研究初報。植物保護學會會刊 20: 133-140。 王德男。1982。木瓜耐輪點毒素病品種之檢定。中華農業研究 31(2): 162-168。 王德男。1991。台灣木瓜栽培之回顧與展望。台灣果樹之生產及硏究發展硏討會專刊。杜金池、程永雄、顔昌瑞編。台灣省農業試驗所嘉義分所。嘉義市。357-371頁。 王德男。1993。木瓜抗(耐)毒素病品種之選育及台農五號之繁殖果樹育種研習會專刊。杜金池、蕭吉雄、莊耿彰編。臺灣省農業試驗所。台中市。233-248頁。 王震宇。1988。木瓜輪點病毒系統之細胞病理學硏究。碩士論文。臺灣大學。50頁。 包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。博士論文。中興大學。135頁。 包慧俊、龔怡蓉、鄭櫻慧、葉錫東。2006。抗輪點病毒與畸葉嵌紋病毒基因轉殖木瓜之育成。木瓜產業研討會專刊。王德男、李文立編。行政院農業委員會農業試驗所。台中縣。134頁。 吉井三惠子。1986。影響木瓜輪點病毒病徵表現與變異之因素。碩士論文。臺灣大學。128頁。 行政院農業委員會。2006。農業統計年報。台北市。319頁。 吳建銘。2007。木瓜輪點病毒(SMN、DF系統)與木瓜畸葉嵌紋病毒在不同番木瓜品系上的交互作用。碩士論文。臺灣大學。140頁。 巫宣毅。2007。抗木瓜輪點病毒的基因轉殖木瓜高效能鑑別方法之硏發與應用。碩士論文。臺灣大學。89頁。 李宜霞。2006。木瓜輪點病毒之Real-Time RT-PCR定量偵測技術之硏發與應用。碩士論文。臺灣大學。110頁。 呂理燊、李啟彰、黃德昌。1980。Erwinia cypripedii引起之木瓜黑腐病。植物保護學會會刊 22: 377-384。 林正忠。1980。木瓜輪點病病毒之系統及交叉保護。博士論文。臺灣大學。 施明山、陳吉雄、鄧如蘭。1990。番木瓜設施栽培。台灣農業 21: 84-87。 翁芬華。1981。木瓜輪點病毒之變異性。碩士論文。臺灣大學。73頁。 張世揚。2000。植物防疫之重要性。苗栗區農情月刊 10: 1-2。 郭耀庭。2001。親子迴歸法估算番木瓜抗木瓜輪點病毒病之遺傳力。碩士論文。臺灣大學。60頁。 陳脉紀、劉顯達、王惠亮、位國慶、邱人璋。1976。木瓜輪點病之電子顯微鏡觀察。植物保護學會會刊論文摘要 18: 399。 陳脉紀。1984。木瓜輪點病毒之電子顯微鏡觀察。植物保護學會會刊 26: 23-31。 廖奕晴。2004。台灣木瓜輪點病毒系統之變異與鑑別及快速偵測。碩士論文。臺灣大學。107頁。 廖翊廷。2006。台灣木瓜畸葉嵌紋病毒全長度基因體序列之解讀。碩士論文。大葉大學。68頁。 蔡文惠。1995。木瓜接種不同輪點病毒系統後的反應。碩士論文。臺灣大學。67頁。 蔡佳真。2004。台灣地區大王仙丹(Ixora duffii cv. ‘Super King’)新紀錄病毒之鑑定與分子生物學特性分析。碩士論文。屏東科技大學。138頁。 關政平。1990。木瓜輪點病毒之單元抗體的特異性。碩士論文。臺灣大學。127頁。 龔怡蓉。2004。木瓜輪點病毒及木瓜畸葉嵌紋病毒雙重抗性轉基因木瓜之育成及木瓜畸葉嵌紋病毒單株抗體之製備。碩士論文。中興大學。79頁。 Agindotan, B. O., Shiel, P. J., and Berger, P. H. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. J. Virol. Methods 142(1-2): 1-9. Bateson, M. F., Henderson, J., Chaleeprom, W., Gibbs, A. J., and Dale, J. L. 1994. Papaya ringspot potyvirus: isolate variability and the origin of PRSV type P (Australia). J. Gen. Virol. 75: 3547-3553. Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., and Yeh, S. D. 2003. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93(1): 112-120. Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., Liou, P. C., Hsiao, C. H., Lin, C. Y., and Yeh, S. D. 2004. Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Dis. 88(6): 594-599. Bayot, R. G., Villegas, V. N., Magdalita, P. M., Jovellana, M. D., Espino, T. M., and Exconde, S. B. 1990. Seed transmissibility of papaya ringspot virus. Philipp. J. Crop Sci. 15(2): 107-111. Boonham, N., Perez, L. G., Mendez, M. S., Peralta, E. L., Blockley, A., Walsh, K., Barker, I., and Mumford, R. A. 2004. Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. J. Virol. Methods 116(2): 139-146. Calendini, F., and Martin, J. F. 2005. PaupUP v1.0.3.1. A free graphical frontend for Paup* Dos software. Chang, L. S., and Chuang, T. Y. 1992. Papaya ringspot virus tolerance among diverse papaya genotypes. HortScience 27(6): 658. Chang, L. S., Lee, Y. S., Su, H. J., and Hung, T. H. 2003. First report of Papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis. 87:204. Chiang, C. H., and Yeh, S. D. 1997. Infectivity assays of in vitro and in vivo transcription of papaya ringspot virus. Bot. Bull. Acad. Sin. 38: 153-163. Cohn, E., and Duncan, L. W. 1990 Nematode parasites of subtropical and tropical fruit trees. In: Luc, M., Sikora, R.A., and Bridge, J. (eds) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB International, Wallingford, Oxon, UK. p.347-362. Conover, R. A. 1962. Virus disease of the papaya in Florida. Phytopathology 52: 6. Conover, R. A. 1964. Distortion ringspot, a severe virus disease of papaya in Florida. Fla. State Hort. Soc. 77: 440-444. Conover, R. A. 1976. A program for development of papayas tolerant to the distortion ringspot virus. Proc. Fla. State Hort. Soc. 89: 229-231. Conover, R. A., and Litz, R. E. 1978. Progress in bredding papayas with tolerance to Papaya ringspot virus. Proc. Fla. State Hort. Soc. 91: 182-184. Conover, R. A., Litz, R. E., and Malo, S. E. 1986. 'Cariflora' - a Papaya ringspot virus - tolerant papaya for south Florida and the Caribbean. HortScience 21(4): 1072. Cook, A. A., and Zettler, F. W. 1970. Susceptibility of papaya cultivars to papaya ringspot and papaya mosaic viruses. Plnat Dis. Rep. 154(10): 893-895. Damirdagh, I. S, and Ross, A. F. 1967. A marked synergistic interaction of potato viruses X and Y in inoculated leaves of tobacco. Virology 31(2): 296-307. De Bokx, J. A. 1965. Hosts and electron microscopy of two papaya viruses. Plnat Dis. Rep. 49: 742-746. Edwards, A. W. F., and Cavalli-Sforza, L. L. 1963. The reconstruction of evolution. Ann. Human Genetics. 27(1): 105-106. Edwardson, J. R. 1974. Some properties of the potato virus-Y group. Page 398 in: Fla. Agric. Exp. Stn. Monogr. 4. Edwardson, J. R., Christie, R. G., and Ko, N. J. 1984. Potyvirus cylindrical inclusions - Subdivision-IV. Phytopathology 74: 1111-1114. Erwin, D. C., and Ribiero, O. K. 1996. Phytophthora Diseases Worldwide. APS press, St. Paul, Minnesota. Fabre, F., Kervarrec, C., Mieuzet, L., Riault, G., Vialatte, A., and Jacquot, E. 2003. Improvement of Barley yellow dwarf virus-PAV detection in single aphids using a fluorescent real time RT-PCR. J. Virol. Methods 110: 51-60. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. Felsenstein, J. 2004. Inferring phylogenies. Sinauer Associates. Sunderland, Mass. Ferreira, S. A., Pitz, K. Y., Manshardt, R., Zee, F., Fitch, M., and Gonsalves, D. 2002. Virus coat protein rransgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis. 86(2): 101. Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., and Sanford, J. C. 1992. Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10: 1466-1472. Fuchs, M., and Gonsalves, D. 2007. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu. Rev. Phytopathol. 45: 173-202. Gibbs, A. J., and Harrison, B. 1976. Plant virology: the principles. Wiley, NY. Gonsalves, D. 1998. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36: 415-437. González-Jara, P., Tenllado, F., Martínez-García, B., Atencio, F. A., Barajas, D., Vargas, M., Díaz-Ruíz, J., and Díaz-Ruíz, J. R. 2004. Host-dependent differences during synergistic infection by Potyviruses with Potato virus X. Mol. Plant Pathol. 5(1): 29-35. Goodman, R. M., and Ross, A. F. 1974. Enhancement by potato virus Y of potato virus X synthesis in doubly infected tobacco depends on the timing of invasion by viruses. Virology 58: 263-271. Hasegawa, M., Kishino, H., and Yano, T. A. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22(2): 160-174. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. 1996. Real time quantitative PCR. Genome Res. 6(10): 986-994. Huelsenbeck, J., and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754-755. Hung, T. H., Wu, M. L., and Su, H. J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147: 599-604. Hung, T. H., Wu, M. L., and Su, H. J. 2000. A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of Citrus Tristeza Virus. J. Phytopathol. 148: 469-475. Jaizme-Vega, M. C., Rodríguez-Romero, A. S., and Núñez, L. A. B. 2006. Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61: 151-162. Jensen, D. D. 1946. Virus diseases of plants and their insect vectors with special reference to Hawaii. Proc. Haw. Ent. Soc. 12: 536-610. Kawano, S., and Yonaha, T. 1992. The occurrence of Papaya leaf-distortion mosaic virus in Okinawa. Tech. Bull. of FFTC 132: 13-23. Khurana, S. M. P. 1970. Effect of virus diseases on the latex and sugar contents of papaya fruits. J. Hortic. Sci. 45: 295-297. Khurana, S. M. P. 1971. Studies on interactions between Oidium caricae Noack and viruses of papaya (Carica papaya L.) J. Phytopathol. 70(2): 181-184. Kiritani, K., and Su, H. J. 1999. Papaya ring spot, banana bunchy top, and citrus greening in the Asia and Pacific region: occurrence and control strategy. Japn. Agri. Res. Quar. 33: 23-30. Klas, F. E., Fuchs, M., and Gonsalves, D. 2006. Comparative spatial spread overtime of Zucchini yellow mosaic virus (ZYMV) and Watermelon mosaic virus (WMV) in fields of transgenic squash expressing the coat protein genes of ZYMV and WMV, and in fields of nontransgenic squash. Transgenic Res. 15: 527-541. Larget, B., and Simon, D. 1999. Markov chain Monte Carlo algorithms for the Bayesian and analysis of phylogenetic trees. Mol. Biol. Evol. 16: 750-759. Lin, C. C., Su, H. J., and Wang, D. N. 1989. Tne control of papaya ringsot virus in Taiwan R.O.C. Tech. Bull. - ASPAC Food Fertil. Tech. Cent. 114: 1-13. Linder, R. C., Jensen, D. D., and Ikeda, W. 1945. Ringspot: new papaya plunderer. Haw. Farm and Home 8(10): 10-14. Litz, R. E., and Conover, R. A. 1983. High-frequency somatic embryogenesis from Carica suspension cultures. Ann. Bot. 51: 683-686. Lius, S., Manshardt, R. M., Fitch, M. M. M., Slightom, J. L., Sanford, J. C., and Gonsalves, D. 1997. Pathogen derived resistance provides papaya with effective protection against papaya ringspot virus. Mol. Breed. 3: 161-168. Livak, K. J., Flood, S. J. A., Marmaro, J., Giusti, W., and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting pcr product and nucleic-acid hybridization. PCR Methods Appl. 4(6): 357-362. Manshardt, R. M., and Wenslaff, T. F. 1989. Interspecific hybridization of papaya with other Carica species. J. Am. Soc. Hort. Sci. 114(4): 689-694. Maoka, T., Kashiwazaki, S., Tsuda, S., Usugi, T., and Hibino, H. 1996. Nucleotide sequence of the capsid protein gene of Papaya leaf-distortion mosaic potyvirus. Arch. Virol. 141: 197-204. Maoka, T., and Hataya, T. 2005. The complete nucleotide sequence and biotype variability of Papaya leaf distortion mosaic virus. Phytopathology 95: 128-135. Mason, G., Caciagli, P., Accotto, G. P., and Noris, E. 2008. Real-time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J. Virol. Methods 147(2): 282-289. Mekako, H. U., and Nakasone, H. Y. 1975. Interspecific hybridization among 6 Carica species. J. Am. Soc. Hort. Sci. 100(3): 237-242. Mumford, R. A., Walsh, K., Barker, I., and Boonham, N. 2000. Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology 90(5): 448-453. Nariani, T. K. 1956. Leaf curl of papaya. Indian Phytopathol. 9: 151-155. Noa-Carrazana, J. C., Gonzalez-de-Leon, D., Ruiz-Castro, B. S., Pinero, D., and Silva-Rosales, L. 2006. Distribution of Papaya ringspot virus and Papaya mosaic virus in papaya plants (Carica papaya) in Mexico. Plant Dis. 90(8): 1004. Noa-Carrazana, J. C., Gonzalez-de-Leon, D., and Silva-Rosales, L. 2007. Molecular characterization of a severe isolate of papaya ringspot virus in Mexico and its relationship with other isolates. Virus Genes 35:109-117. Petrzik, K., and Fránová, J. 2006. Complete genome sequence of Daphne mosaic virus-a potyvirus from an ornamental shrub related to papaya leaf distortion mosaic virus. Arch. Virol. 151: 1461-1465. Purcifull, D. E., Edwardson, J., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB descriptions of plant viruses. No.292. Quemada, H., L'Hostis, B., Gonsalves, D., Reardon, I. M., Heinrikson, R., Hiebert, E. L., Sieu, L. C., and Slightom, J. L. 1990. The nucleotide sequences of the 3'-terminal regions of papaya ringspot virus strains W and P. J. Gen. Virol. 71: 203-210. Rochow, W. F., and Ross, A. F. 1955. Virus multiplication in plants doubly infected by potato viruses X and Y. Virology 1(1): 10-27. Saitou, N, and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4): 406-425. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory, NY. 2nd ed. Saponari, M., Manjunath, K., and Yokomi, R. K. 2008. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan®). J. Virol. Methods 147(1): 43-53. Shi, X. M., Miler, H., Verchot, J., Carrington, J. C., and Vance, V. B. 1997. Mutations in the region encoding the central domain of helper component-proteinase (HC-Pro) eliminate Potato virus X/Potyviral synergism. Virology 231: 35-42. Shukla, D. D., Ward, C. W., and Brunt, A. A. 1994. The potyviridae. CAB International, Wallingford, Oxon, UK. p.18. Simmonds, J. H. 1965. Papaw diseases. Queensland Agric. J. 91: 666-667. Singh, V. S., and Nath, R. P. 1996. Pathogenicity of rootknot nematode Meloidogyne incognita on papaya. Indian J. Nematol. 26: 115-116. Smith, F. E. V. 1929. Plant diseases in Jamaica in 1928. Ann. Rept. Dept. Sci. and Agr. Jamaica 1928: 19. Swofford, D. L. 2000. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. Tripathi, S., Bau, H. J., Chen, L. F., and Yeh, S. D. 2004. The ability of Papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from the transgene. Eur. J. Plant Pathol. 110: 871-882. Ullman, D. E., Cho, J. J., and German, T. L. 1991. Occurrence and distribution of cucurbit viruses in the Hawaiian Islands. Plant Dis. 75: 367-370. Valasek, M. A., and Repa, J. J. 2005. The power of real-time PCR. Adv. Physiol. Educ. 29(3): 151-159. Vance, V. B. 1991. Replication of Potato virus X RNA is altered in coinfections with Potato virus Y. Virology 182: 486-494. Vance, V. B., Berger, P. H., Carrington, J. C., Hunt, A. G., and Shi, X. M. 1995. 5’ proximal potyviral sequences mediate Potato virus X/Potyviral synergistic disease in transgenic tobacco. Virology 206:583-590. Vawdrey, L.L., Grice, K. E., Peterson, R. A., and De Faveri, J. 2004. The use of metalaxyl and potassium phosphonate, mounds, and organic and plastic mulches, for the management of Phytophthora root rot of papaya in far northern Queensland. Aust. Plant Pathol. 33(1): 103-107. Vigano, F., and Stevens, M. 2007. Development of a multiplex immunocapture-RT-PCR for simultaneous detection of BMYV and BChV in plants and single aphids. J. Virol. Methods 146(1-2): 196-201. Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22(1): 130-139. Yang, J. S., Yu, T. A., Cheng, Y. H., and Yeh, S. D. 1996. Transgenic papaya plants from Agrobracterium-mediated transformation of petioles of in vitro propagated multishoot. Plant Cell Rep. 15: 459-464. Yeh, S. D., Gonsalves, D., and Provvidenti, R. 1984. Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74: 1081-1085. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., and Bau, H. J. 1992. Complete nucleotide sequence and genetic organization of Papaya ringspot virus RNA. J. Gen. Virol. 73: 2531-2541. Yonaha, T. 1976. Viruses isolated from papaya in Okinawa (Japan) 1. Properties of papaya ringspot virus. Bull. Coll. Agric. Univ. Ryukyus 23: 115-124. Yonaha, T. 1977. Viruses isolated from papaya (Carica papaya L.) in Okinawa 2. A virus causes yellow mottle and vein necrosis in papaya. Bull. Coll. Agric. Univ. Ryukyus 24: 169-179. Zettler, F. W., Edwardson, J., and Purcifull, D. E. 1968. Ultramicropic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission. Phytopathology 58: 332-335. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41192 | - |
dc.description.abstract | 木瓜是台灣重要熱帶經濟果樹之一,除了木瓜輪點病毒 (Papaya ringspot virus,PRSV) 會造成木瓜極嚴重的病害之外,近年來台灣也發現另一個新浮現的木瓜病毒-木瓜畸葉嵌紋病毒 (Papaya leaf distortion mosaic virus,PLDMV),開始危害田間的木瓜。有關 PLDMV 的研究目前仍在少數,病毒之特性及其發病生態情況仍有待釐清。為此,本論文進行 PLDMV 之基因體全長解序並做比較分析,研發出 PLDMV 的 RT-PCR (反轉錄聚合酶連鎖反應) 與 real-time RT-PCR (即時定量反轉錄聚合酶連鎖反應) 分子檢測方法,且進一步應用於 PLDMV 的接種試驗以探討其致病性。將採集自屏東縣高樹鄉的 PLDMV 分離株 (PLDMV-KS) 進行全長解序,共計 10153 個核苷酸,已上傳至 NCBI GeneBank (Accession number:EU233272)。和日本 J56P 分離株進行比較,全長核苷酸序列相似度為 94.7%,胺基酸序列全長相似度則為 95.5%。就個別基因來做比較,核苷酸序列相似度以 3’UTR 為最高 (96.7%),其次為 CI 以及 CP 基因 (95.8%),而 5’UTR 最低 (86.6%),其次為 P1 基因 (92.2%);胺基酸序列相似度則以 NIa-Pro 最高 (98.4%)、CI 基因為第二 (98.3%)、其次為 6K1 基因 (98.1%,但只有一個胺基酸不同),而 P1 基因相似度則最低 (87.9%)。PLDMV 在木瓜上造成的病徵會依木瓜品種 (系) 的不同而有些微的差異,接種試驗結果發現於台農二號 (TN2)、台大一號 (NTU1) 以及抗輪點病基因轉殖木瓜 (GM) 上會產生葉脈透化或黃化、葉畸形,有時會有絲狀葉的產生,於紅妃品種 (RL) 則不會觀察到絲狀葉的產生。利用 RT-PCR 及 real-time RT-PCR 追蹤病毒的增殖情況,在接種後 12 天 TN2、NTU1 及 GM 木瓜可偵測到 PLDMV 存在,約一個月後病毒攀升到最高增殖量;RL 則是在第 20 天才開始被偵測到,約兩個月後病毒才攀升到最高增殖量,顯示其對 PLDMV 耐病性較高。相對於 PLDMV,PRSV (畸形系統) 的接種試驗顯示於 TN2、NTU1 及 RL 可較早偵測到 PRSV,在第 14~16 天就能攀升到最高增殖量;而 GM 木瓜則對其具抗性。若木瓜同時混合接種 PLDMV 及 PRSV 時,會改變原本二病毒的增殖情形。由 real-time RT-PCR 的追蹤結果發現在混合接種的情況下,PRSV 在木瓜體內的含量會比單獨接種時的含量高,而且會延遲 PLDMV 達到飽和所需的時間。PLDMV 似乎有增強 PRSV 在木瓜體內的繁殖能力;且當兩病毒同時感染時,病徵也呈現協力作用而較為嚴重,因此在進行木瓜病毒病害防治時,PLDMV 不容忽視。 | zh_TW |
dc.description.abstract | Papaya is one of the tropical fruits with economic importance in Taiwan. Another conspicuous pest, Papaya leaf distortion mosaic virus (PLDMV), recently occurred in the papaya orchards in Taiwan besides Papaya ringspot virus (PRSV). The pathological and molecular characters associated with PLDMV are still unclear because of rare studies on it. This thesis was dedicated to study the genomic nature and investigate the pathogenicity of PLDMV. Several important data such as the determination of full-length genomic sequence of PLDMV, development of RT-PCR (reverse- transcription polymerase chain reaction) and real-time RT-PCR (real-time reverse-transcription polymerase chain reaction) for efficiently qualitative and quantitative detection of PLDMV, and inoculation tests for comparative pathogenicity of PLDMV on different papaya cultivars (lines) were completely presented in this thesis. The full-length genomic sequence of PLDMV (Taiwan-KS isolate) was determined (total 10,153 nucleotides) and published in GenBank (Accession number: EU233272). Based on the results of alignment, the full-length nucleotide sequences were 94.7% homologous between KS and Japanese isolate (J56P). The nucleotide alignment of individual genes demonstrated that the 3’UTR, CI and CP genes have higher homology (96.7%, 95.8% and 95.8% respectively) whereas 5’UTR and P1 genes have lower homology (86.6% and 92.2% respectively) between them. The amino acid alignment of individual genes demonstrated that the NIa-Pro and CI have higher homology (98.4% and 98.3% respectively) whereas P1 has lower homology (87.9%). Symptoms induced by PLDMV were various on different papaya cultivars (lines) such as Tainung No.2 (TN2), National Taiwan University Hybrid No.1 (NTU1), Red Lady (RL) and the genetically modified papaya against PRSV (GM). PLDMV induced symptoms including vein-clearing, leaf-distortion and fern-leaf on TN2, NTU1 and GM. On RL, PLDMV induced vein-clearing and mild leaf-distortion without fern-leaf symptoms. The multiplicative fluctuation of PLDMV on different papaya cultivars (lines) was qualitatively and quantitatively monitored by RT-PCR and real-time RT-PCR. The results showed that PLDMV could be detected 12 days post-inoculation (dpi) on TN2, NTU1 and GM papaya, and it replicated to the maximum approximately 30 dpi. PLDMV was detected 20 dpi on RL, and it replicated to the maximum approximately 60 dpi. Compared to PLDMV-infection, PRSV seemed to show better susceptibility in papayas. PRSV could be earlierly detected than PLDMV after inoculation, and it rapidly replicated to the maximum approximately 14~16 dpi. On the other hand, the results of simultaneous inoculation with PLDMV and PRSV indicated that the amount of PRSV in papayas was increased more than individual infection of PRSV, and PRSV slightly delay the multiplication of PLDMV. The results also showed that papayas co-infected with PLDMV and PRSV produced more serious symptoms than those infected individual PLDMV or PRSV. PLDMV should be not neglected in the control of virus diseases of papaya. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:22:56Z (GMT). No. of bitstreams: 1 ntu-97-R95633001-1.pdf: 2361779 bytes, checksum: c7084392dbb254e58d09d43dca6f927c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書............................................................................................................i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 表目錄 viii 圖目錄 ix 壹、前言 1 貳、文獻回顧 4 一、有關木瓜輪點病毒之研究 4 (一) 發生與危害 4 (二) 病徵與傳播 4 (三) 病毒分類與細胞病理學研究 5 (四) 物理特性 6 (五) 防治方法 7 二、有關木瓜畸葉嵌紋病毒之研究 8 (一) 發生與危害 8 (二) 病徵與傳播 9 (三) 病毒分類與細胞病理學研究 10 (四) 物理特性 11 (五) 防治方法 11 三、即時定量聚合酶連鎖反應 11 參、材料與方法 14 一、試驗植物之準備 14 二、木瓜畸葉嵌紋病毒與木瓜輪點病毒之來源與保存 14 三、木瓜畸葉嵌紋病毒寄主範圍測試 15 四、木瓜畸葉嵌紋病毒台灣高樹分離株 (PLDMV-KS) 全長解序 15 (一) 設計引子對以增幅PLDMV片段 16 (二) 5’ RACE及3’ RACE 17 (三) PCR 產物電泳膠體分析 19 (四) PCR 產物之選殖與定序 19 五、木瓜畸葉嵌紋病毒譜系分析 20 六、木瓜畸葉嵌紋病毒與木瓜輪點病毒之偵測方法 21 (一) 核酸萃取 21 (二) Conventional RT-PCR 22 (三) Real-Time RT-PCR 22 七、木瓜畸葉嵌紋病毒與木瓜輪點病毒於不同品種 (系) 木瓜上之接種試驗 24 肆、結果 26 一、木瓜畸葉嵌紋病毒在木瓜上造成之病徵 26 二、木瓜畸葉嵌紋病毒的寄主範圍 26 三、木瓜畸葉嵌紋病毒台灣高樹分離株全長解序結果 27 四、國內外木瓜畸葉嵌紋病毒分離株和其它 Potyvirus 屬病毒之親源關係分析 28 五、木瓜畸葉嵌紋病毒與木瓜輪點病毒對不同品種 (系) 木瓜之致病性比較試驗 28 六、木瓜畸葉嵌紋病毒與木瓜輪點病毒對不同木瓜品種 (系) 混合接種試驗 30 伍、討論 33 陸、結語 39 柒、參考文獻 41 捌、表 52 玖、圖 60 拾、附錄 78 | |
dc.language.iso | zh-TW | |
dc.title | 木瓜畸葉嵌紋病毒的基因體分析及其與木瓜輪點病毒在木瓜上的交互作用關係研究 | zh_TW |
dc.title | Genomic analysis of Papaya leaf distortion mosaic virus (PLDMV) and study on interaction between PLDMV and Papaya ringspot virus in papayas | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張龍生,葉信宏 | |
dc.subject.keyword | 木瓜,木瓜畸葉嵌紋病毒,木瓜輪點病毒,即時定量反轉錄聚合酶,連鎖反應, | zh_TW |
dc.subject.keyword | papayas,Papaya leaf distortion mosaic virus,Papaya ringspot virus,real-time reverse-transcription polymerase chain reaction, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。