請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41045
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建德(Chien-Teh Chen) | |
dc.contributor.author | Chih-Chieh Hu | en |
dc.contributor.author | 胡智傑 | zh_TW |
dc.date.accessioned | 2021-06-14T17:13:39Z | - |
dc.date.available | 2008-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | 張惠如。2005。以病毒誘導基因沈寂策略進行菸草脯胺酸庫之代謝
工程。國立中興大學植物病理學研究所碩士論文。臺中,臺 灣。 蘇彥碩。2005。逆境下菸草(Nicotiana benthamiana)脯胺酸代謝 基因之調控。國立臺灣大學農業化學研究所碩士論文。臺北, 臺灣。 鄭翔仁。2007。銅、鋅、鎘對菸草吸收重金屬之交互影響。國立臺 灣大學農業化學研究所碩士論文。臺北,臺灣。 陳志威。2003。茄科作物脯胺酸代謝相關基因之選殖及其功能分 析。國立中興大學植物病理學研究所碩士論文。臺中,臺灣。 Alia, and P. P. Saradhi. 1991. Proline accumulation under heavy metal stress. J. Plant. Physiol. 138: 504-508. Armengaud, P., L. Thiery, N. Buhot, G. G. March, and A. Savoure. 2004. Transcriptional regulation of proline synthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol. Plant 120: 442-450. Aziz, A., J. Martin-Tanguy, and F. Larher. 1999. Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked ti ionic adjustment in tomato leaf discs. Plant Sci. 145: 83-91. Balestrasse, K. B., S. M. Gallego, and M. L. Tomaro. 2004. Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262: 373-381. Balestrasse, K. B., S. M. Gallego, M. P. Benavides, and M. L. Tomaro. 2005. Polyamine and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant Soil 270: 343-353. Barcelo, J., Ch. Poschenrieder, I. Andreu, B. Gunse. 1986. Cadmium-induced decrease of water tress resistance in bush bean plants ( Phaseolus vulgaris L. cv Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. J. Plant Physiol. 125: 17-25. Bassi , R., and S. S. Sharma. 1993a. Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann. Bot. 72: 151-154. Bassi , R., and S. S. Sharma. 1993b. Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33: 1339-1342. Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. Baulcombe, D.C. 1999. Fast forward genetics based on virus- induced gene silencing. Curr. Opin. Plant Biol. 2: 109- 113. Bouchereau, A., A. Aziz, J. Martin-Tanguy. 1999. Polyamines and environmental challenge: recent development. Plant Sci. 140: 103-125. Buchanan-Wollaston, V., T. Page, E. Harrison, E. Breezel, P. O. Lim, H. G. Nam, J. F. Lin, S. H. Wu, S. Swidzinski, K. Ishizaki, and C. J. Leaver. 2005. Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathway between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42: 567-585. Burch-Smith, T. M., J. C. Anderson, G. B. Martin, and S. P. Dinesh-Kumar. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39: 734-746. Burch-Smith, T. M., J. C. Anderson, G. B. Martin, and S. P. Dinesh-Kumar. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant. J. 39: 734-746. Capell, T., L. Bassie, P. Christou. 2004. Modulation of the polyamines biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Sci. USA. 101: 9909-9914. Chen, C. T. and C. H. Kao. 1993. Osmotic stress and water stress have opposite effects on putrescine and proline production in excised rice leaves. Plant Growth Regul. 13: 197-202. Chen, C. T., C. M. Chou, and C. H. Kao. 1994. Methyl jasmonate induces the accumulation of putrescine but not proline in detached rice leaves. J. Plant Physiol. 143: 119-121. Chen, C. T., L. M. Chen, C. C. Lin, and C. H. Kao. 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci. 160: 283- 290. Chen, S. L., C. H. Kao. 1995. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul. 17: 67-71. Chrispeels, M. J. and C. Maurel. 1994. Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 105: 9-13. Costa, G. and J. L. Morel. 1994. Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol. Biochem. 32: 561-570. Das, P., S. Samantaray, and G. R. Rout. 1998. Studies on cadmium toxicity in plants: a review. Environ Pollut. 98: 29-36. Davies, W. J. and T. A. Mansifild. 1983. p.581-586. The role of abscisic acid in drought avoidance. In F. T. Addicott (ed.). Abscisic acid. Praeger Publisher. New York. Delauney, A., and D. P. S. Verma. 1990. A soybean gene encoding delta-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol. Gen. Genet. 221: 199-305. Delauney, A., and D. P. S. Verma. 1993. Proline biosynthesis and osmo-regulation in plants. Plant J. 4: 215-223. Deuschle, K., D. Funck, H. Hellmann, K. Daschner, S. Binder, and W. B. Frommer. 2001. A nuclear gene encoding mitochondrial delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J. 27: 345-356. El-Ssintinawy, F. 1999. Glutathione counteracts the inhibitory effect induced by cadmium on photosynthetic process in soybean. Photosynthetica. 36:171-179 Feirer, R. P., G. Mignon, J. D. Litway. 1984. Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433- 1435. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391: 806-811. Flores, H. E., and A. W. Galston. 1982. Analysis of polyaminses in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701-706. Fodor, J., E. Hideg, A. Kecskes, and Z. Kiraly. 2001. In vivo of tobacco mosaic virus-induced local and systemic oxidative burst by electron paramagnetic resonance spectroscopy. Plant Cell Physiol. 42: 775- 779. Forlani, G., D. Scainelli, and E. Nielsen. 1997. Δ1- pyrroline-5-carboxylate hedydrogenase from culture cells of potato : purification and properties. Plant Physiol. 113: 1413-1418. Fuhrer, J. 1982. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant Cell Environ. 5: 263-270. Galston. A. W., R. Kauw-Shawney, T. Altabella, and A. F. Tiburcio. 1995. Plant polyamines in reproductive activity and response to abiotic stress. Bot. Acta. 110: 197-207. Goransson, A., and T. D. Eldhuset. 1987. Effects of aluminium on growth and nutrient uptake of Betula pendula seedlings. Physiol. Plant. 69: 193-199. Groppa, M. D., M. P. Benavides, and M. L. Tomaro. 2003. Polyamine metabolism in sunflower and wheat leaf under cadmium or copper stress. Plant Sci. 164: 293-299. Haag-Kerwer, A., H. J. Schafer, S. Heiss, C. Walter, and T. Rausch. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion effect on photosynthesis. J. Exp. Bot. 50: 1827-1835. Hall, J. H. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11. Hamilton, A. J. and D. C. Baulcombe. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950-952. Hare, P. D., W. A. Cress, and J. van Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 50: 413-434. Heath, R. L. and L. Packer.1968. Photoperoxidation in isolated chloroplasts .i. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198. Himelblau, E., and R. M. Amasino. 2000. Delivering copper within plant cells. Curr. Opin. Plant Biol. 3: 205- 210. Hsu, Y. T. and C. H. Kao. 2003. Accumulation of ammonium ion in cadmium tolerant and sensitive sultivars of Oryza sativa. Plant Growth Regul. 39: 271-276. Hu, C. A., A. J. Delauney, and D. P. S. Verma . 1992. A bifunctional enzyme (Δ1- pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. USA. 89: 9354-9358. Jan, F. J., F. Fagoaga, S. Z. Pang, and D. Gonsalves. 2000. A single chimeric transgene derived from two distinct virues confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81: 2103-2109. Kakkar, R. K., P. K. Nagar, P. S. Ahuja, and V. K. Rai. 2000. Polyamines and plant morphogenesis. Physiol. Plant. 43: 1-11. Kastori, R., M. Petrovic, and N. Petrovic. 1992. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J. Plant Nutri. 15: 2427-2439. Kavi Kishor, P. B., Z. Hong, G. H. Miao, C. A. Hu, and D. P. S. Verma. 1995. Overexpression of Δ1-pyrroline-5- carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394. Kiyosue, T., Y. Toshiba, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1996. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arobidopsis. Plant Cell. 8: 1323-1335. Klahre, U., P. Crete, S. A. Leuenberger, V. A. Iglesias, and F. Meins. 2002. High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc. Natl. Acad. Sci. 99: 11981-11986. Kumar M. S., G. Govind, L. Kang, K. S. Mysore, M. Udayakumar. 2007. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit- induced genes by virus-induced gene silencing. Planta. 225: 523-539. Kumar, A., M. Taylor, T. Altabella, and A. F. Tiburcio. 1997. Recent advances in polyamines research. Trends Plant Sci. 2: 124-130. Kuo, M. C., and C. H. Kao. 2004. Antioxidative enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedling. Bot. Bull. Acad. Sin. 45: 291-299. Lane, S. D., and E. S. Martin. 1980. An evaluation of effect of lead on the gross morphology of Raphanus sativus. Z. Pflanzen-physiol. 98: 437-452. Larher, F., A. Aziz, C. Deleu, P. Lemesle, A. Ghaffar, F. Bouchard, and M. Plasman. 1998. Suppression of the osmoinduced proline response of rapeseed leaf discs by polyamines. Physiol. Plant. 102: 139-147. Liu, Y., M. Schiff, and S. P. Dinesh-Kumar. 2002. Virus- induced gene silencing in tomato. Plant J. 31: 777-786. Liu, Y., M. Schiff, R. Marathe, and S. P. Dinesh-Kumar. 2000. Tobacco Rar1, EDS1 and NPR1/NIM1 like gene are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30: 415-429. Lolkema, P. C. and R. Vooijs. 1986. Copper tolerance in Silene cucubalus: subcellular distribution of copper and its effects on chloroplasts and plastocyanin synthesis. Planta. 167: 30-36. Maggio, A., S. Miyazaki, P. Veronese, T. Fujita, J. I. Ibeas, B. Damsz, M. L. Narasimhan, P. M. Hasegawa, R. J. Joly, and R. A. Bressan. 2002. Dose proline accumulation play an active role in stress-induced growth reduction. Plant J. 31: 699-712. Mallick, N. and F. H. Mohn. 2000. Reactive oxygen species: response of algal cells. J. Plant Physiol. 157: 183- 193. Martinez, J., A. Patkaniowska, H. Urlaub, R. Luhrmann, and T. Tuschl. 2002. Single-stranded antisense siRNAs quide target RNA cleavage in RNAi. Cell. 110: 563-574. Mattioni, G., R. Gabbrielli, J. Vangronsveld, and H. Clijsters. 1997. Nickel and cadmium toxicity and enzymatic activity in Ni-tolerant and non-tolerant populations of Siliene Italica pers. J. Plant Physiol. 150: 173-177. Maurel, C. 1997. Aquaporins and water permeability of plant membranes. Annu. Rev. Plant Physiol. Mol. Biol. 48: 399-429. Metzlaff, M., M. O’Dell, P. D. Cluster, and R. B. Flavell. 1997. RNA-mediated RNA degradation and chalcone synthaes A silencing in petunia. Cell. 88: 845-854. Mueller, E., J. Gilbert, G. Davenport, G. Brigneti, and D. C. Baulcombe. 1995. Homology-dependent resistance: Transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 7: 1001- 1013. Nanjo, T., M. Fujita, M. Seki, T. Kato, S. Tabata, and K. Shinozaki. 2003. Toxicity of free proline revealed in Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 44: 541-548. Napoli, C., C. Lemieux, R. Jorgensen. 1990. Introduction of chimeric chalcone synthesis gene into petunia results in reversible co-suppression of homologus genes in trans. Plant Cell. 2: 279-289. Ouelhadj, A., P. Kuschk, and K. Humbeck. 2006. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-induced novel C2 domain-like protein. New Phytol. 170: 261-273. Paivoke, A. 1983. The long-term effects of zinc on the growth and development, chlorophyll content and nitrogen fixation of the garden pea. Ann. Bot. Fenn. 20: 205-213. Panavas, T., E. L. Walker, and B. Rubinstein. 1998. Possible involvement of abscisic acid in senescence of daylily petals. J. Exp. Bot. 49: 1987-1997. Patsikka, E., E. M. Aro, and E. Tyystjarvi. 1998. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physiol. 117: 619-627. Pena, L. B., L. A. Pasquini, M. L. Tomaro, and S. M. Gallego. 2006. Protelytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci. 171: 531-537. Peng, Z., Q. Lu, and D. P. S. Verma. 1996. Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol. Gen Genet. 253: 334-341. Perfus-Barbeoch, L., N. Leondardt, and A. Vavasseur, and C. Forestier. 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32: 539-548. Radwan, D. E. M., K. A. Fayez, S. Y. Mahmoud, A. Hamaf, and G. Lu. 2006. Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiological Mol. Plant. Physiol. 69: 172-181. Rajagopal, V. 1981. The influence of exogenous proline on the stomatal resistance in Vicia faba. Physiol. Plant. 52: 292-296. Ratcliff, F., B. D. Harrison, and D. C. Baulcombe. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558-1560. Rauser, W. E. 1977. Early effects of phytotoxic burdens of cadmium, cobalt, nickel, and zinc in suspension culture tobacco cells Can. J. Bot. 56: 61-86. Rayapati, P. J., C. R. Stewart, and E. Hack. 1989. Pyrroline-5-carboxylate reductase in pea (Pisum sativum L.) leaf chloroplasts. Plant Physiol. 91: 581- 586. Roosens, N. H. C. J., T. T. Thu, H. M. Iskandar, and M. Jacobs. 1998. Isolation of the ornithine-δ- aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117: 263-271. Roosens, N. H., F. A. Bitar, K. Loenders, G. Angenon, and M. Jacobs. 2002. Overexpression ornithine-δ- aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breeding 9: 73-80. Ruiz,M. T., O. Voinnet, D. C. Baulcombe. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946. Savoure, A., S., X. J. Hua, W. Ardiles, M. Van Montagu, and N. Verbruggen. 1995. Isolation, characterization, and chromosomal location of a gene encoding the Δ1- pyrroline-5-carboxylate synthetase in Arobidopsis thaliana. FEBS Lett. 372: 13-19. Schat, H., S. S. Sharma, R. Vooijs. 1997. Heavy metal- induced accumulation of free proline in a metal- tolerant and non-tolerant ecotype of Silene vulgaris. Physiologia Plantarum. 101: 477-482. Schutzendubel, A. and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365. Sebela, M., A. Radová, R. Angelini, P. Tavladoraki, I. Fré bort, and P. Pec. 2001. FAD-containing polyamines oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci. 160: 197-207. Sharma, S. S., H. Schat, and R. Vooijs. 1998. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49: 1531-1535. Sharma, S.S. and K. J. Dietz. 2006. The significance of amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57: 711- 726. Shaw, B. P., N. P. Rout. 2002. Hg and Cd induced changes in proline content and activities of proline biosynthesizing enzymes in Phaseolus aureus and Triticum aestivum. Biologia Plantarum. 45: 267-271. Shen, W., K. Nada, and S. Tachibana. 2000. Involvement of polyamines in the chilling olerance of cucumber cultivars. Plant Physiol. 124: 431-439. Siedlecka, A., and Z. krupa. 1999. Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus. Photosynthetica 36: 321-331. Smirnoff, N. and Q. J. Cumbes. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060. Spitzer, B., M.M.B. Zvi, M. Ovadis, E. Marhevka, O. Barkai, O. Edelbaum,I. Marton, T. Masci, M. Alon, S. Morin, I. Rogachev,A. Aharoni, and A. Vainstein. 2007. Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in petunia. Plant Physiol. 145: 1241-1250. Strizhov, N. E. Abraham, L. Okresz, S. Blickling, A. Zilberstein, J. Schell, C. Koncz, and L. Szabados. 1997. Differential expression of two P5CS gene controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1, and AXR2 in Arobidopsis. Plant J. 12: 557-569. Sun, C., Y. L. Liu, and W. H. Zhang. 2002. Mechanism of the effect of polyamines on the activity of tonoplast of barley roots on the salt stress. Acta. Bot. Sin. 44: 1167-1172. Székely, G., E. Ábrahám, Á. Cséplo, G. RIgó, L. Zsigmond, J. Csiszár, F.Ayaydin, N. Strizhov, J. Jásik, E. Schmelzer, C. Koncz, and L. Szabados. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53: 11-28. Tang, W. and R. J. Newton. 2005. Polyamine promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep. 24: 581-589. Tazawa, M., K. Asai, and N. Iwasaki. 1996. Characteristics of Hg- and Zn- sensitivity water channels in the plasma membrane of Chara cells. Bot. Acta. 5: 388-396. Theiss, C., P. Bohley, and J. Voigt. 2002. Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 128: 1470- 1479. Tripathi, B. N. and J. P. Gaur. 2004. Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta. 219: 397-404. van Kammen, A. 1997. Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci. 2: 409-411. Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain- treated protective role of exogenous polyamines. Plant Sci. 151: 59-66. Verbruggen, N., R. Villarroel, and M. Van Montagu. 1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arobidopsis thaliana. Plant Physiol. 103: 771- 781. Verbruggen, N., X. J. Jua, M. May, and M. Van Montagu. 1996. Environmental and development signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc. Natl. Acad. Sci. USA. 93: 8787-8791. Vermas, S. and S. N. Mishra. 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol. 162: 669-677. Waterhouse, P. M., M. W. Graham, and M. B. Wang. 1998. Virus resistance and gene silencing in plants is induced by double stranded RNA. Proc. Natl. Acad. Sci. 95: 13959-13964. Wintermans, J. F. G. M. and A. de Mots. 1965. Spectrophotometric characteristic of chlorophylls a and b and their pheophytins in ethanol. Biochem. Biophys. Acta. 109: 448-453. Yamaguchi, K., Y. Takahashi, T. Berberich, A. Imai, A. Miyazaki, T. Takahashi, A. Michael, T. Kusano. 2006. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 580: 6783- 6788. Yang, J. C., J. H. Zhang, Z. Q, Wang, Q. S. Zhu, and L. J. Liu. 2003. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ. 26: 1621-1631. Yoshiba, Y., T. Kiyosue, K. Nakahima, K. Yamaguchi- Shinozaki, and K. Shinozaki. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095-1102. Yoshiba, Y., T. Kiyosue, T. Katagirl, H. Ueda, T. Mizoguchi, K. Yamaguchi-Shinozaki, Y. Harada, and K. Shinozaki. 1995. Correlation between the inuction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arobidopsis thaliana under osmotic stress. Plant J. 7: 751-760. Zhang, C. S., Q. Lu, and D. S. P. Verma. 1995. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plant. J. Biol. Chem. 270: 20491-20496. Zimmermann, P., C. Heinlein, G. Orendi, and U. Zentgraf. 2006. Senescence-specific regulation of catalases in Arabidopsis thaliana L. Heynh. Plant Cell Environ. 29: 1049-1060. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41045 | - |
dc.description.abstract | 植物於逆境下,常發現有脯胺酸累積的現象。Δ1-pyrroline-5-carboxylate synthetase (P5CS)及ornithine-δ-aminotransferase (OAT)是已知合成脯胺酸的兩種酵素,目前對逆境下兩酵素所扮演的角色尚未確認。本論文的目的在探討逆境下,脯胺酸的合成是透過何種酵素,以及此二酵素可能扮演的角色。本論文利用菸草嵌紋病毒(Tobacco mosaic virus, TMV)載體誘導基因沈寂(virus-induced gene silencing, VIGS)降低十週大菸草體內P5CS(TMV-antiP5CS)或 OAT 表現(TMV-antiOAT)或同時降低 P5CS 及 OAT 表現(TMV-antiP5CS + antiOAT),然後取病毒接種葉以上第一葉及第二葉的葉圓片,分別處理29% PEG (polyethylene glycol)、100 μM 離層酸 (abscisic acid, ABA)或、50 μM 氯化鎘,代表重金屬逆境下會誘導脯胺酸累積的三個因子。PEG處理下,接種TMV-antiP5CS葉圓片脯胺酸累積量減少80-89%,而接種TMV-antiOAT葉圓片脯胺酸量僅減少5-15%,鎘與ABA處理也有類似的結果。推論P5CS為重金屬逆境下使脯胺酸累積的主要酵素。再則進一步利用葉綠素與MDA含量變化,觀察逆境下抑制P5CS或OAT對生理的影響,結果顯示滲透逆境下接種TMV-antiP5CS葉圓片之葉綠素分解比接種TMV-GFP葉圓片快,而接種TMV-antiOAT葉圓片之葉綠素分解卻比接種TMV-GFP葉圓片緩慢。各處理下MDA含量則無明顯差異。由於OAT的反應物為鳥胺酸(ornithine),鳥胺酸亦可用於多元胺(polyamine)之合成,而多元胺有保護植物的功能。因此測定各處理葉圓片的多元胺含量,確認葉綠素分解是否受多元胺含量影響。結果顯示滲透逆境下抑制OAT 確實會增加多元胺含量。綜合上述論點歸結要點如下:P5CS為滲透逆境、ABA處與重金屬逆境理下使脯胺酸累積的主要酵素,而OAT僅參與滲透逆境誘導之脯胺酸累積。滲透逆境下抑制P5CS路徑會加速葉綠素分解。滲透逆境下抑制 OAT 路徑則會延緩葉綠素分解,其原因可能與多元胺含量增加有關。 | zh_TW |
dc.description.abstract | Proline accumulation is wide spread phenomenon in stressed plants. Proline could be synthesized with Δ1-pyrroline-5-carboxylate synthetase (P5CS) from glutamate and with ornithine-δ-aminotransferase (OAT) from ornithine in plants. It dose don not know well about the role of P5CS and OAT in stressed plants. The aim of this thesis is to investigate which enzyme is more important for proline synthesis, and what is the possible function of these enzymes in response to abiotic stress. We used Tobacco mosaic virus (TMV) as vector with the insertion of proline metabolized related gene fragments to decrease the expression of P5CS (TMV-antiP5CS) , OAT (TMV-antiOAT), or both of P5CS and OAT (TMV-antiP5CS+antiOAT) in 10 weeks old tobacco via the mechanism of VIGS (virus-induced gene silencing). The tobacco leaf discs taking form first and second leaf above the inoculated leaf were treated with 29%PEG (polyethylene glycol), 100 μM abscisic acid (ABA), or 50 μM CdCl2 to mimic three abiotic stresses. Under PEG treatment, the proline level of tobacco leaf discs inoculated with TMV-P5CS or TMV-OAT decreased about 80-90% and 5-15% respectively. The changes of proline level under ABA or Cd treatment were similar to PEG treatment. It is suggests that P5CS could be the major enzyme for proline accumulation under heavy metal stress. In order to investigate the possible function of P5CS and OAT expression in stressed plant, the chlorophyll and MDA content of leaf discs treated with VIGS were analyzed. The degradation of chlorophyll in TMV-antiP5CS inoculated tobacco leaf discs was faster than in TMV-GFP under PEG treatment. But the degradation in TMV-antiOAT was slower than in TMV-GFP. There was no difference in MDA content among all VIGS treated plant under stresses. It is noticed that the content of polyamine increased in TMV-antiOAT inoculated tobacco leaf discs under osmotic stress. In summary, P5CS is the major enzyme of proline accumulation under osmotic stress, ABA or heavy metal stress. OAT participates the proline accumulation only in osmotic stress. Under osmotic stress, inhibiting P5CS pathway can improve the rate of chlorophyll degradation. But inhibiting OAT pathway can delay the rate of chlorophyll degradation that migh be related to the increase of polyamine content in tobacco leaf discs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:13:39Z (GMT). No. of bitstreams: 1 ntu-97-R95623018-1.pdf: 2724909 bytes, checksum: a43e965c8b176f535df1acbd98e82a85 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要......................................................I
Abstract................................................III 目錄..................................................... V 圖目錄..................................................VII 第一章、前人研究 一、病毒誘導基因沈寂系統的發展與應用..................1 二、重金屬逆境對植物的影響............................3 三、重金屬逆境誘導植物體內脯胺酸的累積................4 四、植物體內脯胺酸的合成路徑..........................5 五、不同脯胺酸合成路徑可能扮演的角色......................6 六、多元胺與脯胺酸合成代謝的關連......................6 第二章、研究目的.........................................10 第三章、材料與方法 一、植物材料.........................................11 二、誘導基因沈寂病毒載體.............................11 三、大腸桿菌的轉形作用...............................11 四、生體外轉錄作用...................................12 五、非生物逆境處理...................................13 六、脯胺酸之測定.....................................13 七、葉綠素含量測定...................................14 八、脂質過氧化程度測定...............................14 九、游離多元胺含量測定...............................14 十、統計分析.............................................15 第四章、結果與討論 一、以TMV為載體之VIGS系統不適用於植物全株生理分析....17 二、P5CS為重金屬逆境下使脯胺酸累積的主要酵素.........24 三、VIGS對植物生理的影響.............................29 四、在逆境下抑制OAT表現可增加游離多元胺含量..........40 五、綜合討論.........................................48 參考文獻.................................................49 | |
dc.language.iso | zh-TW | |
dc.title | 利用病毒誘導基因沈寂探討逆境誘導下菸草脯胺酸合成酵素的角色 | zh_TW |
dc.title | The role of proline synthesis enzymes under stresses via virus-induced gene silencing in tobacco | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱志郁,鍾仁賜,蘇南維,詹富智 | |
dc.subject.keyword | 病毒誘導基因沈寂,脯胺酸,重金屬,多元胺,菸草, | zh_TW |
dc.subject.keyword | VIGS,proline,heavy metal,polyamine,Nicotiana bethamiana, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。