請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41159
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 杜宜殷 | |
dc.contributor.author | Siao-Huei Jiang | en |
dc.contributor.author | 江筱慧 | zh_TW |
dc.date.accessioned | 2021-06-14T17:20:42Z | - |
dc.date.available | 2011-01-01 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | 1. 汪俏梅、曾廣文. 1997. 苦瓜性別分化的形態與組織化學研究. 浙江農業大學學報 23(2): 149-153.
2. 汪俏梅、曾廣文. 1998. 苦瓜性別分化的特異蛋白質研究. 植物學報 40: 241-246. 3. 賈儒珍. 2005. 苦瓜性別表現相關蛋白質之研究. 國立臺灣大學園藝學研究所碩士論文. 4. Ando, S., U. Sato, S. Kamachi, and S. Sakai. 2001. Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213: 943-952. 5. Banerjee, S., and P. S. Basu. 1992. Hormonal regulation of flowering and fruit development: Effect of gibberellic acid and ethrel on fruit setting and development of Momordica charantia L. Biol. Plant. 34: 63-70. 6. Bisaaria, A. K. 1974. The effect of foliar spray of alpha naphthaleneacetic acid on the sex expression in Momordica charantia L. Sci. Cult. 40: 78-80. 7. Chen, H. C., A. Klein, M. Xiang, R. A. Backhaus, and M. Kuntz. 1998. Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J. 14: 317-326. 8. Dellaporta, S. L. and A. Calderon-Urrea. 1993. Sex determination in flowering plants. Plant Cell 5: 1241-1251. 9. Deruere, J., S. Romer, A. d’Harlingue, R. A. Backhaus, M. Kuntz, and B. Camara. 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6: 119-133. 10. Ghosh, M. S. and T. K. Bose. 1969. Effect of photoperiod on sex expression of some cucurbits. South Indian Hort. 17: 43-45. 11. Ghosh, S. and P. S. Basu. 1982. Effect of some growth regulators on sex expression of Momordica charantia L. Sci. Hortic. 17: 107-112. 12. Ghosh, S., and P. S. Basu. 1983. Hormonal regulation of sex expression in Momordica charantia. Physiol. Plant. 57: 301-305. 13. Gillet, B, A. Beyly, G. Peltier, and P. Rey. 1998. Molecular characterization of CDSP 34, a chloroplast protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP 34 expression by ABA and high illumination. Plant J. 16: 257-262. 14. Grant, S., A. Houben, B. Byskot, J. Siroky, W.-H. Pan, J. Macas, and H. Saedler. 1994. Genetics of sex determination in flowering plants. Dev. Genet. 15:214-230. 15. Kessler, F., D. Schnell, and G. Blobel. 1999. Idenification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107-113. 16. Kaushik, M. P., and J. K. Sharma. 1974. Combined effect of day length & morphactin on sex expression in bitter gourd, Momordica charantia L. Indian J. Exp. Biol. 12: 599-600. 17. Kikutani, J. 1966. The breeding of unisexual female flower melon varieties and the characters of F1 hybrid Kinryn obtained as a consequence. Agri. Hort. 40: 1937-1938. 18. Kubicki, B. 1969. Sex determination in muskmelon (Cucumis melo L.). Genet. Polon. 10: 145-146. 19. Lebel-Hardenack, S. and S. R. Grant. 1997. Genetics of sex determination in flowering plants. Trends Plant Sci. 2: 130-136. 20. Leitner-Dagan, Y., M. Ovadis, E. Shklarman, Y. Elad, D. R. David, and A. Vainstein. 2006. Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. Plant Physiol. 142: 233-244. 21. Libal-Weksler, Y., M. Vishnevetsky, M. Ovadis, and A. Vainstein. 1997. Isolation and regulation of accumulation of a minor chromoplast-specific protein from cucumber corollas. Plant Physiol. 113:59-63. 22. Malepszy, S. and K. Niemirowicz-Szczytt. 1991. Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci. 80:39-47. 23. Martin, M. K., J. Franken, K. J. Carney, L. Colombo, and G. C. Angenent. 2001. Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 13: 481-493. 24. Matlob, A. N. and E. A. Basher. 1983. The effect of growth regulators on sex expression and yield of summer squash (Cucubita pepo L.). Acta Hort. 137:361-369. 25. Nayar, N. M. and T. A. More. 1998. Cucurbits. Science Publishers, Inc., USA. 26. Nitsch, J. P., E. B. Kurtz, Jr., J. L. Liverman, and F. W. Went. 1952. The development of sex expression in cucurbit flowers. Amer. J. Bot. 39: 32-43. 27. Ovadis, M., M. Vishnevetsky, and A. Vainstein. 1998. Isolation and sequence analysis of a gene from Cucumis sativus (Accession no. AF099501) encoding the caroteinoid-associated protein CHRC (PGR98-217). Plant Physiol. 118:1536. 28. Papadopoulou, E., H. A. Little, S. A. Hammar, and R. Grumet. 2005. Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Report. 18: 131-142. 29. Pozueta-Romero, J., F. Rafia, G. Houlne, C. Cheniclet, J. P. Carde, M. L. Schantz, and R. Schantz. 1997. A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol. 115:1185-1194. 30. Prakash, G. 1976. Effect of plant growth substances & vernalization on sex expression in Momordica charantia L. Indian J. Exp. Biol. 14:360-362. 31. Prakash, G. 1977. Plant growth regulators and sex expression in flower buds of Momordica charantia in vitro. Curr. Sci. 46: 328-330. 32. Rey, P., B. Gillet, S. Romer, F. Eymery, J. Massimino, G. Peltier, and M. Kuntz. 2000. Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. Plant J. 21: 483-494 33. Robinson, R. W., H.M. Munger, T. W. Whitaker, and G. W. Bohn. 1976. Genes of the cucurbitaceae. HortScience 11: 554-568. 34. Rudich, J., A. H. Halevy, and N. Kedar. 1972. The level of phytohormones in monoecious and gynoecious cucumbers as affected by photoperiod and ethephon. Plant Physiol. 50: 585-590. 35. Sangtae, K., J. Koh, M. J. Yoo, H. Kong, Y. Hu2, H. Ma, P. S. Soltis, and D. E. Soltis. 2005. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J. 43: 724–744. 36. Shuichi, I., J. M. Lyons, and O. E. Smith. 1970. Sex expression in cucumber plants as affected by 2-chlorothylphosphoinc acid, ethylene, and growth regulators. Plant Physiol. 46: 412-415. 37. Smirra, I., A. H. Halevy, and A. Vainstein. 1993. Isolation and characterization of a chromoplast-specific carotenoid-associated protein from Cucumis sativus corollas. Plant Physiol. 102: 491-496. 38. Vainstein, A., A. H. Halevy, I. Smirra, and M. Vishnevetsky. 1994. Chromoplast biogenesis in Cucumis sativus corollas. Rapid effect of gibberellin A3 on the accumulation of a chromoplast-specific carotenoid-associated protein. Plant Physiol. 104: 321-326. 39. Vishnevetsky, M., M. Ovadis, A. Zuker, and A. Vainstein. 1999. Molecular mechanisms underlying carotenogenesis in the chromoplast: Multilevel regulation of carotenoid-associated genes. Plant J. 20: 423-431. 40. Vishnevetsky, M., M. Ovadis, H. Itzhaki, and A. Vainstein. 1997. CHRC, encoding a chromoplast-specific carotenoid-associated protein, is an early gibberellic acid-responsive gene. J. Biol. Chem. 272: 24747-24750. 41. Vishnevetsky, M., M. Ovadis, H. Itzhaki, M. Levy, Y. Libal-Weksler, Z. Adam, and A. Vainstein. 1996. Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplasts. Plnat J. 10: 1111-1118. 42. Wang, S., L. Tang, F. Chen. 2001. In vitro flowering of bitter melon. Plant Cell Rep. 20: 393-397. 43. Yamasaki, S., N. Fujii, and H. Takahashi. 2003a. Characterization of ethylene effects on sex determination in cucumber plants. Sexual Plant Report. 16: 103-111. 44. Yamasaki, S., N. Fujii, and H. Takahashi. 2003b. Photoperiodic regulation of CS-ACS2, CS-ACS4 and CS-ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short-day conditions. Plant Cell Environ. 26:537-546. 45. Yang, Y., R. Sulpice, A. Himmelbach, M. Meinhard, A. Christmann, and E. Grill. 2006. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences of the United States of America. 103: 6061-6066. 46. Yin, T. and J. A. Quinn. 1995. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am. J. Bot. 82: 1537-1546. 47. Zybailov, B., H. Rutschow, G. Friso, A. Rudella, O. Emanuelsson, Q. Sun, and K. J. van Wijk. 2008. Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome. PLoS ONE 3(4): e1994. doi:10.1371/journal.pone.0001994 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41159 | - |
dc.description.abstract | 苦瓜 (Momordica charantia L.) 為雌雄異花同株之葫蘆科作物,其產生雄花及雌花之比例可利用外施植物生長調節劑加以調節。經以蛋白質體學試驗,顯示質脂結合蛋白 (plastid-lipid associated protein, PAP) 在雌花發育階段有特異表現。為瞭解質脂結合蛋白對花性決定之機制,以阿拉伯芥質脂結合蛋白基因為探針,進行溶斑形成雜交法,篩選月華苦瓜cDNA庫一百五十萬個溶斑形成單位 (plaque forming unit, pfu),得到36個選殖系。其中pMcPAP-76 cDNA長1,226 bp,包含一個長984 bp之開放閱讀框架 (open reading frame),可演繹出327個胺基酸,預測之分子量與等電點分別為35.53 kDa及4.89,將其基因命名為McPAP1。McPAP1胺基酸序列和其他植物物之PAP同源性界於62.7~79.9%,與胡瓜雜色體蛋白C (chromoplast protein C, CHRC) 之相似性最高為79.9%。由南方氏雜交分析,得知McPAP1在月華苦瓜基因組中為單一拷貝基因。分析McPAP1之基因表現,顯示其在盛開之雄花、雌花及果實有專一性表現,在花器表現上,McPAP1在盛開的雄花表現量最大,而在早期發育之雌花表現量較高。偵測McPAP1於不同授粉天數果實中表現情形,顯示隨著果實的發育,基因表現增加,於授粉後第18天表現大量增加,至授粉後第24天之發育後期,達到最大之表現量,約為授粉後第18天之1.5倍。為了瞭解植物生長調節劑對McPAP1基因表現之影響,分別以IAA及乙烯處理果實,北方雜交分析結果顯示其基因表現會受到乙烯誘導而受到IAA抑制。為釐清McPAP1表達位置及與性別表現之相關性,將進行GFP融合蛋白載體之暫時性表達分析。 | zh_TW |
dc.description.abstract | Bitter gourd (Momordica charantia L.) is a monoecious species in Cucurbitaceae. Sex expression of bitter gourd is altered by exogenous application of plant growth regulators. Using 2- dimensional protein gel electrophoresis to identify sex expression-related proteins in bitter gourd, the results indicated that the plastid-lipid associated protein (PAP) expressed specifically during female flower development. To understand the mechanism of sex determination, plaque hybridization was performed to screen the PAP cDNA from bitter gourd library using Arabidopsis thaliana PAP gene as probe. Thirty-six cDNA clones were obtained. cDNA clone pMcPAP76 is 1,226 bp in length and possesses an open reading frame of 984 bp, enconding a polypeptide of 327 amino acids with an isoelectric point of 4.89 and a molecular weight of 35.53 kDa. The corresponding gene of pMcPAP76 cDNA is named McPAP1. The deduced amino acid sequence of McPAP1 shared high homology with other PAP around 62.6% to 79.9%, especially cucumber chromoplast protein C (CHRC) with 79.9% identity. Southern blot analysis indicated that McPAP1 belongs to a single-copy gene. Northern blot and RT-PCR analysis reflected that the expression of McPAP1 was specific in flower and fruit. The McPAP1 gene expressed most abundantly in male flowers at full blussom, but more abundantly at early stage in female flowers. The McPAP1 gene expression was consisted in the fruit development stage. The McPAP1 gene expression in fruit was found largest at 24-day after pollination which was 1.5 times as much as did that at 18-day after pollination. McPAP1 expression was induced in fruit tissues treated with ethylene, but inhibited by IAA. To clarify the McPAP1 localization and the relation to sex expression, GFP-fusion protein was constructed for transient analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:20:42Z (GMT). No. of bitstreams: 1 ntu-97-R95628110-1.pdf: 12934712 bytes, checksum: 5bd1dc63e79d2efdfc0431f5777efe70 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書
謝誌 ii 內容目次 iii 圖表目次 vi 中文摘要 1 Abstract 2 壹、 前言 3 貳、 前人研究 4 一、植物的花性 4 (一) 植物花性種類 4 (二) ABCDE model 與花朵型態發生之關係 4 二、影響植物花朵性別之因子 5 (一) 性別表現之遺傳因子 5 (二) 生長調節劑與性別表現之關係 7 三、影響胡瓜性別表現之因子 7 (一) 胡瓜性別表現之遺傳因子 8 (二) ABCDE model與雌雄異花同株之胡瓜花性表現 8 (三) 溫度及光週期對胡瓜性別表現之影響 9 (四) 環境因子與內生荷爾蒙之關係 9 (五) 生長調節劑對胡瓜性別表現之影響 10 四、 影響苦瓜性別表現之因子 12 (一) 日照長度 12 (二) 低溫浸種處理 12 (三) 植物生長調節劑 12 五、苦瓜花器分化之型態及性別相關蛋白之研究 14 (一) 苦瓜花器分化之型態 14 (二) 苦瓜性別相關之蛋白質 15 六、質脂相關蛋白之表現 17 (一) 質脂相關蛋白分離及其基因選殖 17 (二) 植物生長調節劑對質脂相關蛋白表現之影響 18 (三) CHRC promotor 分析及調控 19 七、 質脂相關蛋白之功能分析 19 (一) 質脂相關蛋白與雜色體形成之關係 19 (二) 逆境對質脂相關蛋白表現之影響 19 參、材料與方法 22 一、植物材料 22 二、試驗方法 22 (一) 苦瓜質脂結合蛋白cDNA之選殖 22 (二) 南方氏雜交分析 (Southern hybridization analysis) 25 (三) 北方雜交分析 27 (四) GFP融合蛋白載體構築 30 (五) 過量表現載體構築 30 肆、結果 38 一、苦瓜質脂結合蛋白cDNA之選殖與分析 38 (一) 苦瓜質脂結合蛋白cDNA之選殖 38 (二) 南方氏雜交分析 41 二、苦瓜質脂結合蛋白基因之表現分析 41 (一) 苦瓜質脂結合蛋白基因於月華苦瓜不同器官之表現 41 (二) 苦瓜質脂結合蛋白基因於月華苦瓜不同生長階段之雄花及雌花之表現 41 (三) 苦瓜質脂結合蛋白基因於月華苦瓜授粉後不同天數果實之表現 47 (四) 苦瓜質脂結合蛋白基因於不同時數處理IAA之月華苦瓜果實之表現 47 (五) 苦瓜質脂結合蛋白基因於不同乙烯濃度處理之月華苦瓜果實之表現 47 伍、討論 52 一、 苦瓜質脂結合蛋白基因之特性 52 二、苦瓜質脂結合蛋白之特性 52 三、苦瓜質脂相關蛋白基因之表現分析 53 陸、結語 57 柒、參考文獻 58 | |
dc.language.iso | zh-TW | |
dc.title | 苦瓜質脂結合蛋白cDNA之選殖與分析 | zh_TW |
dc.title | Cloning and Analysis of cDNAs Encoding Plastid-Lipid Associated Proteins in Bitter Gourd (Momordica charantia L.) | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | ?鵬林 | |
dc.contributor.oralexamcommittee | 何國傑,鄭隨和 | |
dc.subject.keyword | 質脂結合蛋白, | zh_TW |
dc.subject.keyword | Plastid-Lipid Associated Protein, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 12.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。