Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41054
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor莊東漢
dc.contributor.authorWei-ChihC henen
dc.contributor.author陳韋志zh_TW
dc.date.accessioned2021-06-14T17:14:09Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation1. R.M.Horsley, N.N.Ekere, B.Salam,“Effect of lead-free BGA rework on joint microstructure and intermetallic compound formation”, Electronic Components and Technology Conference, 2002. Proceedings. 52nd, pp.1497–1501
2. S. Herat, “Green Electronics through Legislation and Lead Free Soldering”, Clean 2008, Vol. 36 (issue 2), pp.145–151
3. J.W. Yoon, S.W. Kim, S.B. Jung, “IMC morphology, interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate”, Journal of Alloys and Compounds, 2005, Vol. 392, pp.247–252
4. S.W. Kim, J.W. Yoon, and S.B. Jung,“Interfacial Reactions and Shear Strengths between Sn-Ag-based Pb-Free Solder Balls and Au/EN/Cu Metallization”, Journal of Electronic Materials, 2004, Vol. 33, No. 10, pp.1182–1189
5. K.S. Kim, S.H. Huh, and K. Suganuma, “Effect of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints”, Journal of Alloys and Compounds, 2003, Vol. 352, pp.226–236
6. I.E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications”, Journal of Materials Science: Materials in Electronics, 2007, Vol. 18, p.55–76
7. 林國書, 葉雅靜, 紀佳良, 蘇書弘, “Ni含量對Sn-0.1Ag-0.5Cu合金潤濕性及與銅材界面反應之研究”, 工業材料雜誌, 2006, Vol.236, pp.128–136
8. http://www.kitco.com
9. N.C. Lee, “Getting Ready for Lead-Free Solders”, Solding & Surface Mount Technology, 1997, Vol. 9, Iss. 2, pp.65–68
10. C. Melton,“Alternative of Lead bearing Solder Alloys”, Proceeding of the 1993 IEEE International Sympocium on Electronics and the Environment, Arlington, USA, 1993, pp.94-97
11. D. Suraski and K. Seelig , “The Current Status of Lead-Free Solder Alloys”, IEEE Transactions on Electronics Package Manufacturing, 2001, Vol.24, No.4 , pp.244–248
12. M. Abtew, G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering: R, Vol. 27, Issue 5-6, 2000, pp.95–141
13. K.N. Tu, and K Zeng, “Reliability issues of Pb-free solder joints in electronic packaging technology”, Electronic Components and Technology Conference, 2002. Proceedings. 52nd, 2002, pp.1194–1200
14. Y. Kariya, T. Hosoi, S. Terashima, M. Tanaka, and M. Otauka, “Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects”, Journal of Electronic Materials, 2004, Vol. 33, No. 4, pp.321–328
15. H.W. Chiang, K. Chang, and J.Y. Chen, “The Effect of Ag Content on the Formation of Ag3Sn Plates in Sn-Ag-Cu Lead-Free Solder”, Journal of Electronic Materials, 2006, Vol. 35, No. 12, pp.2074–2080
16. W. Xiao, Y. Shi, Y. Lei, Z. Xia, and F. Guo, “Comparative Study of Microstructures and Properties of Three Valuable SnAgCuRE Lead-Free Solder Alloys”, Journal of Electronic Materials, 2006, Vol. 35, No. 5, pp.1095–1102
17. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, “Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions”, Materials Science and Engineering A, 2007, 460–461, pp.595–603
18. C.E. Ho, R.Y. Tsai, Y.L. Lin and C.R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni”, Journal of Electronic Materials, 2002, Vol. 31, No. 6, pp.584–590
19. C.E. Ho, S.C. Yang, and C.R. Kao, “Interfacial reaction issues for lead-free electronic solders”, Journal of Materials Science: Materials in Electronics, 2007, Vol. 18, pp.155–174
20. C.H. Lin, S.W. Chen and C.H. Wang, “Phase Equilibria and Solidification Properties of Sn-Cu-Ni Alloys”, Journal of Electronic Materials, 2002, Vol. 31, No. 9, pp.907–915
21. D. Gur, and M. Bamberger, “Reactive isothermal solidification in the Ni–Sn system”, Acta Materialia, 1998, Vol. 46, issue 14 pp.4917–4923
22. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, “Solid-state reactions between Ni and Sn–Ag–Cu solders with different Cu concentrations”, Materials Science and Engineering A, 2007, Vol.396, pp.385–391
23. K.L. Lin, and P.C. Shih, “IMC formation on BGA package with Sn–Ag–Cu and Sn–Ag–Cu–Ni–Ge solder balls”, Journal of Alloys and Compounds, 2008, Vol. 452, pp.291–297
24. Y.S. Lai, J.M. Song, H.C. Chang, and Y.T. Chiu, “Ball Impact Responses of Ni- or Ge-Doped Sn-Ag-Cu Solder Joints”, Journal of Electronic Materials , 2008, Vol. 37, No. 2, pp.201–209
25. F. Cheng, H. Nishikawa, and T. Takemoto, “Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co”, Journal of Materials Science: Materials in Electronics, 2008, Published online: March 23
26. J.W. Yoon, W.C. Moon, and S.B. Jung, “Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging”, Microelectronic Engineering, 2006, Vol. 83, pp.2329–2334
27. J.W. Yoon, and S.B. Jung, “Effect of surface finish on interfacial reactions of Cu/Sn–Ag–Cu/Cu(ENIG) sandwich solder joints”, Journal of Alloys and Compounds, 2008, Vol. 448, pp.177–184
28. Y.C. Lin, and J.G. Duh, “Interfacial Reaction of Cu/Sn-Ag/ENIG Sandwich Solder Joint During Aging”, Scripta Materialia, 2006, Vol. 54, pp.1661–1665
29. H.S. Chun, J.W. Yoon, S.B. Jung, “Solid-state interfacial reactions between Sn–3.5Ag–0.7Cu solder and electroless Ni-immersion Au substrate during high temperature storage test”, Journal of Alloys and Compounds, 2007, Vol. 439, pp.91–96
30. J.W. Yoon, H.S. Chun, and S.B. Jung, “Correlation between interfacial reactions and shear strengths of Sn-Ag-(Cu and Bi-In)-ENIG plated Cu solder joints”, Materials Science and Engineering A, 2007, Vol. 483–484, pp.731–734
31. S. Kumamoto, H. Sakurai, Y. Kukimoto, and K. Suganuma “Joint Strength and Microstructure for Sn-Ag-(Cu) Soldering on an Electroless Ni-Au Surface Finish by Using a Flux Containing a Cu Compound”, Journal of Electronic Materials, 2008, Vol. 37, No. 6, pp.806–814
32. Z. Chien, A. Kumar, and M. Mona, “Effect of Phosphorus Content on Cu/Ni-P/Sn-3.5Ag Solder Joint Strength after Multiple Reflows”, Journal of Electronic Materials, 2006, Vol. 35, No. 12, pp.2126–2134
33. C. Gang, and F. Gang, “Application of Rare Earth Materials in Modern Science and Technology”, Yunnan Metallurgy, Vol. 30, No. 3, pp.30–32
34. C.M.L Wu, and Y.W. Wong, “Rare-earth additions to lead-free electronic solders”, Journal of Materials Science: Materials in Electronics, 2007, Vol. 18, pp.71–91
35. Z.G. Chen, Y.W. Shi, Z.D. Xia, and Y.F. Yan, “Study on the Microstructure of a Novel Lead-Free Solder Alloy SnAgCu-RE and Its Soldered Joints”, Journal of Electronic Materials, 2002, Vol. 31, No. 10, pp.1122–1128
36. Z.G. Chen, Y.W. Shi, Z.D. Xia, and Y.F. Yan, “Properties of Lead-Free Solder SnAgCu Containing Minute Amounts of Rare Earth”, Journal of Electronic Materials, 2002, Vol. 32, No. 4, pp.235–243
37. D.Q. Yu, J. Zhao, and L. Wang , “Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements”, Journal of Alloys and Compounds, 2004, Vol. 376, pp.170–175
38. C.M.T. Law, C.M.L. Wu, D.Q. Yu, L. Wang, and J.K.L. Lai, “Microstructure, Solderability, and Growth of Intermetallic Compounds of Sn-Ag-Cu-RE Lead-Free Solder Alloys”, Journal of Electronic Materials, 2006, Vol. 35, No. 1, pp.89–93
39. C.M.L. Wu , D.Q. Yu, C.M.T. Law, and L. Wang, “Improvements of microstructure, wettability, tensile and creep strength of eutectic Sn-Ag alloy by doping with rare-earth elements”, Journal of Materials Research, 2002, Vol. 17, NO. 12, pp.3146–3154
40. C.M.L. Wu , D.Q. Yu, C.M.T. Law, and L. Wang, “Properties of lead-free solder alloys with rare earth”, Materials Science and Engineering R, 2004, Vol. 44, pp.1–44
41. M. Pei, and J. Qu, “Effect of Rare Earth Elements on Lead-Free Solder Microstructure Evolution”, Electronic Components and Technology Conference, 2007. ECTC '07. Proceedings. 57th, pp.198–204
42. C.M.L.Wu, C.M.T. Law, D.Q. Yu, and L.Wang, “The Wettability and Microstructure of Sn-Zn-RE Alloys”, Journal of Electronic Materials, 2003, Vol. 32, No. 2, pp.63–69
43. L. Wang, D.Q. Yu, J. Zhao, and M.L. Huang, “Improvement of wettability and tensile property in Sn–Ag–RE lead-free solder alloy”, Materials Letters, 2002, Vol.56, pp.1039–1042
44. Y. Sun, F. Xue, and J. Zhou, “Lead-free solders based on the Sn-8Zn-3Bi ternary alloy with additions of In, Nd or La”, 2005 6th International Conference on Electronics Packaging Technology, 2005,
45. Y. Yu, Z. Xia, F. Guo, and Y. Shi, “Effects of Rare-Earth Addition on Properties and Microstructure of Lead-Free Solder Balls”, Journal of Electronic Materials, 2008, accepted March 19
46 B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, and B. Zong, “Effect of Rare Earth Element Addition on the Microstructure of Sn-Ag-Cu Solder Joint”, Journal of Electronic Materials, 2005 , Vol. 34 , No. 3, pp.217–224
47. G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, F. Guo, and X. Li, “Effect of rare earth addition on shear strength of SnAgCu lead-free solder joints”, Journal of Materials Science: Materials in Electronics, 2008, accrpted March 10
48. K.J. Ro Nka, F.J.J. Van Loo, and J.K. Kivilahti, “A Diffusion-Kinetic Model for Predicting Solder/Conductor Interactions in High Density Interconnections”, Metallurgical and Materials Transactions A, Vol. 29A, pp.1998–2951
49. H. Hao, Y. Shi, Z. Xia, Y. Lei, and F. Guo, “Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging”, Journal of Electronic Materials, 2008, Vol. 37, No. 1, pp.2–8
50. C.M.T. Law, C.M.L. Wu, D.Q. Yu, and M. Li, Senior Member, IEEE, and D. Z. Chi, “Interfacial microstructure and strength of lead-free Sn-Zn-RE BGA solder bumps”, IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2005, VOL. 28, NO. 2, pp.252–258
51. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, “Effects of Trace Amounts of Rare Earth Additions on Microstructure and Properties of Sn-Bi-Based Solder Alloy”, Journal of Electronic Materials, 2008, accepted March 19
52. C.M.T. Law, and C.M.L. Wu, “Microstructure evolution and shear strength of Sn-3.5Ag-RE lead-free BGA solder balls”, High Density Microsystem Design and Packaging and Component Failure Analysis, 2004. HDP '04. Proceeding of the Sixth IEEE CPMT Conference on, 2004, 30–June–3 July, pp.60–65
53. C.M.L.Wu, D.Q. Yu, C.M.T. Law, and L.Wang, “Microstructure and Mechanical Properties of New Lead-Free Sn-Cu-RE Solder Alloys”, Journal of Electronic Materials, 2002, Vol. 31 , No. 9, pp.928–932
54. Z. Xia, Z. Chen, Y. Shi, N. Mu, and N. Sun, “Effect of Rare Earth Element Additions on the Microstructure and Mechanical Properties of Tin-Silver-Bismuth Solder”, Journal of Electronic Materials, 2002, Vol. 31 , No. 6, pp.564–567
55. C.M.L. Wu, D.Q. Yu, C.M.T. Law and L. Wang, “The properties of Sn-9Zn Lead-Free Solder Alloys Doped with Trace Rare Earth Elements”, Journal of Electronic Materials, 2002, Vol. 31, NO. 9, pp.921–927
56. Z.G. Chen, Y.W. Shi, and Z.D. Xia, “Constitutive Relations on Creep for SnAgCuRE Lead-Free Solder Joints”, Journal of Electronic Materials, 2004, Vol. 33, No. 9, pp.964–971
57. M.A. Dudek, R.S. Sidhu, and N. Chawla, and M. Renavikar, “Microstructure and Mechanical Behavior of Novel Rare Earth-Containing Pb-Free Solders”, Journal of Electronic Materials, 2006, Vol. 35, no.12, pp.2088-2097
58. M.A. Dudek, R.S. Sidhu, and N. Chawla, “Novel rare-earth-containing lead-free solders with enhanced ductility”, Journal of the Minerals, Metals and Materials Society, 2006, Vol.58, n.6, pp.57–62
59. L. Wang, F. Sun, Y. Liang, and M. Yang, “The influence of element-Ni on interfacial reactions between lead-free Sn-Ag-Cu and Cu substrate”, Electronic Packaging Technology, 2005 6th International Conference on, pp.240–244
60. T. Sasaki, M. Tanaka, and Y. Ohno, “Intermetallic compound formation between lead-free solder (Sn) and Cu or Ni electrodes”, Material Letter, 2007, Vol. 61, pp.2093–2095
61. J.W. Yoon, and S.B. Jung, “Growth kinetics of Ni3Sn4 and Ni3P layer between Sn–3.5Ag solder and electroless Ni–P substrate”, Journal of Alloys and Compounds, 2004, Vol. 376, pp.105–110
62. G.Y. Jang, and J.G. Duh, “Elemental Redistribution and Interfacial Reaction Mechanism for the Flip Chip Sn-3.0Ag-(0.5 or 1.5)Cu Solder Bump with Al/Ni(V)/Cu Under-Bump Metallization During Aging”, Journal of Electronic Materials, 2006, Vol. 35, No. 11, pp.2061–2070
63. Dage Ltd. , “CBP Manual Revision 3(Dage Series 4000)”, 2006
64. 林國書, 蘇書弘, 葉雅靜, “Sn-xAg-0.5Cu-0.04Ni-0.01Ge無鉛銲錫之性質及銅界面反應研究”, 工業材料雜誌, 2006, Vol.236, pp.137–142
65. 林修任, “含稀土銲錫合金接點之界面反應、電遷移與錫鬚成長研究”, 2007,台灣大學博士論文, 指導教授:莊東漢
66. M.G. Cho, S.K. Kang, D.Y. Shih, and H.Mo Lee, “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging”, Journal of Electronic Materials, 2007, Vol. 36 , No. 11, pp. 1501–1509
67. X.Ma, Y. Qian, F. Yoshida, “Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability”, Journal of Alloys and Compounds, 2002, 334, pp. 224–227
68. H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, and Z.D. Xia, “Properties of Sn3.8Ag0.7Cu Solder Alloy with Trace Rare Earth Element Y Additions”, Journal of Electronic Materials, 2007, Vol. 36 , No. 7, pp. 766–774
69. F.J. Wang, F. Gao, X. Ma and Y.Y. Qian, “Depressing Effect of 0.2wt. % Zn Addition into Sn-3.0Ag-0.5Cu Solder Alloy on the Intermetallic Growth with Cu Substrate during Isothermal Aging”, Journal of Electronic Materials, 2006, Vol.35, n.10, pp.1818–1824
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41054-
dc.description.abstract本研究分為兩部分,第一部分主要針對Sn-xAg-0.5Cu-0.04Ni(x = 0.1, 1, 2, 3wt%)不同Ag含量之銲錫合金與化金(Au/Ni-P/Cu)基板做接合,經過時效處理後,觀察其界面反應金相與接點強度及銲錫機械性質之研究。隨著Ag含量越多,銲錫基地中之Ag3Sn介金屬量越多,且接點強度亦隨Ag含量的增加而提高。在拉伸試驗方面,隨著Ag含量越多且分散於基地中,具有散佈強化之作用,進而提升強度值;此外,延展性則因Ag3Sn介金屬量增加影響差排移動,隨著Ag含量的增加使得延展性下降。在接點界面反應方面,Ag含量的多寡並不影響界面介金屬的型態以及成長速率。
第二部分則是在低Ag含量之Sn-1Ag-0.5Cu-0.04Ni銲錫中添加0.5wt%Ce的稀土元素及添加完Ce稀土元素後再添加0.2wt%Zn,分別以此三種銲錫與化金基板做接合,針對接點之界面反應與銲錫特性做研究。研究結果顯示:不論添加0.5wt%Ce稀土元素或是0.2wt%Zn過渡元素皆不會對Sn-1Ag-0.5Cu-0.04Ni銲錫合金之熔點產生影響。在觀察Sn-1Ag-0.5Cu-0.04Ni-0.5Ce銲錫微結構,可以看到粗大的CeSn3介金屬化合物,這些CeSn3介金屬化合物因為過於粗大而導致銲錫接點強度下降。雖然粗大的CeSn3介金屬化合物會使銲錫的機械強度下降,但卻可使銲錫合金的延展性獲得提升,推測這是因為破裂模式的轉變所造成。另外在Sn-1Ag-0.5Cu-0.04Ni-0.5Ce銲錫添加0.2wt%Zn可以細化銲錫中的CeSn3介金屬,使得銲錫接點強度與銲錫合金的抗拉強度皆獲得提升。再接點之界面反應方面,不論添加Ce或是Zn對接點之介金屬的成長皆有抑制的效果,而介金屬成長機制皆屬於擴散控制。
zh_TW
dc.description.abstractThis research is divided into two parts, the main focus of first part is the effect of different Ag content on the physical and mechanical performance, such as melting points, microstructure, interfacial reactions, bonding strength, tensile properties, between Sn-Ag-Cu-Ni solder and electroless nickel-immersion gold-plated Cu substrate during aging. As Ag content being the more, the more Ag3Sn intermetallic compound in the solder matrix, and the strength of joint is also improved with increasing of Ag content. In tensile test, the strength of the solder alloy increases with increasing of Ag content. In addition, the dislocation migration is resisted by Ag3Sn intermetallic compound, and the ductility of solders decreases with increasing of Ag content. In interface reaction, the number of Ag content does not influence the interfacial reaction type and growth speed of intermetallic compound.
Second part of this thesis is the effect of the adding of Ce element on the physical and mechanical performance, such as melting points, microstructure, interfacial reactions, bonding strength, tensile properties, between Sn-1Ag-0.5Cu-0.04Ni solder and electroless nickel-immersion gold-plated Cu substrate. The result of study reveals: No matter adding 0.5wt%Ce rare-earth element or 0.2wt%Zn element will not influence the melting point of Sn-1Ag-0.5Cu-0.04Ni solder. The thick CeSn3 intermetallic compound is observed in the microstructure of Sn-1Ag-0.5Cu-0.04Ni-0.5Ce solder. Because these CeSn3 intermetallic compounds is too thicker to decrease the strength of solder joint. Although the thick CeSn3 intermetallic compounds decrease the mechanical strength, the ductility is enhanced. In addition, adding 0.2wt%Zn into Sn-1Ag-0.5Cu-0.04Ni-0.5Ce solder alloy can not only refine the CeSn3 intermetallic compound but also improve the mechanical properties and bonding strength of solder joints. The addition of Ce and Zn into Sn-1Ag-0.5Cu-0.04Ni solder alloy can inhibit intermetallic compound layer growth of the joint. All the mechanism of intermetallic compound layer growth is diffusion controlled.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:14:09Z (GMT). No. of bitstreams: 1
ntu-97-R95527059-1.pdf: 13560595 bytes, checksum: 016fd010b0a1e38a06440240a6d3f6b4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1. 前言 1
2. 理論與文獻回顧 4
2.1. 無鉛銲錫所需具備之特性 4
2.2. Sn-Ag-Cu無鉛銲錫文獻回顧 5
2.2.1. Ag含量對Sn-Ag-Cu無鉛銲錫的影響 6
2.2.2. Cu含量對Sn-Ag-Cu無鉛銲錫的影響 8
2.2.3. 添加其他元素對Sn-Ag-Cu無鉛銲錫的影響 10
2.2.4. 其他Sn-Ag-Cu無鉛銲錫文獻回顧 13
2.3. 添加稀土元素對無鉛銲錫的影響 16
2.3.1. 添加稀土元素對無鉛銲錫之微結構的影響 17
2.3.2. 添加稀土元素對無鉛銲錫熔點行為及潤濕性的影響 20
2.3.3. 添加稀土元素對銲錫介金屬化合物的影響 21
2.3.4. 添加稀土元素對無鉛銲錫機械性質的影響 23
2.4. 界面成長動力學 28
3. 實驗方法 30
3.1. 研究簡介 30
3.2. Sn-xAg-0.5Cu-0.04Ni(x = 0.1, 1, 2, 3wt%)添加稀土元素之球格陣列化金基板構裝研究 30
3.2.1. 銲錫材料的配製 30
3.2.2. 銲錫與化金基板界面反應及接點強度之研究 31
3.3. 銲錫特性之研究 33
3.3.1. 示差掃描熱分析儀(differential scanning calorimetry,DSC) 33
3.3.2. 銲錫微結構觀察 33
3.3.3. 拉伸試驗 33
4. 結果與討論 44
4.1. 銲錫材料特性之研究 44
4.1.1. 銲錫材料之熱分析 44
4.1.2. 銲錫材料之微結構觀察 49
4.2. 銲錫在化金基板球格陣列構裝接點性能之研究 53
4.2.1. 銲錫與化金基板之界面反應 53
4.2.2. 銲錫在化金基板之接點強度試驗 72
4.3. 銲錫材料拉伸試驗 86
4.3.1. 室溫拉伸試驗 86
4.3.2. 高溫慢速拉伸試驗 90
5. 結論 93
6. 參考文獻 95
dc.language.isozh-TW
dc.subject無鉛銲錫zh_TW
dc.subject介金屬化合物zh_TW
dc.subject界面反應zh_TW
dc.subject稀土元素zh_TW
dc.subjectAg含量zh_TW
dc.subjectinterfacial reactionen
dc.subjectrare-earth elementen
dc.subjectAg contenten
dc.subjectintermetallic compounden
dc.subjectPb-free solderen
dc.titleSn-XAg-0.5Cu-0.04Ni-0.5Ce 銲錫球格陣列構裝界面反應研究zh_TW
dc.titleStudies on the Interfacial Reaction in
Sn-XAg-0.5Cu-0.04Ni-0.5Ce Solder BGA
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳春森,賴宏仁,洪健龍,王彰盟
dc.subject.keyword稀土元素,Ag含量,無鉛銲錫,界面反應,介金屬化合物,zh_TW
dc.subject.keywordrare-earth element,Ag content,Pb-free solder,interfacial reaction,intermetallic compound,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2008-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
13.24 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved