Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41185
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘國隆
dc.contributor.authorKun-Cheng Tsengen
dc.contributor.author曾琨程zh_TW
dc.date.accessioned2021-06-14T17:22:27Z-
dc.date.available2018-07-24
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation[1] Aziz, S. D. and Chandra, S., “Impact, Recoil and Splashing of Molten Metal Droplets,” Int. J. Heat Mass Transfer, Vol. 43, pp. 2841-2857,2000
[2] Bussmann, M. , Chandra, S. and Mostaghimi, J., “Modeling the Splash of a Droplet Impacting a Solid Surface,” Phys. Fluids, Vol. 12(12), pp. 3121-3132, 2000.
[3] Chandra, S. and Avedisian, C. T., “On the collision of a droplet with a surface,”Proc.R.Soc.London,Ser.A. Vo1.432,pp.13-41,1991
[4] Chandra, S. and Avedisian, C. T., “Observations of Droplet Impingement on a Ceramic Porous Surface,” Int. J. Heat Mass Transfer, Vol. 35, No. 10, pp. 2377-2388, 1992.
[5] Cossali, G. E. , Ghe, A. C. and Marengo, M., “The Impact of a Single Drop on a Wetted Solid Surface,” Exp. in Fluid, Vol. 22, pp. 463-472,1997.
[6] Delplanque, J. P. and Rangel, R. H., “A Comparison of Models, Numerical Simulation , and Experimental Results in Droplet Deposition Process,” Acta Mater., Vol. 46, No. 14, pp. 4925-4933,1998.
[7] Engel, O. G.,“Waterdrop collisions with solid surfaces,”J. Res. Nat. Bure. Stand., Vol. 54, No. 5, pp. 281-298, 1955.
[8] Engel, O. G., “Crater depth in fluid impact,”J. Appl. Phys.,Vol. 37, No. 4, pp. 1798-1808, 1966.
[9] Engel, O. G., “Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts,”J. Appl. Phys., Vol. 38, No. 10, pp. 3935-3940, 1967.
[10] Frankin, T. D., “The Spreading of Liquid Droplets on Solid Surfaces,” J. Colloid Interface Sci., Vol. 121, pp. 154-182, 1988.
[11] Fukai, J. , Zhao, Z. and Poulikakos, D. and Megaridis, C. M. and Miyatake, O., “Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface,” Phys. Fluids A, Vol. 5 (11), pp. 2588-2599, 1993..
[12] Fraysse, N. , Valignat, M. P. and Cazabat, A. M. and Heslot, F. and Levinson, P., “The Spreading of Layered Microdroplets,” J. Colloid Interface Sci., Vol. 158, pp. 27-32, 1993.
[13] Fukai, J. , Shiiba, Y. and Yamamoto, T. and Miyatake, O., “Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experiment and modeling,” Phys. Fluids, Vol. 7(2), pp.236-247, 1995
[14] Gottfried, B. S. ,Lee, C. J. and Bell, K. J,“ The Leidenfrost Phenomenon:Film Boiling of Liquid Dtoplets on a Flat Plat,”Int.J.Heat Mass Transfer,Vol.9,pp. 1167-1187,1966.
[15] Gerardo, T. and Julian, S., “Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes,” Met. Trans. B, Vol. 22B, pp. 901-914, 1991
[16] Gu, Y. and Li, D., Liquid drop spreading on solid surfaces at low impact speeds,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 163, pp. 239-245, 2000.
[17] Hocking, L. M. and Rivers, A. D., “The Spreading of a Drop by Capillary Action,” J. Fluid Mech., Vol. 121, pp. 425-442, 1982
[18] Haley, P. J. and Miksis, M. J., “The Effect of the Contact Line on Droplet Spreading,” J. Fluid Mech., Vol. 223, pp. 57-81, 1991.
[19] Hatta, N. , Fujimoto, H. and Takuda, H., “Deformation Process of a Water Droplet Impinging on a Solid Surface,” Trans. of the ASME, Vol. 117, pp. 394-401, 1995.
[20] Leger, L. and Joanny, J. F., “Liquid spreading,” Rep. Prog. Phys., pp. 431-486, 1992.
[21] Miller, C. A. and Neogi, P.,“Interfacial Phenomena--Equilibrium and Dynamic Efects,” Surfactant Science Series, Vol. 17, 1985.
[22] Mundo, C. , Sommerfeld, M. and Tropea, C., “Droplet-Wall Collisions:Experimental studies of the Deformation and Breakup Process,” Int.J. Multiphase Flow, Vol. 21, No. 2, pp. 151-173, 1994.
[23] Mao, T. ,Kuhn, D. C. S. and Tran, H.,“Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces,”AIChE J., Vol. 43(9), pp.2169-2179, 1997.
[24] Marengo, M. and Tropea, C.,“Analysis of Impact of Droplets on Horizontal Surfaces,”Exp. Fluids, Vol. 25, pp. 503-510, 2002.
[25] Mehdi-Nejad, V., Mostaghimi, J. & Chandra, S.“Air bubble entrapment under an impacting droplet. ” Phys. Fluids 15, 173–183 , 2003
[26] Moita, A. S. and A. L. Moreira (2007). 'Experimental study on fuel drop impacts onto rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization.' Proceedings of the Combustion Institute 31: 2175-2183
[27] Mehdizadeh N. Z., Chandra. S and J. Mostaghimi,“Formation of fingers around the edges of a drop” J. Fluid Mech. (2004), vol. 510, pp. 353–373.
[28] Pozrikdis, C., “The Deformation of a Liquid Drop Moving Normal to a Plane Wall,” J. Fluid Mech., Vol. 215, pp. 331-363, 1990.
[29] Pasandideh-Fard, M. and Qiao, Y. M. and Chandra, S. and Mostaghimi,J., “Capillary Effects during Droplet Impact on a Solid Surface,” Phys. Fluids, Vol. 8(3), pp. 650-659, 1996.
[30] Prunet-Foch, B. , Legay, F. and Vignes-Adler, M. and Delmotte, C., “Impacting Emulsion Drop on a Steel Plate:Influence of the Solid Substrate,” Journal Colloid Interface Sci., Vol. 199, pp. 151-168,1998.
[31] Pasandideh-Fard, M. , Bhola, R. and chandra, S. and Mostaghimi, J., “Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments,” Int. J. Heat Mass Transfer, Vol. 41, pp. 2929-2945,1998
[32] Pan, K. L. & Cheng, K. R. & Chou, P. C. & Wang C. H., “Collision dynamics of high-speed droplets upon layers of variable thickness,'Experiments in Fluids, (2008). http://dx.doi.org/10.1007/s00348-008-0486-4.
[33] Rein, M.,“Phenomena of liquid droplet impact on solid and liquid surfaces,”Fluid dynamics Research, Vol. 12, pp. 61-93, 1993.
[34] Rioboo, R., C. Tropea, et al. (2001). 'Outcomes from a drop impact on solid surfaces.' Atomization and Sprays 11(2): 155-165.
[35] Stow, C. D. and Hadfield, M. G.,“An Experimental Investigation of Fluid Flow Resulting From the Impact of a Water Drop with an Unyielding Dry Surface,”Proc. R. Soc. London A, Vol. 373, pp. 419-441, 1981.
[36] Stone, H. A. and Leal, L. G., “Relaxation and Breakup of an Initially Extended Drop in an Otherwise Quiescent Fluid,” J. Fluid Mech., Vol. 198, pp. 399-427, 1989
[37] Scheller, B. L. and Bousfield, D. W., “Newtonian Drop Impact with a Solid Surface,” AIChE Journal, Vol. 41, No. 6, pp. 1357-1367,1995.
[38] Shanahan, M. E. R. and Carre, A.,“Spreading and Dynamics of Liquid Drops involving Nanometric Deformations on Soft Substrates,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol. 206, pp. 115-123, 2002.
[39] Thoroddsen,S.T.and Sakakibara, J.,“Evolution of the fingering pattern of an impacting drop,”Phys. Fluid, Vo1. 10, 1998,pp.1359-1374
[40] Worthington, A. M., “A Study of Splashes,” London: Longman and Green, 1908; reprinted, New York: Macmillian, 1963.
[41] Worthington, A. M., “On the Forms assumed by Drops of Liquids Falling Vertically on a Horizontal Plate,” Proc. R. Soc. London A, Vol. 25, pp. 261-271, 1867.
[42] Walzel, P., “Zerteilgrenze beim Tropfenprall”, Chem. Ing. Tech., Vol. 52, pp. 338-339, 1980
[43] Yarin, A. L. and Weiss, D. A., “Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a new type of Kinematic Discontinuity,” J. Fluid Mech., Vol. 283, pp. 141-173,1995.
[44] Zhang, X. and Basaran, O. A., “Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface,” J. Colloid Interface Sci., Vol. 187, pp. 166-178, 1997.
[45] 林竣斌,“液滴撞擊平板及液膜之實驗硏究'國立台灣大學應用力學研究所碩士論文,1997。
[46] 陳正杰,“液滴撞擊平板及半圓型液膜之動態分析與研究'國立台灣大學機械工程研究所碩士論文,2004。
[47] 鄭凱仁,“不同表面張力水溶液之高速液滴與薄膜碰撞硏究'國立台灣大學機械工程研究所碩士論文,2008。
[48] 周秉忠,“不同表面張力水溶液之高速雙液滴碰撞'國立台灣大學機械工程研究所碩士論文,2008。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41185-
dc.description.abstract本研究以實驗之方式來探討液滴撞擊乾平板之物理現象,並建立了一套可以帶動液滴,使其在短距離內就可以加速液滴之設備。在單顆液滴撞擊平板方面,使用純水、甘油水、Heptane、Nonane四種溶液來當其碰撞液體,控制參數為撞擊速度、表面粗糙度。
實驗之重點在於由上方清楚的拍攝其液滴撞擊平板的過程,因前人鮮少有在液滴與乾版撞擊時,由上方拍攝與記錄,並探討其液體會發生之各種物理現象。此外由於使用之高速攝影機能將其撞擊之情形紀錄下來,才得以對每種液體之飛濺直徑與最大擴張直徑作分析與探討。並在指狀數目與表面粗糙度之關係與前人做探討與分析。
zh_TW
dc.description.abstractThe study discusses the physical atmosphere of the droplet impact the dry surface with the experiment and designs the appliance to speed droplet in a short distance. With regard to a droplet hitting dry surface, the liquid used to hit are water, Glycerol, Heptane, and Nonane. The control parameter is hitting speed and surface roughness.
The experiment emphasizes the liquid hitting surface process by the picture taking from the top because there are few studies used by this way, and it also discusses the different physical atmosphere. In addition, on account of the hitting process capture of the high speed video camera, we can analyze and discuss the splash diameter and maximum spread diameter of different liquid. There also discusses the relation with the number of fingers and surface roughness and compare with the former workers.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:22:27Z (GMT). No. of bitstreams: 1
ntu-97-R95522113-1.pdf: 8305526 bytes, checksum: 09164ddfdf9c64f43a24914162ce3eb7 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
本文目錄 V
圖目錄 VII
符號說明 XI
第 一 章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機及目的 9
第 二 章 實驗設備裝置 10
2-1 液滴產生裝置 10
2-1-1 液滴產生器 10
2-1-2 電子控制裝置 11
2-2 液滴撞擊系統 12
2-3 影像拍攝系統 13
2-4 影像處理系統 15
2-5 其他測量設備 16
第 三 章 實驗步驟與基礎理論 18
3-1 實驗操作與拍攝 18
3-1-1 不同溶液與平板碰撞之操作 18
3-1-2 調配不同黏滯性水溶液之操作 18
3-2 實驗數據讀取與分析 19
3-3 實驗數據之誤差分析 19
3-4 基礎理論 20
3-4-1 液滴拉伸斷裂理論 21
3-4-2 液滴與平板碰撞理論 21
3-5 液滴破裂機制之探討 23
3-5-1 研究之動機 23
3-5-2 破碎之情形 23
3-5-3 破裂形狀與機制之探討 23
第 四 章 實驗之結果與討論 25
第 五 章 結論與未來發展 32
參考文獻 34
圖目錄
圖2.1 實驗設備簡圖 39
圖2.2整體加速設備實圖 40
圖2.3液滴產生器 41
圖2.4控制箱實圖 41
圖2.5 漸縮段實圖 42
圖2.6 撞擊表面,由左到右其粗糙度為Ra=0.20μm,Ra=0.07μm,Ra=0.003μm 42
圖2.7 高速攝影機 43
圖2.8 Nikon(105mm)可調焦鏡頭 43
圖2.9 Computar(EX2C)微拍鏡頭 44
圖2.10 TAMRON 90MM 1:2:8 44
圖2.11 LED光源 45
圖2.12 MotionPro X Stuido其操作介面 45
圖2.13 表面張力儀 46
圖2.14 黏度測量儀 46
圖2.15 電子秤 47
圖2.16 表面粗糙儀 47
圖3.1 液柱拉伸斷裂機制圖Stow, C. D. and Hadfield, M. G1(1981) 48
圖3.2 Mao (1997)【31】所定義的撞擊四個階段 48
圖3.3 當風速以V=18.85m/s,來帶動其液滴的時候,其液滴變形與震盪的情形,其中D=0.50mm,△t=5.88×10-5s 49
圖3.4 當風速以V=28.60m/s,來帶動其液滴的時候,其液滴變形與震盪的時序圖,其中D=0.50mm,△t=5.88×10-5s 50
圖3.5 當風速以V=45.16m/s,來帶動其液滴的時候,其液滴變形與震盪的情形,其中D=0.50mm,△t=5.88×10-5s 51
圖3.6 漸縮段及加速段之示意圖 52
圖3.7 當風速以V=15.92m/s,來帶動其液滴的時候,其液滴變形與破裂的情形,其中D=2.00mm,△t=5.88×10-5s 53
圖3.8 當風速以V=20.17m/s,來帶動其液滴的時候,其液滴變形與破裂的情形,其中D=2.00mm,△t=5.88×10-5s 54
圖3.9 當風速以V=47.77m/s,來帶動其液滴的時候,其液滴變形與破裂的情形,其中D=2.00mm,△t=5.88×10-5s 55
圖3.10 流量為325 L/min 壓力於加速段C處壓力分佈圖,y=0時為管中央 56
圖3.11 流量為325 L/min 壓力於加速段C處速度分佈圖,y=0時為管中央 56
圖3.12 流量為400 L/min 壓力於漸縮段A和A-1處壓力分佈圖,y=0時為管中央 57
圖3.13 流量為400 L/min速度於漸縮段A處分佈圖,y=0時為管中央 57
圖3.14流量為900 L/min 壓力於漸縮段A和A-1處壓力分佈圖,y=0時為管中央 58
圖3.15流量為900 L/min速度於漸縮段A處 分佈圖,y=0時為管中央 58
圖4.1 Water (V=9.12 m/s,We=578,Re=4560, Ra=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 59
圖4.2 Water (V=42.02 m/s,We=12273,Re=21011,Ra=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 60
圖4.3 Water (V=14.75 m/s,We=4470,Re=14183,Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 61
圖4.4 Water( V=18.20 m/s,We=2302,Re=9100,Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 62
圖4.5 Water( V=10.34 m/s,We=743,Re=5170,Ra=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 63
圖4.6 Water( V=35.10 m/s,We=8562,Re=19631,Ra=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 64
圖4.7 Water (V=33.57 m/s,We=7753,Re=18680,Ra=0.003μm,D=0.50mm,Dsplash/D=4.501, Dsplash/Dspread=0.749,△t=1.058×10-5s)撞擊後飛濺現象時序圖 65
圖4.8 Water (V=33.83 m/s,We=7957,Re=18921,Ra=0.003μm,D=0.50mm,△t=1.058×10-5s)撞擊後飛濺現象時序圖 66
圖4.9 Water (V=42.02 m/s,We=12273,Ra=0.003μm,D=0.50mm,Re=21011,△t=5.88×10-5s)撞擊時,發生Delayed splash之時序圖 67
圖4.10酒精之Corona splash 68
圖4.11 水之Prompt splash 68
圖4.12 (a)Water Ra=0.003μm We=12260 68
圖4.12 (b)Water Ra=0.07μm We=12260 68
圖4.12 (c)Mehdizadeh, N. Z. et al. (2004) Water,Ra=0.03μm,We=12232 68
圖4.13 水與20%甘油水之邊界劃分圖 69
圖4.14 20%Glycerol-water (V=12.35 m/s,We=1169,Re=3007,Ra=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 70
圖4.15 20%Glycerol-water(V=34.80 m/s,We=9283,Re=8474,a=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 71
圖4.16 20%Glycerol-water(V=14.75 m/s,We=1668,Re=3592,a=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 72
圖4.17 20%Glycerol-water(V=22.10 m/s,We=3744,Re=5381,Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 73
圖4.18 20%Glycerol-water(V=9.47 m/s,We=687,Re=2306,a=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 74
圖4.19 20%Glycerol-water(V=35.10 m/s,We=9443,Ra=2.0μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 75
圖4.20 20%Glycerol-water(V=43.53m/s,We=14528,Re=11428,Ra=0.003μm,D=0.50mm,Dsplash/D=4.831, Dsplash/Dspread=0.853,△t=5.88×10-5s)撞擊後飛濺時序圖 76
圖4.21 20%Glycerol-water(V=34.80 m/s,We=9283,Re=11428,Ra=0.003μm,D=0.50mm,△t=5.88×10-5s) 撞擊時,發生Delayed splash之時序圖 77
圖4.22 Heptane (V=9.80 m/s, We=1625,Re=8610,a=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖,此現象為corona splash 78
圖4.23 Heptane (V=18.86 m/s,We=6017,Re-16570,Ra=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖, 79
圖4.24 Heptane 和Nonane之各區域在不同粗糙度表面之劃分圖 79
圖4.25 Nonane (V=8.70 m/s,We=1183,Re=4723,=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 80
圖 4.26 不同溶液之無因次化飛濺直徑與其We在粗糙度為Ra=0.003μm趨勢圖 81
圖 4.27 不同溶液之無因次化飛濺直徑與其We在粗糙度為Ra=0.07μm趨勢圖 81
圖 4.28 不同溶液之無因次化飛濺直徑與其We在粗糙度為Ra=0.20μm趨勢圖 82
圖 4.29 水之無因次化飛濺直徑與其We在不同粗糙度表面之趨勢圖 82
圖 4.30 20% 甘油水之無因次化飛濺直徑與其We在不同粗糙度表面之趨勢圖 83
圖 4.31 Heptane之無因次化飛濺直徑與其We在不同粗糙度表面之趨勢圖 83
圖4.32 Nonane之無因次化飛濺直徑與其We在不同粗糙度表面之趨勢圖 84
圖 4.33 不同溶液之飛濺直徑與最大擴張直徑無因次化和其We在粗糙度為Ra=0.003μm趨勢圖 84
圖 4.34 不同溶液之飛濺直徑與最大擴張直徑無因次化後和其We在粗糙度為Ra=0.07μm趨勢圖 85
圖 4.35 不同溶液之飛濺直徑與最大擴張直徑無因次化後和其We在粗糙度為Ra=0.20μm趨勢圖 85
圖4.36吾人之water最大擴張半徑與其PasandidehFard et al(1996)理論值比較趨勢圖 86
圖 4.37吾人實驗之指狀數與其Mehdizadeh et al. (2004)實驗以及理論值相比之趨勢圖 86
圖 4.38 Nonane (V=20.80m/s,We=6764,Re=11291,Ra=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 87
圖 4.39 Nonane (V=12.35 m/s, We=2385,Re=6704,Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 88
圖 4.40 Nonane( V=23.14 m/s,We=8372,Re=11316,Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 89
圖 4.41 Nonane( V=8.12m/s,We=1033,Re=4413,Ra=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 90
圖 4.42 Nonane( V=16.25 m/s, We=4129,Re=7947,Ra=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 91
圖 4.43 Nonane (V=16.25 m/s,We=4129,Re=7213,Ra=0.003μm,D=0.50mm,Dsplash/D=3.348, Dsplash/Dspread=0.631,△t=1.058×10-5s)撞擊時序圖 92
圖 4.44 Heptane (V=10.34 m/s, We=1817,Re=6442,Ra=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 93
圖 4.45 Heptane (V=14.75 m/s,We=3680,Re=12959,Ra=0.003μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 94
圖 4.46 Heptane( V=10.34 m/s,We=1817,Re=8642, Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 95
圖 4.47 Heptane (V=14.75 m/s,We=3680,Re=12959,Ra=0.07μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 96
圖 4.48 Heptane( V=10.62 m/s,We=1807,Re=9080,Ra=0.20μm,D=0.50mm,△t=5.88×10-5s)撞擊時序圖 97
圖 4.49 Heptane( V=10.34 m/s,We=1817,Re=8642,Ra=0.003μm,D=0.50mm,Dsplash/D=2.435,Dsplash/Dspread =0.479,△t=1.058×10-5s)撞擊飛濺時序圖 98
附錄一 99
附錄二 100
附錄三 101
dc.language.isozh-TW
dc.title不同溶液之高速液滴與平板之碰撞zh_TW
dc.titleHigh-Speed Droplet Hitting a Dry Surface with Different Liquiden
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王興華,揚照彥
dc.subject.keyword液滴碰撞,高速液滴,平板,飛濺直徑,韋伯數,zh_TW
dc.subject.keyworddroplet collision,,high speed droplet,dry surface,splash diameter,Weber number,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
8.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved