Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建德(Chien-Teh Chen)
dc.contributor.authorChih-Chieh Huen
dc.contributor.author胡智傑zh_TW
dc.date.accessioned2021-06-14T17:13:39Z-
dc.date.available2008-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation張惠如。2005。以病毒誘導基因沈寂策略進行菸草脯胺酸庫之代謝
工程。國立中興大學植物病理學研究所碩士論文。臺中,臺
灣。
蘇彥碩。2005。逆境下菸草(Nicotiana benthamiana)脯胺酸代謝
基因之調控。國立臺灣大學農業化學研究所碩士論文。臺北,
臺灣。
鄭翔仁。2007。銅、鋅、鎘對菸草吸收重金屬之交互影響。國立臺
灣大學農業化學研究所碩士論文。臺北,臺灣。
陳志威。2003。茄科作物脯胺酸代謝相關基因之選殖及其功能分
析。國立中興大學植物病理學研究所碩士論文。臺中,臺灣。
Alia, and P. P. Saradhi. 1991. Proline accumulation under
heavy metal stress. J. Plant. Physiol. 138: 504-508.
Armengaud, P., L. Thiery, N. Buhot, G. G. March, and A.
Savoure. 2004. Transcriptional regulation of proline
synthesis in Medicago truncatula reveals developmental
and environmental specific features. Physiol. Plant
120: 442-450.
Aziz, A., J. Martin-Tanguy, and F. Larher. 1999. Salt
stress-induced proline accumulation and changes in
tyramine and polyamine levels are linked ti ionic
adjustment in tomato leaf discs. Plant Sci. 145: 83-91.
Balestrasse, K. B., S. M. Gallego, and M. L. Tomaro. 2004.
Cadmium-induced senescence in nodules of soybean
(Glycine max L.) plants. Plant Soil 262: 373-381.
Balestrasse, K. B., S. M. Gallego, M. P. Benavides, and M.
L. Tomaro. 2005. Polyamine and proline are affected by
cadmium stress in nodules and roots of soybean plants.
Plant Soil 270: 343-353.
Barcelo, J., Ch. Poschenrieder, I. Andreu, B. Gunse. 1986.
Cadmium-induced decrease of water tress resistance in
bush bean plants ( Phaseolus vulgaris L. cv
Contender). I. Effects of Cd on water potential,
relative water content and cell wall elasticity. J.
Plant Physiol. 125: 17-25.
Bassi , R., and S. S. Sharma. 1993a. Changes in proline
content accompanying the uptake of zinc and copper by
Lemna minor. Ann. Bot. 72: 151-154.
Bassi , R., and S. S. Sharma. 1993b. Proline accumulation
in wheat seedlings exposed to zinc and copper.
Phytochemistry 33: 1339-1342.
Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid
determination of free proline for water-stress
studies. Plant Soil 39: 205-207.
Baulcombe, D.C. 1999. Fast forward genetics based on virus-
induced gene silencing. Curr. Opin. Plant Biol. 2: 109-
113.
Bouchereau, A., A. Aziz, J. Martin-Tanguy. 1999.
Polyamines and environmental challenge: recent
development. Plant Sci. 140: 103-125.
Buchanan-Wollaston, V., T. Page, E. Harrison, E. Breezel,
P. O. Lim, H. G. Nam, J. F. Lin, S. H. Wu, S.
Swidzinski, K. Ishizaki, and C. J. Leaver. 2005.
Comparative transcriptome analysis reveals significant
differences in gene expression and signaling pathway
between developmental and dark/starvation-induced
senescence in Arabidopsis. Plant J. 42: 567-585.
Burch-Smith, T. M., J. C. Anderson, G. B. Martin, and S.
P. Dinesh-Kumar. 2004. Applications and advantages of
virus-induced gene silencing for gene function studies
in plants. Plant J. 39: 734-746.
Burch-Smith, T. M., J. C. Anderson, G. B. Martin, and S.
P. Dinesh-Kumar. 2004. Applications and advantages of
virus-induced gene silencing for gene function studies
in plants. Plant. J. 39: 734-746.
Capell, T., L. Bassie, P. Christou. 2004. Modulation of
the polyamines biosynthetic pathway in transgenic rice
confers tolerance to drought stress. Proc. Natl. Sci.
USA. 101: 9909-9914.
Chen, C. T. and C. H. Kao. 1993. Osmotic stress and water
stress have opposite effects on putrescine and proline
production in excised rice leaves. Plant Growth Regul.
13: 197-202.
Chen, C. T., C. M. Chou, and C. H. Kao. 1994. Methyl
jasmonate induces the accumulation of putrescine but
not proline in detached rice leaves. J. Plant Physiol.
143: 119-121.
Chen, C. T., L. M. Chen, C. C. Lin, and C. H. Kao. 2001.
Regulation of proline accumulation in detached rice
leaves exposed to excess copper. Plant Sci. 160: 283-
290.
Chen, S. L., C. H. Kao. 1995. Cd induced changes in
proline level and peroxidase activity in roots of rice
seedlings. Plant Growth Regul. 17: 67-71.
Chrispeels, M. J. and C. Maurel. 1994. Aquaporins: the
molecular basis of facilitated water movement through
living plant cells? Plant Physiol. 105: 9-13.
Costa, G. and J. L. Morel. 1994. Water relations, gas
exchange and amino acid content in Cd-treated lettuce.
Plant Physiol. Biochem. 32: 561-570.
Das, P., S. Samantaray, and G. R. Rout. 1998. Studies on
cadmium toxicity in plants: a review. Environ Pollut.
98: 29-36.
Davies, W. J. and T. A. Mansifild. 1983. p.581-586. The
role of abscisic acid in drought avoidance. In F. T.
Addicott (ed.). Abscisic acid. Praeger Publisher. New
York.
Delauney, A., and D. P. S. Verma. 1990. A soybean gene
encoding delta-pyrroline-5-carboxylate reductase was
isolated by functional complementation in Escherichia
coli and is found to be osmoregulated. Mol. Gen.
Genet. 221: 199-305.
Delauney, A., and D. P. S. Verma. 1993. Proline
biosynthesis and osmo-regulation in plants. Plant J.
4: 215-223.
Deuschle, K., D. Funck, H. Hellmann, K. Daschner, S.
Binder, and W. B. Frommer. 2001. A nuclear gene
encoding mitochondrial delta-pyrroline-5-carboxylate
dehydrogenase and its potential role in protection
from proline toxicity. Plant J. 27: 345-356.
El-Ssintinawy, F. 1999. Glutathione counteracts the
inhibitory effect induced by cadmium on photosynthetic
process in soybean. Photosynthetica. 36:171-179
Feirer, R. P., G. Mignon, J. D. Litway. 1984. Arginine
decarboxylase and polyamines required for
embryogenesis in the wild carrot. Science 223: 1433-
1435.
Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E.
Driver, and C. C. Mello. 1998. Potent and specific
genetic interference by double-stranded RNA in
Caenorhabditis elegans. Nature. 391: 806-811.
Flores, H. E., and A. W. Galston. 1982. Analysis of
polyaminses in higher plants by high performance
liquid chromatography. Plant Physiol. 69: 701-706.
Fodor, J., E. Hideg, A. Kecskes, and Z. Kiraly. 2001. In
vivo of tobacco mosaic virus-induced local and
systemic oxidative burst by electron paramagnetic
resonance spectroscopy. Plant Cell Physiol. 42: 775-
779.
Forlani, G., D. Scainelli, and E. Nielsen. 1997. Δ1-
pyrroline-5-carboxylate hedydrogenase from culture
cells of potato : purification and properties. Plant
Physiol. 113: 1413-1418.
Fuhrer, J. 1982. Early effects of excess cadmium uptake in
Phaseolus vulgaris. Plant Cell Environ. 5: 263-270.
Galston. A. W., R. Kauw-Shawney, T. Altabella, and A. F.
Tiburcio. 1995. Plant polyamines in reproductive
activity and response to abiotic stress. Bot. Acta.
110: 197-207.
Goransson, A., and T. D. Eldhuset. 1987. Effects of
aluminium on growth and nutrient uptake of Betula
pendula seedlings. Physiol. Plant. 69: 193-199.
Groppa, M. D., M. P. Benavides, and M. L. Tomaro. 2003.
Polyamine metabolism in sunflower and wheat leaf under
cadmium or copper stress. Plant Sci. 164: 293-299.
Haag-Kerwer, A., H. J. Schafer, S. Heiss, C. Walter, and
T. Rausch. 1999. Cadmium exposure in Brassica juncea
causes a decline in transpiration rate and leaf
expansion effect on photosynthesis. J. Exp. Bot. 50:
1827-1835.
Hall, J. H. 2002. Cellular mechanisms for heavy metal
detoxification and tolerance. J. Exp. Bot. 53: 1-11.
Hamilton, A. J. and D. C. Baulcombe. 1999. A species of
small antisense RNA in posttranscriptional gene
silencing in plants. Science 286: 950-952.
Hare, P. D., W. A. Cress, and J. van Staden. 1999. Proline
synthesis and degradation: a model system for
elucidating stress-related signal transduction. J.
Exp. Bot. 50: 413-434.
Heath, R. L. and L. Packer.1968. Photoperoxidation in
isolated chloroplasts .i. kinetics and stoichiometry
of fatty acid peroxidation. Arch. Biochem. Biophys.
125: 189-198.
Himelblau, E., and R. M. Amasino. 2000. Delivering copper
within plant cells. Curr. Opin. Plant Biol. 3: 205-
210.
Hsu, Y. T. and C. H. Kao. 2003. Accumulation of ammonium
ion in cadmium tolerant and sensitive sultivars of
Oryza sativa. Plant Growth Regul. 39: 271-276.
Hu, C. A., A. J. Delauney, and D. P. S. Verma . 1992. A
bifunctional enzyme (Δ1- pyrroline-5-carboxylate
synthetase) catalyzes the first two steps in proline
biosynthesis in plants. Proc. Natl. Acad. Sci. USA.
89: 9354-9358.
Jan, F. J., F. Fagoaga, S. Z. Pang, and D. Gonsalves.
2000. A single chimeric transgene derived from two
distinct virues confers multi-virus resistance in
transgenic plants through homology-dependent gene
silencing. J. Gen. Virol. 81: 2103-2109.
Kakkar, R. K., P. K. Nagar, P. S. Ahuja, and V. K. Rai.
2000. Polyamines and plant morphogenesis. Physiol.
Plant. 43: 1-11.
Kastori, R., M. Petrovic, and N. Petrovic. 1992. Effect of
excess lead, cadmium, copper and zinc on water
relations in sunflower. J. Plant Nutri. 15: 2427-2439.
Kavi Kishor, P. B., Z. Hong, G. H. Miao, C. A. Hu, and D.
P. S. Verma. 1995. Overexpression of Δ1-pyrroline-5-
carboxylate synthetase increases proline production
and confers osmotolerance in transgenic plants. Plant
Physiol. 108: 1387-1394.
Kiyosue, T., Y. Toshiba, K. Yamaguchi-Shinozaki, and K.
Shinozaki. 1996. A nuclear gene encoding mitochondrial
proline dehydrogenase, an enzyme involved in proline
metabolism, is upregulated by proline but
downregulated by dehydration in Arobidopsis. Plant
Cell. 8: 1323-1335.
Klahre, U., P. Crete, S. A. Leuenberger, V. A. Iglesias,
and F. Meins. 2002. High molecular weight RNAs and
small interfering RNAs induce systemic
posttranscriptional gene silencing in plants. Proc.
Natl. Acad. Sci. 99: 11981-11986.
Kumar M. S., G. Govind, L. Kang, K. S. Mysore, M.
Udayakumar. 2007. Functional characterization of
Nicotiana benthamiana homologs of peanut water deficit-
induced genes by virus-induced gene silencing. Planta.
225: 523-539.
Kumar, A., M. Taylor, T. Altabella, and A. F. Tiburcio.
1997. Recent advances in polyamines research. Trends
Plant Sci. 2: 124-130.
Kuo, M. C., and C. H. Kao. 2004. Antioxidative enzyme
activities are upregulated in response to cadmium in
sensitive, but not in tolerant rice (Oryza sativa L.)
seedling. Bot. Bull. Acad. Sin. 45: 291-299.
Lane, S. D., and E. S. Martin. 1980. An evaluation of
effect of lead on the gross morphology of Raphanus
sativus. Z. Pflanzen-physiol. 98: 437-452.
Larher, F., A. Aziz, C. Deleu, P. Lemesle, A. Ghaffar, F.
Bouchard, and M. Plasman. 1998. Suppression of the
osmoinduced proline response of rapeseed leaf discs by
polyamines. Physiol. Plant. 102: 139-147.
Liu, Y., M. Schiff, and S. P. Dinesh-Kumar. 2002. Virus-
induced gene silencing in tomato. Plant J. 31: 777-786.
Liu, Y., M. Schiff, R. Marathe, and S. P. Dinesh-Kumar.
2000. Tobacco Rar1, EDS1 and NPR1/NIM1 like gene are
required for N-mediated resistance to tobacco mosaic
virus. Plant J. 30: 415-429.
Lolkema, P. C. and R. Vooijs. 1986. Copper tolerance in
Silene cucubalus: subcellular distribution of copper
and its effects on chloroplasts and plastocyanin
synthesis. Planta. 167: 30-36.
Maggio, A., S. Miyazaki, P. Veronese, T. Fujita, J. I.
Ibeas, B. Damsz, M. L. Narasimhan, P. M. Hasegawa, R.
J. Joly, and R. A. Bressan. 2002. Dose proline
accumulation play an active role in stress-induced
growth reduction. Plant J. 31: 699-712.
Mallick, N. and F. H. Mohn. 2000. Reactive oxygen species:
response of algal cells. J. Plant Physiol. 157: 183-
193.
Martinez, J., A. Patkaniowska, H. Urlaub, R. Luhrmann, and
T. Tuschl. 2002. Single-stranded antisense siRNAs
quide target RNA cleavage in RNAi. Cell. 110: 563-574.
Mattioni, G., R. Gabbrielli, J. Vangronsveld, and H.
Clijsters. 1997. Nickel and cadmium toxicity and
enzymatic activity in Ni-tolerant and non-tolerant
populations of Siliene Italica pers. J. Plant Physiol.
150: 173-177.
Maurel, C. 1997. Aquaporins and water permeability of
plant membranes. Annu. Rev. Plant Physiol. Mol. Biol.
48: 399-429.
Metzlaff, M., M. O’Dell, P. D. Cluster, and R. B.
Flavell. 1997. RNA-mediated RNA degradation and
chalcone synthaes A silencing in petunia. Cell. 88:
845-854.
Mueller, E., J. Gilbert, G. Davenport, G. Brigneti, and D.
C. Baulcombe. 1995. Homology-dependent resistance:
Transgenic virus resistance in plants related to
homology-dependent gene silencing. Plant J. 7: 1001-
1013.
Nanjo, T., M. Fujita, M. Seki, T. Kato, S. Tabata, and K.
Shinozaki. 2003. Toxicity of free proline revealed in
Arabidopsis T-DNA-tagged mutant deficient in proline
dehydrogenase. Plant Cell Physiol. 44: 541-548.
Napoli, C., C. Lemieux, R. Jorgensen. 1990. Introduction
of chimeric chalcone synthesis gene into petunia
results in reversible co-suppression of homologus
genes in trans. Plant Cell. 2: 279-289.
Ouelhadj, A., P. Kuschk, and K. Humbeck. 2006. Heavy metal
stress and leaf senescence induce the barley gene
HvC2d1 encoding a calcium-induced novel C2 domain-like
protein. New Phytol. 170: 261-273.
Paivoke, A. 1983. The long-term effects of zinc on the
growth and development, chlorophyll content and
nitrogen fixation of the garden pea. Ann. Bot. Fenn.
20: 205-213.
Panavas, T., E. L. Walker, and B. Rubinstein. 1998.
Possible involvement of abscisic acid in senescence of
daylily petals. J. Exp. Bot. 49: 1987-1997.
Patsikka, E., E. M. Aro, and E. Tyystjarvi. 1998. Increase
in the quantum yield of photoinhibition contributes to
copper toxicity in vivo. Plant Physiol. 117: 619-627.
Pena, L. B., L. A. Pasquini, M. L. Tomaro, and S. M.
Gallego. 2006. Protelytic system in sunflower
(Helianthus annuus L.) leaves under cadmium stress.
Plant Sci. 171: 531-537.
Peng, Z., Q. Lu, and D. P. S. Verma. 1996. Reciprocal
regulation of Δ1-pyrroline-5-carboxylate synthetase
and proline dehydrogenase genes controls proline
levels during and after osmotic stress in plants. Mol.
Gen Genet. 253: 334-341.
Perfus-Barbeoch, L., N. Leondardt, and A. Vavasseur, and
C. Forestier. 2002. Heavy metal toxicity: cadmium
permeates through calcium channels and disturbs the
plant water status. Plant J. 32: 539-548.
Radwan, D. E. M., K. A. Fayez, S. Y. Mahmoud, A. Hamaf,
and G. Lu. 2006. Salicylic acid alleviates growth
inhibition and oxidative stress caused by zucchini
yellow mosaic virus infection in Cucurbita pepo
leaves. Physiological Mol. Plant. Physiol. 69: 172-181.
Rajagopal, V. 1981. The influence of exogenous proline on
the stomatal resistance in Vicia faba. Physiol. Plant.
52: 292-296.
Ratcliff, F., B. D. Harrison, and D. C. Baulcombe. 1997. A
similarity between viral defense and gene silencing in
plants. Science 276: 1558-1560.
Rauser, W. E. 1977. Early effects of phytotoxic burdens of
cadmium, cobalt, nickel, and zinc in suspension
culture tobacco cells Can. J. Bot. 56: 61-86.
Rayapati, P. J., C. R. Stewart, and E. Hack. 1989.
Pyrroline-5-carboxylate reductase in pea (Pisum
sativum L.) leaf chloroplasts. Plant Physiol. 91: 581-
586.
Roosens, N. H. C. J., T. T. Thu, H. M. Iskandar, and M.
Jacobs. 1998. Isolation of the ornithine-δ-
aminotransferase cDNA and effect of salt stress on its
expression in Arabidopsis thaliana. Plant Physiol.
117: 263-271.
Roosens, N. H., F. A. Bitar, K. Loenders, G. Angenon, and
M. Jacobs. 2002. Overexpression ornithine-δ-
aminotransferase increases proline biosynthesis and
confers osmotolerance in transgenic plants. Mol.
Breeding 9: 73-80.
Ruiz,M. T., O. Voinnet, D. C. Baulcombe. 1998. Initiation
and maintenance of virus-induced gene silencing. Plant
Cell 10: 937-946.
Savoure, A., S., X. J. Hua, W. Ardiles, M. Van Montagu,
and N. Verbruggen. 1995. Isolation, characterization,
and chromosomal location of a gene encoding the Δ1-
pyrroline-5-carboxylate synthetase in Arobidopsis
thaliana. FEBS Lett. 372: 13-19.
Schat, H., S. S. Sharma, R. Vooijs. 1997. Heavy metal-
induced accumulation of free proline in a metal-
tolerant and non-tolerant ecotype of Silene vulgaris.
Physiologia Plantarum. 101: 477-482.
Schutzendubel, A. and A. Polle. 2002. Plant responses to
abiotic stresses: heavy metal-induced oxidative stress
and protection by mycorrhization. J. Exp. Bot. 53:
1351-1365.
Sebela, M., A. Radová, R. Angelini, P. Tavladoraki, I. Fré
bort, and P. Pec. 2001. FAD-containing polyamines
oxidases: a timely challenge for researchers in
biochemistry and physiology of plants. Plant Sci. 160:
197-207.
Sharma, S. S., H. Schat, and R. Vooijs. 1998. In vitro
alleviation of heavy metal-induced enzyme inhibition
by proline. Phytochemistry 49: 1531-1535.
Sharma, S.S. and K. J. Dietz. 2006. The significance of
amino acid-derived molecules in plant responses and
adaptation to heavy metal stress. J. Exp. Bot. 57: 711-
726.
Shaw, B. P., N. P. Rout. 2002. Hg and Cd induced changes
in proline content and activities of proline
biosynthesizing enzymes in Phaseolus aureus and
Triticum aestivum. Biologia Plantarum. 45: 267-271.
Shen, W., K. Nada, and S. Tachibana. 2000. Involvement of
polyamines in the chilling olerance of cucumber
cultivars. Plant Physiol. 124: 431-439.
Siedlecka, A., and Z. krupa. 1999. Cd/Fe interaction in
higher plants-its consequences for the photosynthetic
apparatus. Photosynthetica 36: 321-331.
Smirnoff, N. and Q. J. Cumbes. 1989. Hydroxyl radical
scavenging activity of compatible solutes.
Phytochemistry 28: 1057-1060.
Spitzer, B., M.M.B. Zvi, M. Ovadis, E. Marhevka, O.
Barkai, O. Edelbaum,I. Marton, T. Masci, M. Alon, S.
Morin, I. Rogachev,A. Aharoni, and A. Vainstein. 2007.
Reverse genetics of floral scent: application of
tobacco rattle virus-based gene silencing in petunia.
Plant Physiol. 145: 1241-1250.
Strizhov, N. E. Abraham, L. Okresz, S. Blickling, A.
Zilberstein, J. Schell, C. Koncz, and L. Szabados.
1997. Differential expression of two P5CS gene
controlling proline accumulation during salt-stress
requires ABA and is regulated by ABA1, ABI1, and AXR2
in Arobidopsis. Plant J. 12: 557-569.
Sun, C., Y. L. Liu, and W. H. Zhang. 2002. Mechanism of
the effect of polyamines on the activity of tonoplast
of barley roots on the salt stress. Acta. Bot. Sin.
44: 1167-1172.
Székely, G., E. Ábrahám, Á. Cséplo, G. RIgó, L. Zsigmond,
J. Csiszár, F.Ayaydin, N. Strizhov, J. Jásik, E.
Schmelzer, C. Koncz, and L. Szabados. 2008. Duplicated
P5CS genes of Arabidopsis play distinct roles in
stress regulation and developmental control of proline
biosynthesis. Plant J. 53: 11-28.
Tang, W. and R. J. Newton. 2005. Polyamine promote root
elongation and growth by increasing root cell division
in regenerated Virginia pine (Pinus virginiana Mill.)
plantlets. Plant Cell Rep. 24: 581-589.
Tazawa, M., K. Asai, and N. Iwasaki. 1996. Characteristics
of Hg- and Zn- sensitivity water channels in the
plasma membrane of Chara cells. Bot. Acta. 5: 388-396.
Theiss, C., P. Bohley, and J. Voigt. 2002. Regulation by
polyamines of ornithine decarboxylase activity and
cell division in the unicellular green alga
Chlamydomonas reinhardtii. Plant Physiol. 128: 1470-
1479.
Tripathi, B. N. and J. P. Gaur. 2004. Relationship between
copper- and zinc-induced oxidative stress and proline
accumulation in Scenedesmus sp. Planta. 219: 397-404.
van Kammen, A. 1997. Virus-induced gene silencing in
infected and transgenic plants. Trends Plant Sci. 2:
409-411.
Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative
stress and some antioxidant systems in acid rain-
treated protective role of exogenous polyamines. Plant
Sci. 151: 59-66.
Verbruggen, N., R. Villarroel, and M. Van Montagu. 1993.
Osmoregulation of a pyrroline-5-carboxylate reductase
gene in Arobidopsis thaliana. Plant Physiol. 103: 771-
781.
Verbruggen, N., X. J. Jua, M. May, and M. Van Montagu.
1996. Environmental and development signals modulate
proline homeostasis: evidence for a negative
transcriptional regulator. Proc. Natl. Acad. Sci. USA.
93: 8787-8791.
Vermas, S. and S. N. Mishra. 2005. Putrescine alleviation
of growth in salt stressed Brassica juncea by inducing
antioxidative defense system. J. Plant Physiol. 162:
669-677.
Waterhouse, P. M., M. W. Graham, and M. B. Wang. 1998.
Virus resistance and gene silencing in plants is
induced by double stranded RNA. Proc. Natl. Acad. Sci.
95: 13959-13964.
Wintermans, J. F. G. M. and A. de Mots. 1965.
Spectrophotometric characteristic of chlorophylls a
and b and their pheophytins in ethanol. Biochem.
Biophys. Acta. 109: 448-453.
Yamaguchi, K., Y. Takahashi, T. Berberich, A. Imai, A.
Miyazaki, T. Takahashi, A. Michael, T. Kusano. 2006.
The polyamine spermine protects against high salt
stress in Arabidopsis thaliana. FEBS Lett. 580: 6783-
6788.
Yang, J. C., J. H. Zhang, Z. Q, Wang, Q. S. Zhu, and L. J.
Liu. 2003. Involvement of abscisic acid and cytokinins
in the senescence and remobilization of carbon
reserves in wheat subjected to water stress during
grain filling. Plant Cell Environ. 26: 1621-1631.
Yoshiba, Y., T. Kiyosue, K. Nakahima, K. Yamaguchi-
Shinozaki, and K. Shinozaki. 1997. Regulation of
levels of proline as an osmolyte in plants under water
stress. Plant Cell Physiol. 38: 1095-1102.
Yoshiba, Y., T. Kiyosue, T. Katagirl, H. Ueda, T.
Mizoguchi, K. Yamaguchi-Shinozaki, Y. Harada, and K.
Shinozaki. 1995. Correlation between the inuction of a
gene for Δ1-pyrroline-5-carboxylate synthetase and the
accumulation of proline in Arobidopsis thaliana under
osmotic stress. Plant J. 7: 751-760.
Zhang, C. S., Q. Lu, and D. S. P. Verma. 1995. Removal of
feedback inhibition of Δ1-pyrroline-5-carboxylate
synthetase, a bifunctional enzyme catalyzing the first
two steps of proline biosynthesis in plant. J. Biol.
Chem. 270: 20491-20496.
Zimmermann, P., C. Heinlein, G. Orendi, and U. Zentgraf.
2006. Senescence-specific regulation of catalases in
Arabidopsis thaliana L. Heynh. Plant Cell Environ. 29:
1049-1060.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41045-
dc.description.abstract植物於逆境下,常發現有脯胺酸累積的現象。Δ1-pyrroline-5-carboxylate synthetase (P5CS)及ornithine-δ-aminotransferase (OAT)是已知合成脯胺酸的兩種酵素,目前對逆境下兩酵素所扮演的角色尚未確認。本論文的目的在探討逆境下,脯胺酸的合成是透過何種酵素,以及此二酵素可能扮演的角色。本論文利用菸草嵌紋病毒(Tobacco mosaic virus, TMV)載體誘導基因沈寂(virus-induced gene silencing, VIGS)降低十週大菸草體內P5CS(TMV-antiP5CS)或 OAT 表現(TMV-antiOAT)或同時降低 P5CS 及 OAT 表現(TMV-antiP5CS + antiOAT),然後取病毒接種葉以上第一葉及第二葉的葉圓片,分別處理29% PEG (polyethylene glycol)、100 μM 離層酸 (abscisic acid, ABA)或、50 μM 氯化鎘,代表重金屬逆境下會誘導脯胺酸累積的三個因子。PEG處理下,接種TMV-antiP5CS葉圓片脯胺酸累積量減少80-89%,而接種TMV-antiOAT葉圓片脯胺酸量僅減少5-15%,鎘與ABA處理也有類似的結果。推論P5CS為重金屬逆境下使脯胺酸累積的主要酵素。再則進一步利用葉綠素與MDA含量變化,觀察逆境下抑制P5CS或OAT對生理的影響,結果顯示滲透逆境下接種TMV-antiP5CS葉圓片之葉綠素分解比接種TMV-GFP葉圓片快,而接種TMV-antiOAT葉圓片之葉綠素分解卻比接種TMV-GFP葉圓片緩慢。各處理下MDA含量則無明顯差異。由於OAT的反應物為鳥胺酸(ornithine),鳥胺酸亦可用於多元胺(polyamine)之合成,而多元胺有保護植物的功能。因此測定各處理葉圓片的多元胺含量,確認葉綠素分解是否受多元胺含量影響。結果顯示滲透逆境下抑制OAT 確實會增加多元胺含量。綜合上述論點歸結要點如下:P5CS為滲透逆境、ABA處與重金屬逆境理下使脯胺酸累積的主要酵素,而OAT僅參與滲透逆境誘導之脯胺酸累積。滲透逆境下抑制P5CS路徑會加速葉綠素分解。滲透逆境下抑制 OAT 路徑則會延緩葉綠素分解,其原因可能與多元胺含量增加有關。zh_TW
dc.description.abstractProline accumulation is wide spread phenomenon in stressed plants. Proline could be synthesized with Δ1-pyrroline-5-carboxylate synthetase (P5CS) from glutamate and with ornithine-δ-aminotransferase (OAT) from ornithine in plants. It dose don not know well about the role of P5CS and OAT in stressed plants. The aim of this thesis is to investigate which enzyme is more important for proline synthesis, and what is the possible function of these enzymes in response to abiotic stress. We used Tobacco mosaic virus (TMV) as vector with the insertion of proline metabolized related gene fragments to decrease the expression of P5CS (TMV-antiP5CS) , OAT (TMV-antiOAT), or both of P5CS and OAT (TMV-antiP5CS+antiOAT) in 10 weeks old tobacco via the mechanism of VIGS (virus-induced gene silencing). The tobacco leaf discs taking form first and second leaf above the inoculated leaf were treated with 29%PEG (polyethylene glycol), 100 μM abscisic acid (ABA), or 50 μM CdCl2 to mimic three abiotic stresses. Under PEG treatment, the proline level of tobacco leaf discs inoculated with TMV-P5CS or TMV-OAT decreased about 80-90% and 5-15% respectively. The changes of proline level under ABA or Cd treatment were similar to PEG treatment. It is suggests that P5CS could be the major enzyme for proline accumulation under heavy metal stress. In order to investigate the possible function of P5CS and OAT expression in stressed plant, the chlorophyll and MDA content of leaf discs treated with VIGS were analyzed. The degradation of chlorophyll in TMV-antiP5CS inoculated tobacco leaf discs was faster than in TMV-GFP under PEG treatment. But the degradation in TMV-antiOAT was slower than in TMV-GFP. There was no difference in MDA content among all VIGS treated plant under stresses. It is noticed that the content of polyamine increased in TMV-antiOAT inoculated tobacco leaf discs under osmotic stress. In summary, P5CS is the major enzyme of proline accumulation under osmotic stress, ABA or heavy metal stress. OAT participates the proline accumulation only in osmotic stress. Under osmotic stress, inhibiting P5CS pathway can improve the rate of chlorophyll degradation. But inhibiting OAT pathway can delay the rate of chlorophyll degradation that migh be related to the increase of polyamine content in tobacco leaf discs.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:13:39Z (GMT). No. of bitstreams: 1
ntu-97-R95623018-1.pdf: 2724909 bytes, checksum: a43e965c8b176f535df1acbd98e82a85 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要......................................................I
Abstract................................................III
目錄..................................................... V
圖目錄..................................................VII
第一章、前人研究
一、病毒誘導基因沈寂系統的發展與應用..................1
二、重金屬逆境對植物的影響............................3
三、重金屬逆境誘導植物體內脯胺酸的累積................4
四、植物體內脯胺酸的合成路徑..........................5
五、不同脯胺酸合成路徑可能扮演的角色......................6
六、多元胺與脯胺酸合成代謝的關連......................6
第二章、研究目的.........................................10
第三章、材料與方法
一、植物材料.........................................11
二、誘導基因沈寂病毒載體.............................11
三、大腸桿菌的轉形作用...............................11
四、生體外轉錄作用...................................12
五、非生物逆境處理...................................13
六、脯胺酸之測定.....................................13
七、葉綠素含量測定...................................14
八、脂質過氧化程度測定...............................14
九、游離多元胺含量測定...............................14
十、統計分析.............................................15
第四章、結果與討論
一、以TMV為載體之VIGS系統不適用於植物全株生理分析....17
二、P5CS為重金屬逆境下使脯胺酸累積的主要酵素.........24
三、VIGS對植物生理的影響.............................29
四、在逆境下抑制OAT表現可增加游離多元胺含量..........40
五、綜合討論.........................................48
參考文獻.................................................49
dc.language.isozh-TW
dc.title利用病毒誘導基因沈寂探討逆境誘導下菸草脯胺酸合成酵素的角色zh_TW
dc.titleThe role of proline synthesis enzymes under stresses via virus-induced gene silencing in tobaccoen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱志郁,鍾仁賜,蘇南維,詹富智
dc.subject.keyword病毒誘導基因沈寂,脯胺酸,重金屬,多元胺,菸草,zh_TW
dc.subject.keywordVIGS,proline,heavy metal,polyamine,Nicotiana bethamiana,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2008-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved