Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41142
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童心欣(Hsin-Hsin Tung)
dc.contributor.authorHsin Huangen
dc.contributor.author黃馨zh_TW
dc.date.accessioned2021-06-14T17:19:42Z-
dc.date.available2011-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citationAshbolt, N.J., Grabow, W.O., and Snozzi, M. (2001). Indicators of microbial water quality. In W.H. Organization, ed. (Geneva, Switzerland, World Health Organization).
Bernhard, A.E., and Field, K.G. (2000a). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66, 1587-1594.
Bernhard, A.E., and Field, K.G. (2000b). A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66, 4571-4574.
Bonkosky, M., Hernandez-Delgado, E.A., Sandoz, B., Robledo, I.E., Norat-Ramirez, J., and Mattei, H. (2009). Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays. Marine Pollution Bulletin 58, 45-54.
Bordalo, A.A., Nilsumranchit, W., and Chalermwat, K. (2001). Water quality and uses of the Bangpakong River (Eastern Thailand). Water Research 35, 3635-3642.
Byamukama, D., Kansiime, F., Mach, R.L., and Farnleitner, L.H. (2000). Determination of Escherichia coli contamination with chromocult coliform agar showed a high level of discrimination efficiency for differing fecal pollution levels in tropical waters of Kampala, Uganda. Appl Environ Microbiol 66, 864-868.
Byrd, J.J., and Colwell, R.R. (1993). Long-term survival and plasmid maintenance of Escherichia Coli in marine microcosms. Fems Microbiology Ecology 12, 9-14.
Cabelli, V.J., Dufour, A.P., Mccabe, L.J., and Levin, M.A. (1982). Swimming-Associated Gastroenteritis and Water-Quality. American Journal of Epidemiology 115, 606-616.
Cabelli, V.J., Station, M.F., and West Kingston, R.I. (1983). Health effects criteria for marine recreational waters (Washington, D.C., Environmental Protection Agency).
Cabral, J., and Marques, C. (2006). Faecal coliform bacteria in Febros River (Northwest Portugal): Temporal variation correlation with water parameters and species identification. Environmental Monitoring and Assessment 118, 21-36.
Chen, R.M., Wu, J.J., Lee, S.C., Huang, A.H., and Wu, H.M. (1999). Increase of intestinal Bifidobacterium and suppression of coliform bacteria with short-term yogurt ingestion. Journal of Dairy Science 82, 2308-2314.
Colford Jr., J.M., Wade, T.J., Schiff, K.C., Wright, C.C., Griffith, J.F., Sandhu, S.K., et al. (2007). Water quality indicators and the risk of illness at beaches with non-point sources of fecal contamination. epidemiology 18, 27-35.
Crabill, C., Donald, R., Snelling, J., Foust, R., and Southam, G. (1999). The impact of sediment fecal coliform reservoirs on seasonal water quality in Oak Creek, Arizona. Water Research 33, 2163-2171.
Daly, K., Stewart, C.S., Flint, H.J., and Shirazi-Beechey, S.P. (2001). Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. Fems Microbiology Ecology 38, 141-151.
Davies, C.M., Long, J.A.H., Donald, M., and Ashbolt, N.J. (1995). Survival of fecal microorganisms in marine and fresh-water sediments. Appl Environ Microbiol 61, 1888-1896.
Devane, M.L., Robson, B., Nourozi, F., Scholes, P., and Gilpin, B.J. (2007). A PCR marker for detection in surface waters of faecal pollution derived from ducks. Water Research 41, 3553-3560.
Dick, L.K., Bernhard, A.E., Brodeur, T.J., Domingo, J.W.S., Simpson, J.M., Walters, S.P., and Field, K.G. (2005). Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71, 3184-3191.
Domingo, J.W.S., Bambic, D.G., Edge, T.A., and Wuertz, S. (2007). Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Research 41, 3539-3552.
Dorai-Raj, S., O'Grady, J., and Colleran, E. (2009). Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteria-specific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland. Water Research 43, 4980-4988.
Dwight, R.H., Baker, D.B., Semenza, J.C., and Olson, B.H. (2004). Health effects associated with recreational coastal water use: Urban versus rural California. American Journal of Public Health 94, 565-567.
Eckner, K.F. (1998). Comparison of membrane filtration and multiple-tube fermentation by the Colilert and Enterolert methods for detection of waterborne coliform bacteria, Escherichia coli and enterococci used in drinking and bathing water quality monitoring in southern Sweden. Applied and Environmrntal Microbiology 64, 3079-3083.
Espigares, M., Coca, C., Fern’andez-Crehuet, M., Moreno, O., and G’alvez (1996). Chemical and microbiologic indicators of faecal contamination in the Guadalquivir (Spain). Water Management 6, 7-13.
Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E., and Akkermans, A.D.L. (1997). Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143, 2983-2989.
Fleisher, J.M., Fleming, L.E., Solo-Gabriele, H.M., Kish, J.K., Sinigalliano, C.D., and Plano, L., et al. (2010). The BEACHES Study:health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int J Epidemiol, 1-8.
Fleisher, J.M., Jones, F., Kay, D., Stanwellsmith, R., Wyer, M., and Morano, R. (1993). Water and non-water-related risk-factors for gastroenteritis among bathers exposed to sewage-contaminated marine waters. International Journal of Epidemiology 22, 698-708.
Fleisher, J.M., Kay, D., Wyer, M., and Merrett, H. (1996). The enterovirus test in the assessment of recreational water-associated gastroenteritis. Water Research 30, 2341-2346.
Fremaux, B., Gritzfeld, J., Boa, T., and Yost, C.K. (2009). Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Research 43, 4838-4849.
Gauthier, F., and Archibald, F. (2001). The Ecology of 'fecal indicator' bacteria commonly found in Pulp and paper mill water systems. Water Research 35, 2207-2218.
Gawler, A.H., Beecher, J.E., Brandao, J., Carroll, N.M., Falcao, L., Gourmelon, M., Masterson, B., Nunes, B., Porter, J., Rince, A., et al. (2007). Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Research 41, 3780-3784.
Geldreich, E.E., and Kenner, B.A. (1969). Concepts of Fecal Streptococci in Stream Pollution. Water Pollution Control Federation 41, 336~352.
Hendry, G.S., Janhurst, S., and Horsnell, G. (1982). Some effects of pulp and paper wastewater on microbiological water quality of a river. Water Research 16, 1291-1295.
Hutchinson, M., and Ridgway, J.W. (1977). Microbiological aspects of drinking water supplies. ( London Academic Press).
Izard, D., Ferragut, C., Gavini, F., Kersters, K., Deley, J., and Leclerc, H. (1981). Klebsiella terrigena, a New Species from Soil and Water. Systematic and Evolutionary Microbiology 31, 116-127.
Kay, D., Fleisher, J.M., Salmon, R.L., Jones, F., Wyer, M.D., Godfree, A.F., Zelenauchjacquotte, Z., and Shore, R. (1994). Predicting likelihood of gastroenteritis from sea bathing - results from randomized exposure. Lancet 344, 905-909.
Leclerc, H. (2001). Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Review of Microbiology 55, 201.
Lu, J.R., Domingo, J.S., and Shanks, O.C. (2007). Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Research 41, 3561-3574.
Lu, J.R., Domingo, J.W.S., Hill, S., and Edge, T.A. (2009). Microbial diversity and host-specific sequences of Canada goose feces. Appl Environ Microbiol 75, 5919-5926.
Madigan, M., and Martinko, J. (2005). Brock biology of microorganisms 11th edn (Lebanon, Indiana, U.S.A, Prentice Hall). ISBN : 9780131443297
Marino, R.P., and Gannon, J.J. (1991). Survival of fecal coliforms and fecal Streptococci in storm drain sediment. Water Research 25, 1089-1098.
Martins, M.T., Sato, M.I.Z., Alves, M.N., Stoppe, N.C., Prado, V.M., and Sanchez, P.S. (1995). Assessment of microbiological quality for swimming pools in South America. Water Research 29, 2417-2420.
McFeter, G.A., and Stuart, D.G. (1972). Survival of Coliform Bacteria in Natural Waters: Field and Laboratory Studies with Membrane-Filter Chambers. Applied and Environmental Microbiology 24, 805-811.
McFetters, G.A., Bissonnette, G.K., Jezeski, J.L., Thomson, C.A., and Stuart, D.G. (1974). Comparative survival of indicator bacteria and enteric pathogens in well water. App Micro 27, 823-829.
McLellan, S.L., Daniels, A.D., and Salmore, A.K. (2001). Clonal populations of thermotolerant Enterobacteriaceae in recreational water and their potential interference with fecal Escherichia coli counts. Appl Environ Microbiol 67, 4934-4938.
Mieszkin, S., Furet, J.P., Corthier, G., and Gourmelon, M. (2009). Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl Environ Microbiol 75, 3045-3054.
Monteiro, L., Gras, N., Vidal, R., Cabrita, J., and Megraud, F. (2001). Detection of Helicobacter pylori DNA in human feces by PCR: DNA stability and removal of inhibitors. Journal of Microbiological Methods 45, 89-94.
Muller G. (1977). Bacterial indicators and standards for water quality in the Federal Republic of Germany. ( Philadelphia, American Society for Testing and Materials).
Muller, T., Ulrich, A., Ott, E.M., and Muller, M. (2001). Identification of plant-associated enterococci. Journal of Applied Microbiology 91, 268-278.
Okabe, S., Okayama, N., Savichtcheva, O., and Ito, T. (2007). Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Applied Microbiology and Biotechnology 74, 890-901.
Ott, E.M., Muller, T., Muller, M., Franz, C., Ulrich, A., Gabel, M., and Seyfarth, W. (2001). Population dynamics and antagonistic potential of enterococci colonizing the phyllosphere of grasses. Journal of Applied Microbiology 91, 54-66.
Prieto, M.D., Lopez, B., Juanes, J.A., Revilla, J.A., Llorca, J., and Delgado-Rodriguez, M. (2001). Recreation in coastal waters: health risks associated with bathing in sea water. J Epidemiol Community Health 55, 442-447.
Rosas, I., Mazari, M., Saavedra, J., and Baez, A.P. (1985). Benthic organisms as indicators of water-quality in lake Patzcuaro,Mexico. Water Air and Soil Pollution 25, 401-414.
Savag, D.C. (1977). Microbial ecology of gastrointestinal tract (illinois, Annu. Rev.), pp. 107-133.
Scott, T.M., Jenkins, T.M., Lukasik, J., and Rose, J.B. (2005). Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environmental Science & Technology 39, 283-287.
Scott, T.M., Rose, J.B., Jenkins, T.M., Farrah, S.R., and Lukasik, J. (2002). Microbial source tracking: Current methodology and future directions. Appl Environ Microbiol 68, 5796-5803.
Shanks, O.C., Santo Domingo, J.W., Lamendella, R., Kelty, C.A., and Graham, J.E. (2006). Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl Environ Microbiol 72, 4054-4060.
Shanks, O.C., Santo Domingo, J.W., Lu, J.R., Kelty, C.A., and Graham, J.E. (2007). Identification of bacterial DNA markers for the detection of human fecal pollution in water. Appl Environ Microbiol 73, 2416-2422.
Snow, J. (1855). On the mode of communication of cholera (, London, J. Churchill).
Solic, M., and Krstulovic, N. (1992). Separate and combined effects of solar radiation, temperature, salinity, and pH on the survival of faecal coliforms in seawater. Marine Pollution Bulletin 24, 411-416.
Soller, J.A., Schoenb, M.E., Bartrandc, T., Ravenscroftd, J.E., and Ashbolt, N.J. (2010). Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. water research 44, 4674-4691.
Wang, J.T., Chang, S.C., Chen, Y.C., and Luh, K.T. (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. The Journal of Microbiology, Immunology and Infection 33 258-262.
Whitman, R.L., and Nevers, M.B. (2003). Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl Environ Microbiol 69, 5555-5562.
江漢全 (1996). 水質分析 (三民書局).
行政院主計處 (94年度). 畜牧業統計, 行政院主計處, ed. (行政院農業委員會).
行政院環境保護署 (95年度). 翡翠水庫集水區污染源削減計畫, 行政院環境保護署, ed.
吳華玲 (2007). 溫泉廢水影響河川水環境之研究-以關子嶺溫泉區為例. In
環境工程與科學系 (嘉南藥理科技大學).
畜牧生產自動化技術服務團 (2000). 跨世紀畜牧生產自動化-草食動物 (畜牧生產自動化技術服務團).
國立臺灣大學生物多樣性研究中心 (2006). 台灣的自然資源與生態資料庫[農林漁牧] (行政院農業委員會林務局).
經濟部水利署台北水源特定區管理局 (97年度). 台北水源特定區污染源管理及環境經營規劃.
經濟部水利署台北水源特定區管理局 (98年度). 台北水源特定區遊憩污染調查及公廁標準圖樣設計.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41142-
dc.description.abstract目前我國判斷水體是否有受到糞便污染乃以培養計數法測得之指標微生物量值做為判斷基準,但是單由指標微生物之數值無法判斷糞便污染之來源。本研究欲建立新的微生物追蹤法 (microbial source tracking, MST) -宿主專一性聚合酶連鎖反應 (宿主專一性PCR),檢測水體是否受到糞便污染,並找出糞便污染之來源。本研究採用16對已發展成熟之宿主專一性引子,並與57個糞便樣品進行交叉試驗,篩選出11對適用於台灣環境之宿主專一性引子 (目標物種分別為人、豬、牛、羊及雞)。最後將宿主專一性PCR應用於實際河川監測,檢測台北水源集水區 (北勢溪、南勢溪及新店溪) 之21個測站的水樣是否有受到糞便污染,確認其污染來源。另外同時分析傳統指標微生物及河川水質參數,並進一步比較參數間之關係。由傳統指標微生物分析結果顯示,在北勢溪的測站坪林堰、大林橋及水源橋,南勢溪的烏來溫泉區附近之測點及整條新店溪測點其指標微生物皆有明顯升高之趨勢,可知上述之河域可能有受到糞便污染。而由宿主專一性PCR的分析結果則可進一步得知在北勢溪流域所受到的糞便污染物種種類較多,有人、反芻動物及雞之糞便污染訊號,且在北勢溪8個測站皆有測到雞之糞便污染,可見雞之糞便污染在此北勢溪流域有一定的影響。而在南勢溪及新店溪流域則是以人之糞便污染較為主,除了測站-福山其他測站皆有人之糞便污染。水質分析結果顯示SS、氨氮及總磷與水中的指標微生物有正相關性 (P < 0.05),pH則與指標微生物呈負相關性 (P < 0.05)。在北勢溪流域土地利用多為茶園、營地及幾家養鹿場,另外,上游農家也有養殖家禽,因此在北勢溪有人、反芻動物及雞之糞便污染,而在南勢溪及新店溪由於為觀光勝地加上居住人口密集,因此在此區人之糞便污染較為嚴重。而氮、磷為微生物生長主要營養鹽之一,因此與指標微生物之數量會有正相關性。經由土地利用調查之結果與宿主專一性PCR檢測結果相比較,其結果皆相符合,證實本實驗挑選出之11對宿主專一性引子 (HF183、Hum163、Hum181、PF163、Pig-2-Bac、RumD1、Bac3、Cow-Bac2、CP2-9、CB-R2-42及CP3-49) 確實有潛力做為應用於台灣河川污染之監測,並可以有效指出糞便污染之來源。zh_TW
dc.description.abstractFecal pollution is frequently detected in the Taipei drinking water drainage basin by traditional indicator microbial cultures. However, it is difficult to defind the origin of fecal pollution by culturing methods. To identify the possible fecal contamination sources in the watershed, this study used microbial source tracking (MST) method identify fecal source by host-specific polymerase chain reaction (host-specific PCR). Sixteen pairs of host-specific primers from varies studies were tested for the suitability in detecting fecal pollution in Taipei water source catchment (including Pei-Shih River, Nan-Shih river, and Sin-Dian River). After cross examination of 57 feces from 8 different species collected in Taiwan, 11 pairs of host-specific primers were selected for the following 21 water samples analysis from the Taipei water source catchment. Water quality parameters (including pH, dissolved oxygen, conductivity, temperature, ammonia, nitrate, nitrite, total phosphorus, suspended solid, turbidity, and total organic carbon) and indicator microorganism (including total coliforms, fecal coliforms, Escherichia coli, and Enterococcus) were also determined. The traditional cultivation results shown that fecal pollution were dectected in several sample locations. From the MST experiments, human was the major fecal source in Nan-Shih River and Sin-Dian River. In Pei-Shih River, human, chicken, and ruminate were the major sources of fecal pollution. The microbial indicator concentration positively correlated to suspended solid, ammonia, and total phosphorus (p < 0.05) and negatively correlated to pH level (p < 0.05). Tea plantations and camp grounds are the major human activities performed in Bei-Shih River; and deer farm and chicken farm are also found in this area. Therefore, human, chicken, and ruminate may be the major source of fecal pollutions. The results of host-specific PCR were well corresponded with land usage. The results from this study may provide the knowledge in tracking fecal pollution for watershed management.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:19:42Z (GMT). No. of bitstreams: 1
ntu-100-R98541113-1.pdf: 11149609 bytes, checksum: 75c89a35526d3dee3bb1002735a1e9a5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
總目錄 vi
圖目錄 ix
表目錄 x
附錄 xi
第一章 前言 1
1.1研究背景 1
1.2研究目的 3
1.3研究方法與流程 4
第二章 文獻回顧 5
2.1指標微生物 5
2.1.1指標微生物的起源及意義 5
2.1.2指標微生物與水域環境的關聯性探討 6
2.1.3指標微生物與水質污染之相關性及面臨之問題 7
2.2 MST法之分類及原理 9
2.3宿主專一性之生物marker 應用實例 11
2.4指標微生物與水域環境的關聯性探討 13
2-5台灣之畜產業 15
2-6台北水源集水區周遭環境與歷年水質相關性分析 16
2.6.1集水區之範圍及周遭環境敘述 16
2.6.2水質參數與大腸菌群之相關性 18
第三章 實驗方法與步驟 22
3.1實驗架構 22
3.2樣品收集及處理 24
3.2.1糞便樣品 24
3.2.2水樣樣品 25
3.3宿主專一性引子之收集與測試 27
3.3.1宿主專一性引子之收集 27
3.3.2 Host-specific PCR之最佳化測試 30
3.3.3交叉試驗cross reaction test 30
3.4 Host-specific PCR 之偵測極限 32
3.4.1 Host-specific PCR之樣品偵測極限測試 32
3.4.2 Host-specific PCR之方法偵測極限測試 33
3.5水樣分析 35
3.5.1 採樣地址描述 35
3.5.2指標性微生物分析 40
3.5.3水質分析方法 44
第四章 實驗結果與討論 48
4.1交叉測試 48
4.2宿主專一性引子之偵測極限 53
4.2.1 方法偵測極限 53
4.2.2 樣品偵測極限 54
4.3各站點的水質分析結果探討 59
4.3.1指標微生物結果分析與討論 59
4.3.2 MST結果分析與討論 66
4.3.3指標微生物與MST結果 75
4.3.4水質項目與指標微生物之關係 78
第五章 結論與建議 81
5.1結論 81
5.2建議 83
參考文獻 84
附錄 91
dc.language.isozh-TW
dc.subject微生物來源追蹤法zh_TW
dc.subject宿主專一性聚合&#37238zh_TW
dc.subject連鎖反應(宿主專一性 PCR)zh_TW
dc.subject糞便污染zh_TW
dc.subject指標微生物zh_TW
dc.subject台北水源集水區zh_TW
dc.subjecthost-specific polymerase chain reaction (host-specific PCR)en
dc.subjectmicrobial source traking (MST)en
dc.subjectTaipei water source catchmenten
dc.subjectmicrobial indicatorsen
dc.subjectfecal pollutionen
dc.title以宿主專一性聚合酶連鎖反應及指標生物法應用於河川糞便污染評估zh_TW
dc.titleThe Assessment of Fecal Pollution in River by Host-specific Polymerase Chain Reaction and Microbial Indicatorsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee靖永皓(Yung-Hao Ching),闕蓓德(Pei-Te Chiueh),吳哲宏(Jer-Horng Wu)
dc.subject.keyword宿主專一性聚合&#37238,連鎖反應(宿主專一性 PCR),糞便污染,指標微生物,台北水源集水區,微生物來源追蹤法,zh_TW
dc.subject.keywordhost-specific polymerase chain reaction (host-specific PCR),fecal pollution,microbial indicators,Taipei water source catchment,microbial source traking (MST),en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2011-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
10.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved