Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李公哲(Kung-Cheh Li)
dc.contributor.authorHsin-Chieh Wuen
dc.contributor.author吳欣潔zh_TW
dc.date.accessioned2021-06-14T17:21:57Z-
dc.date.available2010-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citationBaker, R. W. (2004). Membrane technology and applications, John Wiley & Sons.
Birdi, K. S. (2003). Handbook of surface and colloid chemistry, CRC Press.
Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. USA, echnomic Publishing Company.
Chiou, C. T., D. E. Kile, et al. (1987). 'A COMPARISON OF WATER SOLUBILITY ENHANCEMENTS OF ORGANIC SOLUTES BY AQUATIC HUMIC MATERIALS AND COMMERCIAL HUMIC ACIDS.' Environmental Science & Technology 21(12): 1231-1234.
Chiou, C. T., D. E. Kile, et al. (1988). 'SORPTION OF VAPORS OF SOME ORGANIC LIQUIDS ON SOIL HUMIC-ACID AND ITS RELATION TO PARTITIONING OF ORGANIC-COMPOUNDS IN SOIL ORGANIC-MATTER.' Environmental Science & Technology 22(3): 298-303.
Chuang, C. J., C. W. Fang, et al. (2003). 'Electro-microfiltration of colloidal suspensions.' Separation Science and Technology 38(4): 797-816.
Crespo, J. G. and K. W. Boddeker (1994). Membrane processes in separation and purification, Kulwer Academic Publishers.
Datsyuk, V., M. Kalyuva, et al. (2008). 'Chemical oxidation of multiwalled carbon nanotubes.' Carbon 46(6): 833-840.
Dresselhaus, M. S., G. Dresselhaus, et al. (2007). 'The big picture of Raman scattering in carbon nanotubes.' Vibrational Spectroscopy 45: 71-81.
Dresselhaus, M. S., G. Dresselhaus, et al. (2002). 'Raman spectroscopy on isolated single wall carbon nanotubes.' Carbon 40(12): 2043-2061.
Duval, J. F. L., K. J. Wilkinson, et al. (2005). 'Humic substances are soft and permeable: Evidence from their electrophoretic mobilities.' Environmental Science & Technology 39(17): 6435-6445.
Edzwald, J. K. (1993). 'COAGULATION IN DRINKING-WATER TREATMENT - PARTICLES, ORGANICS AND COAGULANTS.' Water Science and Technology 27(11): 21-35.
Farahbakhsh, K., C. Svrcek, et al. (2004). 'A review of the impact of chemical pretreatment on low-pressure water treatment membranes.' Journal of Environmental Engineering and Science 3(4): 237-253.
Frimmel, F. H. (1998). 'Characterization of natural organic matter as major constituents in aquatic systems.' Journal of Contaminant Hydrology 35(1-3): 201-216.
Hayes, M. H. B. (2006). 'Solvent systems for the isolation of organic components from soils.' Soil Science Society of America Journal 70(3): 986-994.
HDR-Engineering (2001). Handbook of public water system, John Wiley & Sons.
Heran, M. and S. Elmaleh (2001). 'Microfiltration through an inorganic tubular membrane with high frequency retrofiltration.' Journal of Membrane Science 188(2): 181-188.
Heran, M. and S. Elmaleh (2001). 'Prediction of cross-flow microfiltration through an inorganic tubular membrane with high-frequency retrofiltration.' Chemical Engineering Science 56(10): 3075-3082.
Hosse, M. and K. J. Wilkinson (2001). 'Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength.' Environmental Science & Technology 35(21): 4301-4306.
Huber, S. A. and F. H. Frimmel (1992). 'A NEW METHOD FOR THE CHARACTERIZATION OF ORGANIC-CARBON IN AQUATIC SYSTEMS.' International Journal of Environmental Analytical Chemistry 49(1-2): 49-57.
Huotari, H. M., I. H. Huisman, et al. (1999). 'Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode.' Journal of Membrane Science 156(1): 49-60.
Huotari, H. M., G. Tragardh, et al. (1999). 'Crossflow membrane filtration enhanced by an external DC electric field: A review.' Chemical Engineering Research & Design 77(A5): 461-468.
Hwang, K. J., C. Y. Liao, et al. (2007). 'Analysis of particle fouling during microfiltration by use of blocking models.' Journal of Membrane Science 287(2): 287-293.
Iijima, S. (1991). 'Helical microtubules of graphitic carbon.' Nature 354(7): 56-58.
Jacangelo, J. G., R. R. Trussell, et al. (1997). 'Role of membrane technology in drinking water treatment in the United States.' Desalination 113(2-3): 119-127.
Jagannadh, S. N. and H. S. Muralidhara (1996). 'Electrokinetics methods to control membrane fouling.' Industrial & Engineering Chemistry Research 35(4): 1133-1140.
Li, Y. H., S. G. Wang, et al. (2003). 'Adsorption of fluoride from water by aligned carbon nanotubes.' Materials Research Bulletin 38(3): 469-476.
Lu, C. S., Y. L. Chung, et al. (2005). 'Adsorption of trihalomethanes from water with carbon nanotubes.' Water Research 39(6): 1183-1189.
Maartens, A., P. Swart, et al. (1999). 'Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter.' Journal of Membrane Science 163(1): 51-62.
Maartens, A., P. Swart, et al. (1999). 'Removal of natural organic matter by ultrafiltration: Characterisation, fouling and cleaning.' Water Science and Technology 40(9): 113-120.
Maartens, A., P. Swart, et al. (2000). 'Membrane pretreatment: A method for reducing fouling by natural organic matter.' Journal of Colloid and Interface Science 221(2): 137-142.
Malcolm, R. L. (1990). 'The uniqueness of humic substances in each of soil, stream, and marine environments.' Analytic Chemictry Acta 232: 19-30.
Malcolm, R. L. and P. Maccarthy (1986). 'Limitations in the use of commercial humic acids in water and soil research.' Environmental Science & Technology 20(9): 904-911.

Mulder, M. (1991). Basic principles of membrane technology, Kluwer Academic Publishers.
Peng, X. J., Y. H. Li, et al. (2003). 'Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes.' Chemical Physics Letters 376(1-2): 154-158.
Radovich, J. M., B. Behnam, et al. (1985). 'STEADY-STATE MODELING OF ELECTROULTRAFILTRATION AT CONSTANT CONCENTRATION.' Separation Science and Technology 20(4): 315-329.
Reckhow, D. A., P. C. Singer, et al. (1990). 'CHLORINATION OF HUMIC MATERIALS - BY-PRODUCT FORMATION AND CHEMICAL INTERPRETATIONS.' Environmental Science & Technology 24(11): 1655-1664.
Rosario-Ortiz, F. L., S. A. Snyder, et al. (2007). 'Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries.' Water Research 41(18): 4115-4128.
Schafer, A. I., U. Schwicker, et al. (2000). 'Microfiltration of colloids and natural organic matter.' Journal of Membrane Science 171(2): 151-172.
Schmitt-Kopplin, P., D. Freitag, et al. (1999). 'Analysis of synthetic humic substances for medical and environmental applications by capillary zone electrophoresis.' Analusis 27(5): 390-396.
Schmitt-Kopplin, P., A. W. Garrison, et al. (1998). 'Capillary electrophoresis in the analysis of humic substances - Facts and artifacts.' Journal of Chromatography A 807(1): 101-109.
Sharp, E. L., S. A. Parsons, et al. (2006). 'Seasonal variations in natural organic matter and its impact on coagulation in water treatment.' Science of the Total Environment 363(1-3): 183-194.
Shaw, D. J. (1992). Introduction to colloid and surface chemistry, Butterworth-Heinemann.
Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions, John Wiley and Sons.
Suteerapataranon, S., M. Bouby, et al. (2006). 'Interaction of trace elements in acid mine drainage solution with humic acid.' Water Research 40(10): 2044-2054.
Tan, K. H. (2003). Humic matter in soil and the environment : principles and controversies, Marcel Dekker.
Tansel, B., W. Y. Bao, et al. (2000). 'Characterization of fouling kinetics in ultrafiltration systems by resistances in series model.' Desalination 129(1): 7-14.
Tarleton, E. S. and R. J. Wakeman (1994). 'SIMULATION, MODELING AND SIZING OF PRESSURE FILTERS.' Filtration & Separation 31(4): 393-397.
Thurman, E. M. (1985). Organic geochemistry of natural waters, Kluwer Academic Publication.
Vinodgopal, K., V. Subramanian, et al. (2003). 'Electrophoretic assembly of naturally occurring humic substances as thin films.' Environmental Science & Technology 37(4): 761-765.
Visvanathan, C. and R. Benaim (1989). 'APPLICATION OF AN ELECTRIC-FIELD FOR THE REDUCTION OF PARTICLE AND COLLOIDAL MEMBRANE FOULING IN CROSS-FLOW MICROFILTRATION.' Separation Science and Technology 24(5-6): 383-398.
Wagner, J. (2001). Membrane filtration handbook : practical tips and hints, Osmonics, Inc.
Wakeman, R. J. and E. S. Tarleton (1987). 'MEMBRANE FOULING PREVENTION IN CROSS-FLOW MICROFILTRATION BY THE USE OF ELECTRIC-FIELDS.' Chemical Engineering Science 42(4): 829-842.
Wakeman, R. J. and C. J. Williams (2002). 'Additional techniques to improve microfiltration.' Separation and Purification Technology 26: 3-18.
Wang, S. G., X. W. Liu, et al. (2007). 'Adsorption of fulvic acids from aqueous solutions by carbon nanotubes.' Journal of Chemical Technology and Biotechnology 82(8): 698-704.
Wang, W. K. (2001). Membrane separations in biotechnology, Marcel Dekker.
Watt, B. E., R. L. Malcolm, et al. (1996). 'Chemistry and potential mutagenicity of humic substances in waters from different watersheds in Britain and Ireland.' Water Research 30(6): 1502-1516.
Weng, Y. H., K. C. Li, et al. (2006). 'Removal of humic substances (HS) from water by electro-microfiltration (EMF).' Water Research 40(9): 1783-1794.
Wershaw, R. L., J. A. Leenheer, et al. (2005). Characterization of dissolved and particulate natural organic matter (NOM) in Neversink Reservoir, New York. Scientific Investigations Report. 5108.
Wu, F. C., D. N. Kothawala, et al. (2007). 'Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream.' Applied Geochemistry 22: 1659-1667.
Yuan, W., A. Kocic, et al. (2002). 'Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model.' Journal of Membrane Science 198(1): 51-62.
Yuan, W. and A. L. Zydney (1999). 'Effects of solution environment on humic acid fouling during microfiltration.' Desalination 122(1): 63-76.
Yuan, W. and A. L. Zydney (1999). 'Humic acid fouling during microfiltration.' Journal of Membrane Science 157(1): 1-12.
Zularisam, A. W., A. F. Ismail, et al. (2006). 'Behaviours of natural organic matter in membrane filtration for surface water treatment - a review.' Desalination 194(1-3): 211-231.

李傳宏, 陳利君, et al. (2002). 'Zeta電位測定儀在奈米粉體的應用.' 工業材料雜誌 190: 105-114.
翁堉翔 (2005). 以外加電場薄膜程序處理水中腐植質. 環境工程學硏究所, 國立臺灣大學. 博士論文.
許家銘 (2001). 以電場掃流超過濾蛋白質混和液. 化學工程學系, 私立中原大學. 碩士論文.
許振良、馬炳榮 (2005). 微濾技朮与應用, 化學工業.
蔡正國 (2005). 複合奈米碳管吸附水溶重金屬污染物之應用研究. 環境與安全衛生工程學系, 國立雲林科技大學. 碩士論文.
蔡宇庭 (2006). 水中天然有機物與濁度對外加電場薄膜處理程序之影響硏究. 環境工程學硏究所, 國立臺灣大學. 碩士論文.
鄧淞駿 (2007). 薄膜外加電場處理程序:水中天然有機物及黏土礦物之影響硏究. 環境工程學硏究所, 國立臺灣大學. 碩士論文.
鍾孟佳 (2005). 奈米碳管吸附水中腐植酸之研究. 環境工程研究所, 國立中興大學. 碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41177-
dc.description.abstract本實驗使用無機陶瓷薄膜進行薄膜外加電場掃流過濾程序,以5mg/L DOC濃度之腐植酸(HA)模擬水中天然有機物作為進流液,並加入40 mg/L之單壁奈米碳管(SWCNT)與多壁奈米碳管(MWCNT)配置成三種水樣(HA、HA+SWCNT、HA+MWCNT), 探討不同配比水樣在改變操作壓力、施加電場強度等操作因子,對於濾液通量衰減及水中有機物去除率之影響。
觀察薄膜過濾通量,施加有效電場強度以接近理論臨界電場值可以達到較佳情形,而當所施加之電場強度達到臨界電場值,UV254吸光度及DOC去除率便難再有顯著提升。因此就成本效益加以評估,外加電場輔以奈米碳管進行薄膜程序時,施加之電場強度以接近理論臨界電場為宜。加入奈米碳管之效益,在98kPa操作壓力下較為顯著,含有奈米碳管之配比,在不同電場強度下均比只含腐植酸之溶液有較佳的通量表現。而在49kPa下加入單壁奈米碳管之水樣,當電場強度由43.42 V/cm提高至72.36 V/cm,水樣之DOC去除率僅增加3.61%,相較於電場強度由19.30 V/cm提高至接近理論臨界電場43.42 V/cm時去除率增加18.11%要小很多。
在外加電場作用下,加入單壁奈米碳管之水樣對於UV254吸光度及DOC去除率有較顯著的提升,以操作壓力為49kPa時,其平均去除率較單純腐植酸溶液之去除率可提升11%,添加多壁奈米碳管之配比則與單純腐植酸溶液差異不大。顯示應用外加電場薄膜處理程序去除水中粒子時,欲達到目標去除物種之最適去除效率,不同種類之奈米碳管有其選擇性。
薄膜過濾之總阻力(Rtot)隨外加電場強度提高而顯著下降。外加電場產生之電泳作用使薄膜積垢與濃度極化阻力(Rs)減小,而電滲透作用亦使薄膜本身阻力(Rm)隨著施加電場強度的增加而下降。
奈米碳管加入腐質酸溶液後,僅持續攪拌但不經薄膜程序,則就其(UV254, DOC)平均去除率而言,單壁奈米碳管為(5.72%, 5.55%)、多壁奈米碳管為(1.30%, 1.26%),相較於經過薄膜外加電場處理程序,整體之去除率無論是UV254或DOC至少在50%以上有很大差異,且以單壁奈米碳管更為顯著。可見對於腐植酸有較佳吸附能力、碳結構較為完整之單壁奈米碳管,加上外加電場產生之電泳、電滲透現象,均是本系統可使過濾通量及污染物去除率提升之重要因素。
zh_TW
dc.description.abstractAn electro-membrane cross-flow filtration was conducted with the inorganic ceramic tubular membrane in this study. Three various mixed solutions were prepared from 5mg/L DOC humic acid (HA) which was used to simulate nature organic matter in water, and 40 mg/L single-wall carbon nanotubes (SWCNT) or multi-wall carbon nanotubes (MWCNT). Both the effects of decrement in flux and removal of organic matters in water on different solutions under various pressures and electric field strength were investigated.
The best performance of permeate flux and rejection of UV254 as well as DOC was resulted when applied electric field strength was near theoretical critical electric field value. With respect to the cost-effectiveness evaluation, it is advisable to apply the strength near critical electric field when an electro-membrane filtration process with carbon nanotube addition was implemented.
The benefit of carbon nanotube addition to electro-membrane filtration process is more obvious under 98kPa pressure. The permeate flux of solutions with carbon nanotubes was better than pure humic acid (HA) solution under various electric field strength. When HA+SWCNT solution under 49kPa pressure, the DOC rejection only increased 3.61% with electric field strength rose from 43.42 V/cm to 72.36 V/cm. It was much less than 18.11% increase of DOC rejection when electric field strength rose from 19.30 V/cm to 43.42 V/cm which was close to the critical electric field strength.
When electric field was applied, HA+SWCNT solution has dramatic improvement on rejection of UV254 and DOC. For example, the average rejection of HA+SWCNT solution was 11% more than that of HA solution under 49kPa pressure but there’s little difference between HA+MWCNT solutions and HA solutions. It showed the selectivity of different type of carbon nanotubes to the rejection of target substances in the electro-membrane filtration process.
The total resistance (Rtot) of filtration process could be greatly reduced due to electrokinetic phenomenon induced by electric field application. The effect of electrophoresis caused the decline of the resistance of fouling and concentration polarization layer (Rs), as well as the membrane intrinsic resistance (Rm) under the influence of electro-osmosis while electric field strength increased.
Average rejection of humic acid after adding carbon nanotubes without membrane process, (UV254, DOC) removal were (5.72%, 5.55%) of SWCNT and (1.30%, 1.26%) of MWCNT, respectively. It was much different compared with more than 50% rejection under electro-membrane filtration process, and seemed to be more obvious of adding SWCNT. It could be suggested that SWCNT with more complete carbon structure has better ability of adsorption to humic acid. This phenomenon could attribute to the electric field application like electrophoresis and electro-osmosis, both play important role of the system to enhance permeate flux and rejection of pollutant.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:21:57Z (GMT). No. of bitstreams: 1
ntu-97-R95541201-1.pdf: 2064818 bytes, checksum: e281b0f74cf623b627667b449ccc39be (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
第一章 前言
1.1 研究動機與目的 1-1
1.2 研究項目 1-2
第二章 文獻回顧
2.1 薄膜處理程序 2-1
2.1.1 水處理薄膜種類與操作形式 2-1
2.1.2 薄膜程序的優缺點 2-5
2.1.3 薄膜積垢阻力分析 2-6
2.1.4 減緩薄膜積垢的方法 2-10
2.2 外加電場掃流薄膜過濾程序 2-11
2.2.1 電動力現象 2-12
2.2.2 臨界電場理論 2-14
2.2.3 操作因子對外加電場薄膜程序之影響 2-14
2.3 水中天然有機物 2-16
2.3.1 水中天然有機物的來源與組成 2-16
2.3.2 腐植質特性分析 2-17
2.3.3 水中天然有機物對淨水工程的影響 2-19
2.4 奈米碳管 2-20
2.4.1 奈米碳管的性質與結構 2-20
2.4.2 以奈米碳管去除水中污染物之研究現況 2-21
第三章 實驗設備及方法
3.1 實驗設計與流程 3-1
3.2 實驗步驟及方法 3-3
3.2.1 水樣配置 3-3
3.2.2 實驗步驟 3-3
3.3 實驗設備與材料 3-5
3.3.1 實驗設備 3-5
3.3.2 實驗材料 3-8
3.4 實驗分析設備及分析方法 3-9
3.4.1 材料表面觀測 3-9
3.4.2 水樣特性分析 3-10
3.4.3 薄膜表面分析 3-11
3.4.4 水質參數分析 3-12
第四章 結果與討論
4.1 奈米碳管特性分析 4-1
4.1.1 表面觀測及元素分析 4-1
4.1.2 比表面積及及孔隙分佈測定 4-3
4.2 水樣之界達電位與平均電泳動能 4-5
4.3 薄膜過濾通量與操作因子關聯性探討 4-7
4.3.1 透膜壓差對於通量之影響 4-7
4.3.2 外加電場對於通量之影響 4-8
4.4 電滲透現象 4-16
4.5 薄膜去除污染物效率與操作因子的關聯性 4-21
4.5.1 不同配比水樣及透膜壓差對於去除率之影響 4-21
4.5.2 外加電場對於去除率之影響 4-27
4.6 薄膜外加電場程序之阻力分析 4-29

第五章 結論與建議
5.1 結論 5-1
5.2 建議 5-3
參考文獻 R-1
附錄一:過濾通量原始數據 A-1
附錄二:薄膜界面電位推估 A-7
dc.language.isozh-TW
dc.subject電泳zh_TW
dc.subject薄膜外加電場過濾程序zh_TW
dc.subject腐植酸zh_TW
dc.subject奈米碳管zh_TW
dc.subject電滲透zh_TW
dc.subjectelectro-osmosisen
dc.subjectelectro-membrane filtrationen
dc.subjectelectrophoresisen
dc.subjectcarbon nanotubeen
dc.subjecthumic aciden
dc.title薄膜外加電場處理程序:水中天然有機物及奈米碳管之影響研究zh_TW
dc.titleElectro-Membrane Filtration:Effects of Carbon nanotubes on Treating Natural Organic Matteren
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正芳(Cheng-Fang Lin),莊清榮(Ching-Jung Chuang)
dc.subject.keyword薄膜外加電場過濾程序,腐植酸,奈米碳管,電滲透,電泳,zh_TW
dc.subject.keywordelectro-membrane filtration,humic acid,carbon nanotube,electro-osmosis,electrophoresis,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved