請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蟻剛馮(I-Kong Fong) | |
| dc.contributor.author | Yu-Jung Chen | en |
| dc.contributor.author | 陳佑榮 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:12:48Z | - |
| dc.date.available | 2008-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | [1] Peter Rinder , Nicolaj Bertelsen , “Design of A Single Frequency GPS Software Receiver,” Aalborg University , 2004.
[2] Kaplan.E , “Understanding GPS. Principles and applications, ” Artech House , 1996 [3] Tsui, J. “Fundamentals of Global Positioning System Receivers A Software Approach,” Wiley, 2000 [4] Haykin.S , “Communication systems 4th ed.”, John Wiley & Sons , 2001 [5] 游榮豪 , “高速全數位鎖相迴路”,國立中興大學電機工程研究所碩士論文,2001 [6] 黃牧 , “GPS基頻帶訊號處理之研究與實現”,國立成功大學電機工程學系碩士論文,2003 [7] R. G. Davenport, “FFT Processing of Direct Sequence Spreading Codes Using Modern DSP Microprocessors,” Proceedings of the IEEE National Aerospace and Electronics Conference, NAECON 1991, vol. 1, pp. 98 -105. [8] 莊名宇 , “微弱訊號環境下之適應性衛星訊號擷取法”,國立交通大學電信工程學系碩士論文,2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41030 | - |
| dc.description.abstract | 本論文先對全球衛星定位系統作一個概略的敘述,接著介紹系統中接收機處理信號的流程,描述各個步驟的分工與合作狀況,再針對處理流程中的信號追蹤步驟加以討論,最後設計一個追蹤迴路控制器去完成整個信號追蹤的過程。
信號追蹤的過程中,首先是加上一個督卜勒效應補償器,讓衛星信號在太空中傳遞時受到督卜勒效應的影響減小,以方便後續處理衛星信號中電碼相位漂移的部份。經過督卜勒補償之後將信號分段,分成長度一到二十個毫秒不等的訊框與本地產生之不同延遲的C/A碼複製版本作相關係數的運算。每個訊框的運算結果中,將最高相關係數絕對值對應的相位其延遲量記為此訊框所對應的相位漂移。在每一段時間中,將訊號切割成數十到數百個訊框並作上述相位判定的工作之後,可以得到相位漂移的特徵,也就是相位會隨著時間慢慢改變。而依照相位漂移與督卜勒效應的關係,可以用找出相位漂移所對應的最小方差直線以求出此時的督卜勒效應的估計值,以利進行下一次追蹤迴路。 最後,本論文分析了本追蹤迴路在選取不同訊框長度時,對於雜訊強度的承受度。在整理六種不同訊框長度對應的雜訊承受極限後,得出一個可以概估兩者關係的式子,並且探討其意義。最後也對於不同訊框長度下,所需要的計算量作一個比較。 | zh_TW |
| dc.description.abstract | This thesis starts by making a brief description about the Global Positioning System (GPS), and introduces how the signal processing task in GPS receivers is divided into sub-tasks and accomplished as a whole. Then, the tracking loop in the GPS signal processing sub-system is particularly addressed. Finally, a tracking loop controller is designed specifically for the signal processing purpose.
In the tracking loop, a Doppler effect compensator is added first to suppress the Doppler effect on signals transmitting in the outer space. This makes it easier to deal with the signals subsequently, such as the phase shift of C/A code in the satellite signal. The step taken after Doppler compensation is to divide a signal into frames with different lengths, from 1 to 20 milliseconds, and to compute the correlation coefficients between frames and locally generated C/A code copies with different phase delays. In every computation result, the phase shift is recorded according to the highest absolute value of correlation coefficient, so that the trace of phase shift can be obtained, which represents phase changes as time passing. Based on the relationship between code phase shift and Doppler effect, the estimated value of Doppler effect can be counted by finding the least-square line from the code phase shift and time, and can be used in tracking loop for the next iteration. The thesis finishes with the analysis of noise margin using different frame lengths. After summarizing the relation between all six kinds of frame length and noise margin, an equation can be obtained to estimate one with the other. Besides, the total calculation effort with different frame length is discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:12:48Z (GMT). No. of bitstreams: 1 ntu-96-R95921011-1.pdf: 622050 bytes, checksum: 1d0758a39709d1f9150edc7df9083077 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄......................................................i
圖目錄..................................................iii 表目錄....................................................v 第一章 緒論..1 1.1 研究動機...1 1.2 文獻回顧與探討..1 1.3 論文架構..3 第二章 全球衛星定位系統簡介..5 2.1 GPS衛星、軌道及其他相關設備..5 2.2 信號結構與模擬..5 2.2.1 信號的結構..5 2.2.2 信號產生..6 2.2.3 PRN 序列的產生..9 2.3 射頻信號與中頻信號11 2.4 擷取信號..13 2.5 追蹤信號..17 2.6 導航資料的解算與定位..17 第三章 GPS信號的追蹤..19 3.1 追蹤迴路的結構..19 3.2 信號解調變..19 3.3 電碼追蹤迴路..21 3.4 載波追蹤迴路..23 3.5 完整的追蹤迴路..25 第四章 追蹤迴路的分析與設計..27 4.1 基頻輸入信號的產生..27 4.2 相關係數運算與相關性質..30 4.3 督卜勒效應造成的相位漂移..32 4.4 信號的相位漂移..34 4.5 追蹤迴路設計架構..35 4.5.1 督卜勒補償..36 4.5.2 相位比較器..38 4.5.3 相位判定..39 4.5.4 督卜勒決定器..41 第五章 追蹤迴路模擬..43 5.1 加入雜訊與模擬..43 5.2 訊框長度1ms的模擬..44 5.3 訊框長度5ms的模擬..46 5.4 訊框長度10ms的模擬..48 5.5 訊框長度20ms的模擬..49 5.6 總結..50 第六章 結論以及未來展望..53 6.1 結論與分析..53 6.1.1 訊框長度與雜訊忍受極限..53 6.1.2 式6.1結果與分析討論..54 6.1.3 計算量的比較..55 6.1.4 小結..56 6.2 未來展望..56 參考文獻..58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 督卜勒效應 | zh_TW |
| dc.subject | 全球衛星定位系統 | zh_TW |
| dc.subject | 追蹤迴路 | zh_TW |
| dc.subject | 訊框長度 | zh_TW |
| dc.subject | 雜訊極限 | zh_TW |
| dc.subject | 相位漂移 | zh_TW |
| dc.subject | tracking loop | en |
| dc.subject | frame length | en |
| dc.subject | GPS | en |
| dc.subject | Doppler Effect | en |
| dc.subject | phase shift | en |
| dc.subject | noise margin | en |
| dc.title | 具有督卜勒效應補償之GPS追蹤迴路控制器設計與分析 | zh_TW |
| dc.title | Design and analysis of a GPS tracking loop controller with Doppler effect compensation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 信豪盧(Shin-Hao Lu),俊銘陳,聖毅劉 | |
| dc.subject.keyword | 全球衛星定位系統,追蹤迴路,訊框長度,雜訊極限,相位漂移,督卜勒效應, | zh_TW |
| dc.subject.keyword | GPS, tracking loop, frame length, noise margin, phase shift, Doppler Effect, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 607.47 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
