請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41126
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 連雙喜 | |
dc.contributor.author | Wei-Sheng Liang | en |
dc.contributor.author | 梁韋勝 | zh_TW |
dc.date.accessioned | 2021-06-14T17:18:44Z | - |
dc.date.available | 2013-07-30 | |
dc.date.copyright | 2008-07-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | [1] 郭博堯﹐“全球化石能源危機時代與我國所面臨挑戰”﹐國改研究報告﹐2002.
[2] http://www.info-cip.com/﹐“國際商品行情報價”﹐2008. [3] 黃鎮江﹐燃料電池﹐全華圖書股份有限公司﹐2007. [4] J.H Hirschenhofer﹐D.B. Stauffer﹐R.R. Engleman﹐M.G. Klett(Eds.)﹐ Fuel Cell Handbook﹐Fifth Edition﹐US Department of Energy﹐Morgantown﹐WV﹐2000﹐pp.16-28. [5] J.H Hirschenhofer﹐D.B. Stauffer﹐R.R. Engleman﹐M.G. Klett(Eds.)﹐ Fuel Cell Handbook﹐Seventh Edition﹐US Department of Energy﹐Morgantown﹐WV﹐2004﹐pp.238 [6] J.H Hirschenhofer﹐D.B. Stauffer﹐R.R. Engleman﹐M.G. Klett(Eds.)﹐ Fuel Cell Handbook﹐Seventh Edition﹐US Department of Energy﹐Morgantown﹐WV﹐2004﹐pp.31. [7] J.H Hirschenhofer﹐D.B. Stauffer﹐R.R. Engleman﹐M.G. Klett(Eds.)﹐ Fuel Cell Handbook﹐Fifth Edition﹐US Department of Energy﹐Morgantown﹐WV﹐2000﹐pp.20. [8] N.Q. Minh﹐C.R. Horne﹐F.S. Liu﹐ D.M. Moffatt﹐P.R. Staszak﹐ T.L. Stillwagon﹐J.J. VanAckeren﹐Proceedings of the Twenty fifth Intersociety Energy Conversion Engineering Conference﹐ vol. 13﹐American Institute of Chemical Engineers﹐ New York﹐ 1990﹐pp. 256. [9] J.H Hirschenhofer﹐D.B. Stauffer﹐R.R. Engleman﹐M.G. Klett(Eds.)﹐ Fuel Cell Handbook﹐Seventh Edition﹐US Department of Energy﹐Morgantown﹐WV﹐2004﹐pp.199. [10] http://www.doitpoms.ac.uk/﹐“Solid oxide fuel cells (SOFCs)” [11] S.P.S Badwal﹐Sol. Stat. Ion. 143﹐p39﹐2001. [12] S.C. Singhal﹐MRS Bulletion 25﹐p16﹐2000. [13] N. Maskalick﹐Contaminant Effects in Solid Oxide Fuel Cells﹐ Proceedings of the Fourth Annual Fuel Cells Contractors Review Meeting﹐U.S.DOE/METC﹐July﹐1992. [14] H. Tsuneizumi﹐Development of Solid Oxide Fuel Cell With Metallic Separator﹐The International Fuel Cell Conference Proceedings﹐NEDO/MITI﹐Tokyo﹐Japan﹐1992. [15] J.H Hirschenhofer﹐D.B. Stauffer﹐R.R. Engleman﹐M.G. Klett(Eds.)﹐ Fuel Cell Handbook﹐Seventh Edition﹐US Department of Energy﹐Morgantown﹐WV﹐pp.7-7﹐2004. [16] Report to DOE FETC﹐“Assessment of Planar Solid Oxide Fuel Cell Technology”﹐Reference 39463-02﹐Arthur D. Little﹐Inc.﹐ October 1999. [17] Lai﹐G.Y.﹐“High Temperature Corrosion of Engineering Alloys,” ASM﹐1990. [18] W.Z Zhu﹐S.C. Deevi﹐“Development of Interconnect Materials For Solid Oxide Fuel Cells”﹐Materials Science and Engineering﹐A348﹐227-243﹐2003. [19] I. Yasuda﹐T. Hikita﹐J. Electrochem. Soc. 140﹐p1699﹐1993. [20] I. Yasuda﹐T. Ogiwara﹐H. Yakabe﹐in: H. Yokokawa, S.C. Singhal, (Eds.), (SOFC-VII)﹐Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells﹐Tsukuba﹐ Japan﹐p783﹐2001. [21] J.W. Park﹐Y.K. Lee﹐in: U. Stimming﹐S.C. Singhal﹐H. Tagawa, W. Lehnert﹐(Eds.)﹐(SOFC-V)﹐Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells﹐Aachen﹐ Germany﹐p1253﹐1997. [22] S.P. Simner﹐J.S. Hardy﹐J.W. Stevensn﹐T.R. Armsrong﹐in: S.C. Singhal, M. Dokiya, (Eds.), (SOFC-VI)﹐Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells﹐Honolulu﹐ Hawaii﹐p696﹐1999. [23] B.K. Flandermeyer﹐M.M. Nasrallah﹐A.K. Agarwal﹐H.U. Anderson﹐J. Amer. Ceram. Soc. 67﹐195﹐1984. [24] D.B. Meadowcroft﹐Br. J. Appl. Phys. 2﹐1225﹐1969. [25] V.H. Schmidt﹐“Electrical Properties of Lanthanum Chromite Based Ceramics in Hydrogen and Oxidizing Atmospheres of High Temperature”﹐Rept. No. DOE/ET/15415-1, US Department of Energy﹐Washington DC﹐1981. [26] B.C.H. Steele﹐in: J.A.G. Drake (Ed.)﹐Electrochemistry and Clean Energy﹐Royal Society of Chemistry﹐p. 8﹐1994. [27] M. Hsu﹐Fuel cell seminar abstracts (Tucson, AZ., May 19_/22﹐ 1985)﹐Courtesy Associates﹐Washington﹐DC﹐pp. 57﹐1985. [28] M. Hsu﹐in: H.S.Isaacs, S.Srinivasan, I.L. Harry (Eds.), Proceedings of the Workshop on High-Temperature Solid Oxide Fuel Cells﹐Rept. No. BNL50756, Brookhaven National Laboratory, Upton, NY, pp. 127﹐1978. [29] Zhenguo Yang﹐“Recent advances in metallic interconnects for solid oxide fuel cells” ﹐International Materials Reviews﹐vol 53 NO 1﹐p39-54﹐2008. [30] Jeffrey W. Fergus﹐“Metallic interconnects for solid oxide fuel cells”﹐Materials Science and Engineering﹐A397﹐p271–283﹐2005. [31] Y. Miyake﹐T. Yasuo﹐Y. Akiyama﹐S. Tangiguchi﹐M. Kadowaki﹐ H. Kawamura﹐T. Saitoh: Proc. 4th Int. Symp. on ‘SOFC’﹐(ed. M. Dokiya et al.)﹐Pennington﹐NJ﹐The Electrochemical Society﹐p100–109﹐1995. [32] T. Iwata﹐N. Kadokawa﹐S. Takenoiri﹐Proc. 4th Int. Symp. on ‘SOFC’, (ed. M. Dokiya et al.)﹐Pennington﹐NJ﹐ The Electrochemical Society﹐p110–119﹐1995. [33] T. Shiomitsu﹐T. Kadowaki﹐T. Ogawa﹐T. Maruyama﹐Proc. 4th Int. Symp. on ‘SOFC’, (ed. M. Dokiya et al.)﹐Pennington﹐NJ, The Electrochemical Society﹐p850–857﹐1995. [34] Z. Gary Yang﹐Gary Maupin﹐Steve Simner﹐Prabhakar Singh﹐Jeff Stevenson﹐Gordon Xia﹐Advanced Interconnect Development﹐SECA Annual Workshop and Core Technology Program Peer Review﹐Tampa﹐FL﹐Jan. 28﹐2005. [35] L. Chen﹐Z. Yang﹐B. Jha﹐G. Xia﹐J. W. Stevenson﹐J. Power Sourc. ﹐152﹐p 40–45﹐2005 [36] L. Chen﹐B. Jha﹐Z. Yang﹐G.-G. Xia﹐J. W. Stevenson﹐ P. Singh﹐J. Mater. Eng. Perform.﹐15﹐p399–403﹐2006. [37] A.S.Khanna﹐“Introduction to high temperature oxidation and corrosion”﹐1st edition﹐ASM International﹐2002. [38] Z. Yang﹐G.-G. Xia﹐M. P. Walker﹐C.-M. Wang﹐J. W. Stevenson﹐P. Singh﹐Int. J. Hydrog. Energy﹐32﹐p3770–3777﹐2007. [39] Z. Yang﹐J. S. Hardy﹐M. S. Walker﹐G. Xia﹐S. P. Simner﹐J.W. Stevenson﹐J. Electrochem. Soc. A﹐151A﹐p1825–1831﹐2004. [40] Z. Yang﹐ G.-G. Xia﹐ P. Singh﹐J. W. Stevenson﹐J. Power Sourc. ﹐160﹐p1104–1110﹐2006. [41] S. J. Geng﹐J. H. Zhu﹐Z. G. Lu﹐Electrochem. Solid State Lett. A﹐9A﹐p211–214﹐2006. [42] D.M. England﹐A.V. Virkar﹐J. Electrochem. Soc. 148 (4)﹐ A330–A338﹐2001. [43] Yongda Zhen﹐ A. I. Y. Tok﹐ F. Y. C. Boey﹐San Ping Jiang﹐ “Development of Cr-Tolerant Cathodes of Solid Oxide Fuel Cells”﹐Electrochemical and Solid-State Letters﹐11 (3)﹐B42-B46﹐2008. [44] Z. Yang﹐G.-G. Xia﹐G. D. Maupin﹐J. W. Stevenson﹐Surf. Coat. Technol﹐201﹐p4476–4483﹐2006. [45] S. P. S. Badwal﹐R. Deller﹐K. Foger﹐Y. Ramprakash and J. P. Zhang﹐Solid State Ionics﹐ 99﹐p297–310﹐1997. [46] 潘永村﹐“不鏽鋼”﹐鋼鐵材料設計與應用﹐中國礦冶工程學會出版﹐P.319-366﹐2007. [47] R.A.Wolfe﹐H.W.Paxton﹐Trans.Metall.Soc. AIME﹐230﹐p1426﹐1964. [48] A.W.Bowen﹐G.M.Leak﹐Metall. Trans﹐1﹐p1695﹐1970. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41126 | - |
dc.description.abstract | 本研究為探討添加錳於鐵鉻合金中,期望藉由錳濃度變化以改善合金的高溫熱膨脹及抗高溫氧化性質。實驗使用自行配置的鐵鉻錳合金置於高真空電弧熔煉爐中,使用水冷卻銅坩鍋進行熔煉,避免陶瓷坩鍋對於熔煉過程的汙染,所得鑄錠的清淨度非常高。為了獲得單一肥粒鐵相之鐵鉻錳合金,使用熱力學計算軟體Thermal-Calc繪製相圖,發現隨著錳含量增加,沃斯田鐵相區將向高鉻濃度方向移動。對Fe-Cr-(0.5~2)Mn合金而言,形成單一肥粒鐵相的最低鉻含量為Fe-Cr-0.5Mn的15.1wt%;形成單一肥粒鐵相的最高鉻含量為Fe-Cr-2Mn的18.4wt%。在熱膨脹性質方面,和二元鐵鉻合金相比,添加錳能夠有效降低熱膨脹係數,且隨著錳含量增加,850℃高溫熱膨脹係數隨之下降。觀察合金高溫氧化行為,添加錳將使得Spinel相形成於氧化膜最外層,並隨著錳含量的增加,Spinel相的厚度隨之增加,但Cr2O3的厚度並無明顯改變。高溫電阻測試顯示Fe-20Cr-Mn系列合金皆符合SOFC連接板的高溫導電要求 | zh_TW |
dc.description.abstract | The thesis studies the influence of manganese addition on thermal expansion properties and oxidation behavior at high temperatures in the Fe-Cr alloy. In the newly designed alloy, the high-purity elements was melt by arc-melting in a chilled copper mold. In order to obtain a Fe-Cr-Mn alloy with a single ferritic phase, the pseudo binary phase diagrams were calculated by Thermo-Calc software. Increasing the addition of manganese extends the austenitic loop to a high chromium solid solution. The minimum content of chromium to form a single ferritic phase is 15.1wt% in the Fe-Cr-0.5Mn-0.03C alloy and it extends to 18.4wt% in the Fe-Cr-2Mn-0.03C alloy. The Addition of manganese in the experimental alloy could effectively lower the coefficient of thermal expansion. .The coefficient of thermal expansion at 850℃ can be reduced from 12.5×10-6(1/K)in Fe-20Cr alloy to 10.7×10-6(1/K)in Fe-20Cr-2Mn alloy For the high temperature oxidation behavior, the addition of manganese introduces the spinel phase forming on the surface of oxide scale. By rising the concentration of manganese, the thickness of spinel phase would be increase, but the thickness of Cr2O3 did not change. The area-specific resistance parameter of Fe-Cr-Mn alloy at high temperatures can suffice the requirement of SOFCs inter-connector. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:18:44Z (GMT). No. of bitstreams: 1 ntu-97-R95527047-1.pdf: 8641548 bytes, checksum: 3ee2f4e967b99c35ca393598f05b8cf9 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 I 致謝 II 中文摘要 III Abstract IV 第1章 序論 1 1.1 研究背景 1 1.2 研究簡介 4 第2章 文獻回顧 5 2.1 固態氧化物燃料電池原理 5 2.2 連接板的功能及需求標準 7 2.3 連接板材料 8 2.3.1 陶瓷材料連接板 8 2.3.2 金屬材料連接板 10 2.4 不鏽鋼 22 2.5 熱力學計算軟體 26 2.6 量子力學計算軟體 28 第3章 實驗方法與步驟 29 3.1 計算模擬材料性質 31 3.2 合金試片之準備 31 3.2.1 合金配置 31 3.2.2 電弧熔煉(Arc-Melting)製備合金 31 3.2.3 合金熱處理 31 3.3 合金成分與微觀組織分析 34 3.3.1 金相分析 34 3.3.2 分析合金成分 34 3.4 熱分析 34 3.4.1 熱機械分析儀(TMA) 34 3.4.2 高溫抗氧化測試 35 3.4.3 電阻測試 35 3.5 氧化合金之微觀組織分析 38 3.5.1 XRD繞射分析 38 3.5.2 掃描式電子顯微鏡(SEM)觀察與能譜元素分析(EDS) 38 3.5.3 EPMA橫截面分析 38 第4章 實驗結果 41 4.1 模擬相圖及合金金相 41 4.2 熱分析 53 4.2.1 熱膨脹分析 53 4.2.2 高溫氧化行為及高溫電阻 62 第5章 結論 87 第6章 參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 添加錳元素對燃料電池中鐵鉻合金連接板之高溫性質影響之研究 | zh_TW |
dc.title | The influence of introducing manganes on high temperature properties of Fe-Cr alloy interconnector in Fuel Cell application | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭國華,李瑞益 | |
dc.subject.keyword | 抗高溫氧化,高溫熱膨脹,電弧熔煉,Thermal-Calc,高溫電阻, | zh_TW |
dc.subject.keyword | thermal expansion,oxidation behavior,arc-melting,Thermo-Calc software,area-specific resistance, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 8.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。