Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41116
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳炳煇
dc.contributor.authorWei-Ting Huangen
dc.contributor.author黃煒婷zh_TW
dc.date.accessioned2021-06-14T17:18:03Z-
dc.date.available2013-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-27
dc.identifier.citation[1] W. Barthlott and C. Neinhuis, 'Purity of the sacred lotus, or escape from contamination in biological surfaces,' Planta, vol. 202, pp. 1-8, 1997.
[2] X. M. Li, D. Reinhoudt, and M. Crego-Calama, 'What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,' Chemical Society Reviews, vol. 36, pp. 1350-1368, 2007.
[3] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang, and D. B. Zhu, 'Super-hydrophobic surfaces: From natural to artificial,' Advanced Materials, vol. 14, pp. 1857-1860, 2002.
[4] X. Gao, and L. Jiang, 'Water-repellent legs of water striders,' Nature, vol. 432, pp. 36, 2004.
[5] C. Journet, S. Moulinet, C. Ybert, S. T. Purcell, L. Bocquet, 'Contact angle measurement on superhydrophobic carbon nanotube forests: effect of fluid pressure,' Europhysics Letters, vol. 71, pp. 104-109, 2005.
[6] K. Y. Suh and S. Jon, 'Control over wettability of polyethylene glycol surfaces using capillary lithography,' Langmuir, vol. 21, pp. 6836-6841, 2005.
[7] B. He, N. A. Patankar, and J. Lee, 'Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces,' Langmuir, vol. 19, pp. 4999-5003, 2003.
[8] B. Liu, Y. N. He, Y. Fan, and X. G. Wang, 'Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting,' Macromolecular Rapid Communications, vol. 27, pp. 1859-1864, 2006.
[9] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, 'Effects of surface structure on the hydrophobicity and sliding behavior of water droplets,' Langmuir, vol. 18, pp. 5818-5822, 2002.
[10] J. H. Xu, M. Li, Y. Zhao, and Q. H. Lu, 'Control over the hydrophobic behavior of polystyrene surface by annealing temperature based on capillary template wetting method,' Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 302, pp. 136-140, 2007.
[11] M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, 'Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition,' Macromolecules, vol. 38, pp. 9742-9748, 2005.
[12] H. Liu, L. Feng, J. Zhai, L. Jiang, and D. B. Zhu, 'Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,' Langmuir, vol. 20, pp. 5659-5661, 2004.
[13] J. T. Han, Y. Zheng, J. H. Cho, X. Xu, K. Cho, 'Stable superhydrophobic organic--Inorganic hybrid films by electrostatic self-assembly,' Journal of Physical Chemistry B, vol. 109, pp. 20773-20778, 2005.
[14] H. L. Ge, Y. L. Song, L. Jiang, and D. B. Zhu, 'One-step preparation of polystyrene colloidal crystal films with structural colors and high hydrophobicity,' Thin Solid Films, vol. 515, pp. 1539-1543, 2006.
[15] J. Shiu, C. Kuo, P. Chen, and C. Mou, 'Fabrication of tunable superhydrophobic surfaces by nanosphere lithography,' Chemistry of Materials, vol. 16, pp. 561-564, 2004.
[16] M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen, 'Artificial lotus leaf by nanocasting,' Langmuir, vol. 21, pp. 8978-8981, 2005.
[17] L. Vogelaar, R. G. H. Lammertink, and M. Wessling, 'Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step,' Langmuir, vol. 22, pp. 3125-3130, 2006.
[18] B. Bhushan, M. Nosonovsky, and Y. C. Jung, 'Towards optimization of patterned superhydrophobic surfaces,' Journal of the Royal Society Interface, vol. 4, pp. 643-648, 2007.
[19] T. Young, 'An Essay on the Cohesion of Fluids,' Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.
[20] R. N. Wenel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936.
[21] A. B. D. Cassie, and S. Baxter, 'Wettability of porous surfaces,' Transactions of the Fraday Society, vol. 40, pp. 546-551, 1944.
[22] J. Jopp, H. Grull, and R. Y. Rozen, 'Wetting behavior of water droplets on hydrophobic microtextures of comparable size,' Langmuir, vol. 20, pp. 10015-10019, 2004
[23] C. G. L. Furmidge, 'Studies at phase interfaces - I. the sliding of liquid drops on solid surfaces and a theory for spray retention,' Journal of Colloid Science, vol. 17, pp. 309-342, 1962
[24] http://serc.carleton.edu/details/images/9673.html
[25] http://acept.asu.edu/PiN/rdg/elmicr/elmicr.shtml
[26] http://www.firsttenangstroms.com/
[27] http://www.p2pays.org/ref/13/12920.htm
[28] http://www.scienceofspectroscopy.info/edit/index.php?title=UV-Visible_Spectroscopy
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41116-
dc.description.abstractThis work studies the influences of surface structure on hydrophobicity, and the transmittance of each structure was also taken into account. We investigated three kinds of structures in this work, namely surfaces with nanometer scale, micrometer scale, and hierarchical structures (composed of micro- and nanostructure). The nanostructures and the hierarchical structures on glass surfaces were developed by assembled polystyrene nanospheres; the microstructures on PDMS substrates with different feature sizes were fabricated by soft lithography method. To create a surface with micrometer scale, circular pillars were chosen as the patterns by changing interpillar distance and the height of micropillars. Our results show that as the surface roughness enhanced, the formation of air package between liquid and solid interface contributes to better hydrophobicity. After the surface roughness is enhanced, the surface hydrophobicity increased, whereas the transmittance decreased. A superhydrophobic and nearly transparent surface is obtained on microstructured PDMS surface with water contact angle 153° and transmittance about 90%.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:18:03Z (GMT). No. of bitstreams: 1
ntu-97-R95522108-1.pdf: 7091190 bytes, checksum: 5726a783ed92d8aeeafb25afa000405e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgement.....................................................................................I
Abstract...................................................................................................III
Nomenclature...........................................................................................V
Table of Content.....................................................................................VI
List of Tables........................................................................................VIII
List of Figures.........................................................................................IX
Chaper 1 Introduction 1
1.1 Motivation 1
1.2 Literature review 2
1.2.1 Lotus-effect 2
1.2.2 Biomimetic technology for superhydrophobic surfaces 4
1.2.3 Preparation of superhydrophobic surfaces 6
1.3 Aims and missions 11
Chaper 2 Theory 21
2.1 Surface energy 21
2.2 Static contact angle 22
2.2.1 Young’s equation 23
2.2.2 Wenzel’s equation 24
2.2.3 Cassie-Baxter regime 25
2.3 Contact angle hysteresis 26
2.4 Wetting transition of water droplets 28
Chaper 1 Introduction 1
1.1 Motivation 1
1.2 Literature review 2
1.2.1 Lotus-effect 2
1.2.2 Biomimetic technology for superhydrophobic surfaces 4
1.2.3 Preparation of superhydrophobic surfaces 6
1.3 Aims and missions 11
Chaper 2 Theory 21
2.1 Surface energy 21
2.2 Static contact angle 22
2.2.1 Young’s equation 23
2.2.2 Wenzel’s equation 24
2.2.3 Cassie-Baxter regime 25
2.3 Contact angle hysteresis 26
2.4 Wetting transition of water droplets 28
Chaper 3 Experiments and principles of testing equipments 37
3.1 Materials and reagents 37
3.2 Preparation of Self-assembled polystyrene crystal films 37
3.3 Fabrication of microstructured PDMS templates 38
3.3.1 Fabrication of positive mold by MEMS process 39
3.3.2 Fabrication of the PDMS microstructured molds and films 41
3.4 Preparation of PS hierarchical structure 42
3.5 Soft-lithographic Imprinting 43
3.6 Measuring Principles of Testing Instruments 44
3.6.1 Electron microscopy (EM) 46
3.6.2 Contact angle system 49
3.6.3 Ultraviolet/visible spectrophotometer (UV/Vis) 50
Chaper 4 Results and Discussion 63
4.1 Self-assembled polystyrene crystal films 63
4.2 Master design 65
4.3 Hierarchical structures 68
4.4 Soft-lithographic imprinting 70
4.5 Highly transparent microstructured PDMS films 72
Chaper 5 Conclusions 111
References..................................113
dc.language.isoen
dc.subject微奈米結構zh_TW
dc.subject超疏水性zh_TW
dc.subject蓮花效應zh_TW
dc.subjectLotus effecten
dc.subjectMicro/Nano structureen
dc.subjectSuperhydrophobicen
dc.title應用於透光性基板之疏水性微奈米結構表面改質zh_TW
dc.titleStudy of Micro/Nano Structure Effects on Hydrophobic Surfaces With High Transparencyen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭友仁,林招松
dc.subject.keyword超疏水性,蓮花效應,微奈米結構,zh_TW
dc.subject.keywordSuperhydrophobic,Lotus effect,Micro/Nano structure,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2008-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
6.92 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved