請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41053完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁昭旼(Jau-Ming Wong) | |
| dc.contributor.author | Thomas Mon-Hsian Hsieh | en |
| dc.contributor.author | 謝孟祥 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:14:06Z | - |
| dc.date.available | 2011-08-16 | |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-12 | |
| dc.identifier.citation | 1. Levoy M: Display of Surfaces from Volume Data. IEEE Comput Graph 1988; 8: 29-37.
2. Hung C, Huang C, Ouhyoung M: Fast Volume Rendering for Medical Image Data. In Proceedings of RAMS '98, 1988; 49-55. 3. Pianykh OS: Digital Imaging and Communications in Medicine (DICOM) -- A Practical Introduction and Survival Guide. Berlin Heidelberg: Springer-Verlag, 2008. 4. Robb RA: Three-Dimensional Biomedical Image-Principles and Practice. New York: VCH Publisher, 1995. 5. Drebin RA, Carpenter L, Hanrahan P: Volume Rendering. ACM SIGGRAPH CG 22: 65-74, 1988 6. Dzung LP, Xu C, Jerry LP. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2: 315-337. 7. Duncan JS, Ayache N. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans. Pattern Anal. Mach. Intell. 2000; 22: 85-106, 8. Ng HP, Ong SH, Goh PS, Foong KC, Nowinski WL. Template-based automatic segmentation of Masseter using Prior knowledge. IEEE Southwest Symposium on Image Analysis and Interpretation. 2006; p208-212. 9. Padhani AR, Choyke PL. New Techniques in Oncologic Imaging. New York: Taylor & Francis; 2006. 10. Balafar MA, Ramli AR, Saripan MI, Mashohor S: Review of brain MRI image segmentation methods. Artif Intell Rev 2010, 33: 261-274. 11. Xiea K, Yanga J, Zhanga ZG, Zhub YM: Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 2005, 56: 12-19. 12. Zhou J, Chan KL, Chong VFH, Krishnan SM: Extraction of brain tumor from MR images using one-class support vector machine. Conf Proc IEEE Eng Med Biol Soc 2005, 6: 6411-4. 13. Ayachi R, Amor NB: Brain Tumor Segmentation Using Support Vector Machines. In Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 1-3 July 2009; Verona, Italy. Edited by Sossai C and Chemello G, Berlin Heidelberg: Springer-Verlag; 2009: 736-747. 14. Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radia Oncol Biol Phy 2004, 59: 300–312. 15. Letteboera MMJ, Olsenb OF, Damb EB, Willemsc PWA, Viergevera MA, Niessena WJ: Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. ACAD Radiol 2004, 11: 1125-1138. 16. Moon N, Bullitt E, Leemput KV, Gerig G: Model-based brain and tumor segmentation. In Proceedings of the 16th International Conference on Pattern Recognition 2002, 1: 528-531. 17. Prastawa M, Bullitt E, Ho S, Gerig G: A brain tumor segmentation framework based on outlier detection. Med Image Anal 2004, 8: 275-283. 18. Dou W, Ruan S, Chen Y, Bloyet D, Constans JM: A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vision Comput 2007, 25: 164-171. 19. Liu J, Udupa JK, Odhner D, Hackney D, Moonis G.: A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput. Med Imaging Graph 2005, 29: 21–34. 20. Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: A survey. Med Image Anal. 2001; 5(2): 127-142. 21. Ismail BA, Shuo L, Ali I, Greg G, Rethy C. Area prior constrained level set evolution for medical image segmentation. Proc SPIE, 2008; 6914: 691402 - 691402-6. 22. Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML: MRI segmentation: Methods and applications. Magn Reson Imaging 1995, 13: 343-68. 23. Wells WM, Grimson WL, Kikinis R, Jolesz FA: Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996, 15: 429-42. 24. Zaidi H: Medical image segmentation: Quo Vadis. Comput Meth Prog Bio 84: 63–65, 2006. 25. Chang YL, Li X: Adaptive Image Region-Growing. IEEE Trans Image Proces 3: 868-872, 1994. 26. Kass M, Witkin A, Terzopoulos D: Snakes: Active contour models. Int J Comput Vision 1: 321–331, 1988. 27. Wang Y, Zhu Y, Guo Q: Medical image segmentation based on deformable models and its applications. In: Jasjit SS, Aly AF (ed.) Deformable Models: Theory and biomaterial applications. New York: Springer: 209-260, 2007. 28. Zhoua J, Lima T, Chong V, Huang J. Segmentation and visualization of nasopharyngeal carcinoma using MRI. Comput Biol Med 33: 407– 424. 2003. 29. Khotanlou H, Colliot O, Atif J, Bloch I: 3D brain tumor segmentation. Fuzzy Set Syst 2009, 160: 1457-1473. 30. Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A: Automatic glioma characterization from dynamic susceptibility contrast imaging: Brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 2009, 30:1-10. 31. Wafa M and Zagrouba E: Tumor extraction from multimodal MRI. In Computer Recognition Sys. 3, AISC 57 Edited by Kurzynski M and Wozniak M. Berlin Heidelberg: Springer-Verlag; 2009: 415–422. 32. Pan Z, Lu J. A Bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng. 2007; 9: 32-38 33. Khotanlou H, Atif J, Colliot O, Bloch I: 3D brain tumor segmentation using fuzzy classification and deformable models. In WILF 2005, LANI 3849. Edited by Bloch I, Petrosino A, Tettamanzi AGB, Berlin Heidelberg: Springer-Verlag; 2006, 312-318. 34. Kobashi S, Hata Y, Kitamura YT, Hayakata T, Yanagida T: Brain State Recognition Using Fuzzy C-Means (FCM) Clustering with Near Infrared Spectroscopy (NIRS). In Fuzzy Days 2001 LNCS 2206. Edited by Reusch B, Berlin Heidelberg: Springer-Verlag; 2001: 124-136. 35. Kannan SR, Sathya A, Ramathilagam S, Pandiyarajan R: New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions,' in Contemporary Computing, Communications in Computer and Information Science, Volume 40. Edited by Ranka S et al. Berlin Heidelberg: Springer; 2009 158-169. 36. Bezdek JC, Hall LO, Clarke LP: Review of MR image segmentation techniques using pattern recognition. Med Phys 1993, 20: 1033-48. 37. Clark MC, Hall LO, Goldgof DB, Velthuizen R, Reed F, Silbiger MS: Automatic tumor segmentation using knowledge-based techniques. IEEE T Med Imaging 1998, 17: 187-201. 38. Fletcher-Heatha LM, Halla LO, Goldgofa DB, Murtaghb FR: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 2001, 21: 43-63. 39. Wafa M and Zagrouba E: Improved fuzzy-c-means for noisy image segmentation. SIGMAP 2009: 74-78. 40. Veloz A, Chabert S, Salas R, Orellana A, Vielma J: Fuzzy spatial growing for glioblastoma multiforme segmentation on brain magnetic resonance imaging. In CIARP 2007, LNCS 4756. Edited by Rueda L, Mery D, Kittler J, Berlin Heidelberg: Springer-Verlag; 2007: 861–870. 41. Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ: Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imag Grap 2006, 30: 9-15. 42. Li Y and Shen Y: Fuzzy c-means clustering based on spatial neighborhood information for image segmentation. J Syst Eng Electron 2010, 21: 323–328 43. Barhoumi W, Zagrouba E: Towards a standard approach for medical images segmentation. AICCSA 2005: 130-133, 2005. 44. Withey DJ, Koles ZJ: Medical image segmentation: methods and available Software. Proc. NFSI & ICFBI: 140-143, 2007. 45. Yao J. Image processing in tumor imaging. In: Padhani AR, Choyke PL(ed.) New Techniques in Oncologic Imaging. New York: Taylor & Francis: 79-102, , 2006. 46. Fasque Jl, Agnus V, Moreau J, Soler L, Marescaux J: An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge. Comput Meth Prog Bio 82: 216–230, 2006. 47. Taylor SL, Barakos JA, Harsh GR, Wilson CB: Magnetic resonance imaging of Tuberculum Sellae meningiomas. Neurosurgery 1992, 31: 621-627. 48. Chi JH, Parsa AT, Berger MS, Kunwar S, McDermott MW: Extended bifrontal craniotomy for midline anterior fossa meningiomas: minimization of retraction-related edema and surgical outcomes. Neurosurgery 2006, 59: 426-434. 49. Clarke LP, Velthuizen RP, Clark M, Gaviria J, Hall L, Goldgof D, Murtagh R, Phuphanich S, Brem S: MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging 1998, 16: 271-279. 50. Zhou J, Lim T, Chong V, Huang J: Segmentation and visualization of nasopharyngeal carcinoma using MRI. Comput Biol Med 2003, 33: 407-424. 51. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxes D, Whitaker R: Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality. Edited by Westwood J, Amsterdam: IOS Press; 2002: 586-592. 52. Wang Z, Hu Q, Loe KF, Aziz A, Nowinski WL: Rapid and automatic detection of brain tumors in MR images. In Proceedings of the SPIE 2004, Volume 5369. Edited by Amini AA, Manduca A. 2004: 602-612. 53. Hunt JA, Hobar PC. Common craniofacial anomalies: conditions of craniofacial atrophy/hypoplasia and neoplasia. Plast Reconstr Surg. 2003; 111:1497-1508. 54. Chen YR., Chang CN, Tan YC. Craniofacial fibrous dysplasia: an update. Chang Gung Med J. 2006; 29: 543-549. 55. Farmer JP, Khan S, Khan A, et al. Neurofibromatosis Type 1 and the Pediatric Neurosurgeon: A 20-Year Institutional Review. Pediatr Neurosurg; 2002; 37:122-136 56. Snyder BJ, Hanieh A, Trott JA, David DJ. Transcranial correction of orbital neurofibromatosis. Plast Reconstr Surg. 1998;102:633-642. 57. Jacquemina C, Bosleyb TM, Svedberg H. Pediatrics orbit deformities in craniofacial neurofibromatosis type 1. Am J Neuroradiol. 2003; 24:1678-1682. 58. Potoèki K, Papa J, Sabol Z. Type 1 neurofibromatosis: clinical, pathological and radiological correlation. Acta clin Croat. 2002; 41 : 113-116. 59. Calderon KS, Kaffe I. Radiological findings in jaws and skull of neurofibromatosis type 1 patients. Dentomaxillofac rad. 1994; 23: 216-220. 60. Cheng NC, Lai DM, Hsieh MH, Liao SL, Chen YT. Intraosseous hemangiomas of the facial bone. Plast Reconstr Surg. 2006; 117: 2366-72. 61. Lee CH, Tai HC, Wu MZ, Tang YB, Chen MT, Hsieh MH. Kimura disease of Head and Neck. J.P.S.A.R.O.C. 2009; 18: 199-208. 62. Su YM, Tang YP, Hsieh TM. Giant angiofibroma combination with nevus comedonicus in a tuberous sclerosis patient. J.P.S.A.R.O.C. 2009; 18: 288-294. 63. Chalana V, Linker DT, Haynor DR, Kim Y. A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans. med imaging. 1996; 15: 290-298. 64. Yao J, Summers RM. Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography. Med. Phys. 2007; 34: 1655-1664. 65. Sebri A, Malek J, Tourki R. Automated breast cancer diagnosis based on gvf-snake segmentation, wavelet features extraction and neural network classification. J. Computer Sci. 2007; 3: 600-607. 66. McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal. 1996; 1(2): 91–108. 67. Xu C, Prince JL. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans Image Process. 1998; 7: 359-369. 68. Shang Y, Yang X, Zhu M, Jin B, Liu M. Prior Based Cardiac Valve Segmentation in Echocardiographic Sequences: Geodesic Active Contour Guided by Region and Shape Prior. In: Marques JS, editor. LNCS 3523. Berlin Heidelberg, Springer-Verlag; 2005. p447-454. 69. Ritter GX, Wilson JN. Handbook of computer vision algorithms in image algebra, 2nd ed. Boca Raton: CRC Press, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41053 | - |
| dc.description.abstract | 長久以來, 醫學影像一直是顱顏部位診斷所倚重的診斷工具。近年來,隨著科技之進步,此類影像已經從傳統之黑白平面影像,進步到多色之立體模式。隨著影像之數位化,各式軟體及資訊科技之進步,現今醫學影像之範疇,早已超脫傳統成是解剖及病理構造之範疇,進一步而能藉由影像分析等之進階技術,在術前診斷,手術計畫,甚至術後追蹤做出貢獻。
目前此類影像分析之研究,在顱內腫瘤有許多之研究成果,但在顱顏外部腫瘤之影像分析,卻少見相關文獻。這是因為此區域大規模且具侵犯性之良性腫瘤或增生,在臨床上相對少見,且不管是在位置上或質地上,都較顱內腫瘤更為多變且歧異,因此研究較難有定論,在臨床治療上也更具挑戰性。 因此本研究之主題,為嘗試利用進階影像分析技術中之影像擷取,做為為顱顏區域良性腫瘤診斷之工具及手術輔助。本論文基本上分為兩部分,第一部分為介紹一種利用模糊分類演算法為基礎之多階段影像擷取技術,以用來量測顱內部之腫瘤。第二部分則為嘗試活用此種技術來解決臨床上更具挑戰性之題材,即顱顏外部良性腫瘤之擷取。鑑於此區域病灶及環境之多樣化,因此需要更靈活之策略運用,才能獲致理想之影像擷取結果。我們並利用適當之影像顯示,來表現影像分析之成果,以利臨床之應用。最後並以數個病例來呈示此研究在臨床醫療之應用及價值。我們認為這些科技能有效的幫助術前診斷,輔助顱顏外科之手術,在臨床上做出貢獻。其中發展出之介面又能和將來之高科技技術,例如導航系統,醫學模型建置等契合,因此發展之潛力不可限量。 | zh_TW |
| dc.description.abstract | For years the medical image study has been a reliable and important tool for pre-operative diagnosis in the craniofacial surgery domain. With the improvement of the imaging instrument, and the progression of the computer hardware, now these imaging technique had went beyond simple visualization, the emerging of more complicated and advanced image analysis technique had extend the utility of image diagnosis.
To meet the specific and complex requirements of these biomedical image analyses, many researchers had devoted themselves in the development of the analyzing algorithm. Among them, algorithm used for isolating the meaningful component or pathology from the medical image, called image segmentation, had been studied intensively in recent years. However, most of the researches were focused on the neoplasm detection over intra-cranial space, and studies regarding the extensive neoplasm and hyperplasia over the extra-cranial and facial area were few. This may due to the its small case number and more variable clinical presentation, combined with more complicated anatomy make conclusive result more difficult in this area. So, in this research, will try to develop a feasible algorithm and also a strategy to sucessfully isolated the neoplasm over the craniofacial area. The research comprised mainly two parts, at the first part we will introduce a multi-stage algorithm based on Fuzzy-c-mean technique for image segmentation of the intra-cranial tumor. On second part of our study, we’ll extend the use of this algorithm to more challenging extra-cranial lesion, that is, the benign neoplasm and hyperplasia over the craniofacial region. Due to more variable of the tumor location and the heterogeneous character of the tumor images, a more flexible and freely-used strategy is needed here for optimizing the result of image analysis for individual case. We’ll also introduce a visualization method that will properly demonstrate the results of these image analyses. Finally we will present few clinical cases in order to the contribution of our research to clinical practice. We think these techniques could effectively help us in pre-operation diagnosis, surgical planning and post-operative follow-up. This technique could be easily interfaced with other Hi-tech instruments, and the potential for further development is promising. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:14:06Z (GMT). No. of bitstreams: 1 ntu-100-D90548009-1.pdf: 4250296 bytes, checksum: 3ecc4443efce47d94d19c06c025139ba (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii 中文摘要………………………………………………………………….……… iii 英文摘要………………………………………………………………….………. . iv CHAPTER 1: INTRODUCTION ……………………………………………........1 1.1. Background …………………………………………………………….……1 1. 1. 1. The Craniofacial area ………………………………………….……...1 1. 1. 2. The Neoplasm over the Craniofacial Region …………………...….. 1 1. 1. 3. The Medical Image …………………………………………………... 2 1. 1. 4. The Challenge: From Intra-cranial to Extra-cranial Environment …………………………………………………………. 4 1.2. Purpose of the Study……………………………………………………….. 5 1.3. Structure of the Thesis ………………………………………………….…. 5 CHAPTER 2. DEVELOPING A MULTI-STAGE ALGORITHM FOR INTRACRANIAL SOFT TISSUE TUMOR DETECTION - AUTOMATIC SEGMENTATION OF THE MENINGIOMA FROM BRAIN MR IMAGES ………………….…………………….………………………………... 6 2. 1. Background ………………………………………………………….……. 6 2. 1. 1. MR images in Neurological Fields …………………………….…… 6 2. 1. 2. The Image Segmentation Technique ………………………….…… 6 2. 1. 3. The Fuzzy C-Means (FCM) Algorithm …………………….……… 8 2. 1. 4. Problems after FCM- The Need for Multi-stage Approach ………………………………………..........................…. 10 2. 1. 5. Menigioma of the Brain …………………….………………..….… 11 2..1. 6. Purpose ……………………………………………………...……… 11 2.2. Material and Methods ………………………………………..….……….. 12 2. 2. 1. Data …………………………………………………..…….……….. 12 2. 2. 2. Pre-Processing ………………………………………..…….………. 13 2. 2. 3. Fuzzy-C-Mean Clustering ………………………………...……….. 13 2. 2 .4. Region Growing …………………………………………..….….….. 15 2. 2. 5. Knowledge-Based Techniques …………………………..….……… 17 2. 2. 6. Morphological Image Processing ………………………......……… 21 2. 2. 7.Validation Of Segmentation Results …………………..…….……... 21 2. 3 Results …………………………………………………………..….………. 22 2. 3. 1. Concordance of manual segmentation …………………..………… 25 2. 3. 2. Comparing the results with and without region growing ………………………………………………………………..………. 25 2. 3. 3. The midline tumor detection ………………………………….....… 25 2. 4. Discussions ……………………………………………………………….… 25 CHAPTER 3. APPLICATION OF THE IMAGE ANALYSIS AND VISUALIZATION TECHNIQUE IN EXTRACRANIAL ENVIRONMENT - SURGICAL ASSISTED RESECTION OF EXTENSIVE CRANIOFACIAL DYSPLASIA AND NEOPLASM: A PRACTICAL MULTI-STRATEGY APPROACH ………………………………………………….………………….... 29 3. 1. Introduction …………………………………………………………….. 29 3. 1. 1. From Intracranial to Extracranial - The True challenge …………29 3. 1. 2. Purpose of Study ……………………………………………………. 29 3. 2. Material and Method …………………………………………………… 29 3. 2. 1. Materials …………………………………………………………….. 29 3. 2. 2. Image Data Retrieval ……………………………………………….. 30 3. 2. 3. Medical Image Segmentation ………………………………………. 31 3. 2. 4. Results Verification and Validation ………...........................……… 34 3. 2. 5. Object Visualization and Presentation …………………….………. 35 3. 3 Results ……………………………………………………………………… 36 3. 3. 1. The MR image groups ……………………………………………….. 36 3. 3. 2. The CT image groups ……………………………………………….. 40 3. 3. 3. Clinical Applications ……………………………………...………… 40 Case 1. …………………………………..………………………...……….. 40 Case 2. ……………………………………………………...……………… 44 Case 3. …………………………………………………...………………… 47 Case 4. …………………………………………………...………………… 53 3. 4. Discussion ..............................................................................................…... 58 3. 4. 1. The FCM algorithm …….………………………...………………. 59 3. 4. 2. The Region-Based Method ………...……………………………... 62 3. 4. 3. The Knowledge-based Procedure …………………...…………… 62 3. 4. 4. The Image Visualization …………………………..……………… 65 CHAPTER 4. CONCLUSION AND FUTURE WORKS …………………..… 66 4. 1. The Conclusion ……………………………………………..…………… 66 4. 2. Future Works ……………………………………………..……………... 67 REFERENCES……………………………………………………..……….…… 69 APPENDIX………………………………………………………..….……….…. 76 | |
| dc.language.iso | en | |
| dc.subject | 模糊c-平均值演算法 | zh_TW |
| dc.subject | 專業知識基礎庫 | zh_TW |
| dc.subject | 多層次 | zh_TW |
| dc.subject | 影像擷取 | zh_TW |
| dc.subject | 顱顏 | zh_TW |
| dc.subject | 區域擴張 | zh_TW |
| dc.subject | 可變模型 | zh_TW |
| dc.subject | Knowledge-based | en |
| dc.subject | Multi-surface | en |
| dc.subject | Fuzzy-C-Mean | en |
| dc.subject | Deformable model | en |
| dc.subject | Region growing | en |
| dc.subject | Image segmentation | en |
| dc.subject | Craniofacial | en |
| dc.title | 利用影像分析及顯示技術於顱顏部腫瘤之診斷及手術輔助 | zh_TW |
| dc.title | Using Image Analysis and Visualization
Technique in Tumor Diagnosis and Surgical Assist over the Craniofacial Area | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔣以仁(I-Jen Chiang),陳中明(Chung-Ming Chen),湯月碧(Yueh-Bih Tang),蔡瑞章(Jui Chang Tsai) | |
| dc.subject.keyword | 顱顏,影像擷取,區域擴張,可變模型,模糊c-平均值演算法,專業知識基礎庫,多層次, | zh_TW |
| dc.subject.keyword | Craniofacial,Image segmentation,Region growing,Deformable model,Fuzzy-C-Mean,Knowledge-based,Multi-surface, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
