請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁詩同(Shih-Torng Ding),林劭品(Shau-Ping Lin) | |
| dc.contributor.author | Yu-Hsiang Chen | en |
| dc.contributor.author | 陳祐祥 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:11:41Z | - |
| dc.date.available | 2018-07-25 | |
| dc.date.copyright | 2008-08-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | 邱文彬。2001。綠竹基因組庫之建構及蔗糖合成酶基因之選殖。碩士論文。國立台灣大學。台北。
吳瑞軒。2007。豬胚早期發育階段大規模表現序列標籤之功能性基因體分析及其註解。碩士論文。國立台灣大學。台北。 張秀鑾、黃鈺嘉、吳明哲、李世昌。1998。豬經濟性狀測定與品種改良:繁殖性狀。台灣省畜產試驗所。第33至50頁。 陳孟均。2005。以單一核苷酸多型性基因定型分析及網站建立進行人類第四號染色體4q23-25區域之遺傳學研究。碩士論文。國立陽明大學。台北。 陳佳萱、賴永裕、劉桂柱、李世昌、廖仁寶、吳明哲、張秀鑾。2003。台灣種猪動情素受體多產基因頻率。畜產研究 36(1):19~25。 陳啟禎。2003。豬遺傳標記與生產性能。碩士論文。國立屏東科技大學。屏東。 陳嘉琪。2006。黑毛豬繁殖相關性狀ESR、PRLR、RBP4及LEP基因之基因型分析。碩士論文。國立中興大學。台中。 Archibald, A. L., and C. S. Haley. 1998. Genetic linkage maps. In: The genetics of the pig. pp.265-294. CAB International, Wallingford. Ball, L. G., and W. Xiao. 2005. Molecular basis of ataxia telangiectasia and related diseases. Acta. Pharmacol. Sin. 26: 897-907. Barlow, C., S. Hirotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins, Y. Shiloh, J. N. Crawley, T. Ried, D. Tagle, and A. Wynshaw-Boris. 1996. Atm-deficient mice: A paradigm of ataxia telangiectasia. Cell 86: 159-171. Bell, P. A., S. Chaturvedi, C. A. Gelfand, C. Y. Huang, M. Kochersperger, R. Kopla, F. Modica, M. Pohl, S. Varde, R. Zhao, X. Zhao, M. T. Boyce-Jacino, and A. Yassen. 2002. SNPstream UHT: Ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques (Suppl): 70-72, 74, 76-77. Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Brief, S., and B. P. Chew. 1985. Effects of vitamin A and beta-carotene on reproductive performance in gilts. J. Anim. Sci. 60: 998-1004. Buske, B., C. Brunsch, K. Zeller, P. Reinecke, and G. Brockmann. 2005. Analysis of properdin (BF) genotypes associated with litter size in a commercial pig cross population. J. Anim. Breed. Genet. 122: 259-263. Chekmenev, D. S., C. Haid, and A. E. Kel. 2005. P-match: Transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res. 33: W432-437. Chen, C. C., T. Chang, and H. Y. Su. 2004. Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits. Anim. Biotechnol. 15: 89-102. Chen, X., and P. F. Sullivan. 2003. Single nucleotide polymorphism genotyping: Biochemistry, protocol, cost and throughput. Pharmacogenomics J. 3: 77-96. Davis, G. P., and S. K. DeNise. 1998. The impact of genetic markers on selection. J. Anim. Sci. 76: 2331-2339. Dekkers, J. C. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Sci. 82 E-Suppl: E313-328. Distl, O. 2007. Mechanisms of regulation of litter size in pigs on the genome level. Reprod. Domest. Anim. 42 (Suppl) 2: 10-16. Dodgson, J. B., H. H. Cheng, and R. Okimoto. 1997. DNA marker technology: A revolution in animal genetics. Poult. Sci. 76: 1108-1114. Drogemuller, C., H. Hamann, and O. Distl. 2001. Candidate gene markers for litter size in different German pig lines. J. Anim. Sci. 79: 2565-2570. Ellegren, H., B. P. Chowdhary, M. Fredholm, B. Hoyheim, M. Johansson, P. B. Brauner Nielsen, P. D. Thomsen, and L. Andersson. 1994a. A physically anchored linkage map of pig chromosome 1 uncovers sex- and position-specific recombination rates. Genomics 24: 342-350. Ellegren, H., B. P. Chowdhary, M. Johansson, L. Marklund, M. Fredholm, I. Gustavsson, and L. Andersson. 1994b. A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137: 1089-1100. Fahrenkrug, S. C., E. M. Campbell, J. L. Vallet, and G. A. Rohrer. 2000. Physical assignment of the porcine erythropoietin receptor gene to ssc2. Anim. Genet. 31: 69-70. Freeman, M. E., B. Kanyicska, A. Lerant, and G. Nagy. 2000. Prolactin: Structure, function, and regulation of secretion. Physiol. Rev. 80: 1523-1631. Frenkel, R. A., K. Muguruma, and J. M. Johnston. 1996. The biochemical role of platelet-activating factor in reproduction. Prog. Lipid Res. 35: 155-168. Gilbert, S. F. 2006. The early development of vertebrates: Fish, birds and mammals. Developmental Biology, eighth (ed) pp. 326-369. Sunderland, MA: Sinauer Associates, Inc. Gladney, C. D., V. G. Martinez, K. A. Brumbaugh, B. J. DeGroot, R. C. Linville, A. M. Oommen, R. M. Huebinger, L. A. Messer, M. F. Allan, and D. Pomp. 1999. Mapping of the prostaglandin-endoperoxide synthase 2 (PTGS2) gene to porcine chromosome 9 and bovine chromosome 16 by linkage analysis using novel PCR-RFLP. J. Anim. Sci. 77: 787-788. Goliasova, E., and J. Wolf. 2004. Impact of the ESR gene on litter size and production traits in Czech large white pigs. Anim. Genet. 35: 293-297. Gonzalez, R. R., P. Caballero-Campo, M. Jasper, A. Mercader, L. Devoto, A. Pellicer, and C. Simon. 2000. Leptin and leptin receptor are expressed in the human endometrium and endometrial leptin secretion is regulated by the human blastocyst. J. Clin. Endocrinol. Metab. 85: 4883-4888. Gueven, N., T. Fukao, J. Luff, C. Paterson, G. Kay, N. Kondo, and M. F. Lavin. 2006. Regulation of the ATM promoter in vivo. Genes Chromosomes Cancer 45: 61-71. Haley, C., and A. Archibald. 1998. Progress in pig gene mapping. In: Progress in pig science. J. Wiseman, M. A. Varley, and J. P. Chadwick (eds). pp. 5-27. Nottingham university press. Hamann, H., C. Drogemuller, J. Krieter, U. Presuhn, J. Wallenburg, and O. Distl. 2000. Genetic markers for litter size in German pig breeds. In: 51st Annual Meeting of the European Association of Animal Production, The Hague, 21-24 August 2000. Harney, J. P., T. L. Ott, R. D. Geisert, and F. W. Bazer. 1993. Retinol-binding protein gene expression in cyclic and pregnant endometrium of pigs, sheep, and cattle. Biol. Reprod. 49: 1066-1073. Hirschhorn, J. N., P. Sklar, K. Lindblad-Toh, Y. M. Lim, M. Ruiz-Gutierrez, S. Bolk, B. Langhorst, S. Schaffner, E. Winchester, and E. S. Lander. 2000. SBE-TAGS: An array-based method for efficient single-nucleotide polymorphism genotyping. Proc. Natl. Acad. Sci. (U S A) 97: 12164-12169. Hirotsune, S., M. W. Fleck, M. J. Gambello, G. J. Bix, A. Chen, G. D. Clark, D. H. Ledbetter, C. J. McBain, and A. Wynshaw-Boris. 1998. Graded reduction of pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19: 333-339. Horak, P., T. Urban, and J. Dvorak. 2005. The FUT1 and ESR genes--their variability and associations with reproduction in Prestice Black-Pied sows. J. Anim. Breed. Genet. 122: 210-213. Irgang, R., J. A. Favero, and B. W. Kennedy. 1994. Genetic parameters for litter size of different parities in Duroc, Landrace, and large white sows. J. Anim. Sci. 72: 2237-2246. Jiang, Z., J. P. Gibson, A. L. Archibald, and C. S. Haley. 2001. The porcine gonadotropin-releasing hormone receptor gene (GNRHR): Genomic organization, polymorphisms, and association with the number of corpora lutea. Genome 44: 7-12. Johnson, R. K., M. K. Nielsen, and D. S. Casey. 1999. Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. J. Anim. Sci. 77: 541-557. Karasawa, K., A. Harada, N. Satoh, K. Inoue, and M. Setaka. 2003. Plasma platelet activating factor-acetylhydrolase (PAF-AH). Prog. Lipid Res. 42: 93-114. Kawagishi, R., M. Tahara, K. Sawada, K. Morishige, M. Sakata, K. Tasaka, and Y. Murata. 2004. Na+ / H+ exchanger-3 is involved in mouse blastocyst formation. J. Exp. Zoolog. A Comp. Exp. Biol. 301: 767-775. Kawamura, K., N. Sato, J. Fukuda, H. Kodama, J. Kumagai, H. Tanikawa, A. Nakamura, and T. Tanaka. 2002. Leptin promotes the development of mouse preimplantation embryos in vitro. Endocrinology 143: 1922-1931. Knudsen, S. 1999. Promoter2.0: For the recognition of polii promoter sequences. Bioinformatics 15: 356-361. Ko, M. S., J. R. Kitchen, X. Wang, T. A. Threat, A. Hasegawa, T. Sun, M. J. Grahovac, G. J. Kargul, M. K. Lim, Y. Cui, Y. Sano, T. Tanaka, Y. Liang, S. Mason, P. D. Paonessa, A. D. Sauls, G. E. DePalma, R. Sharara, L. B. Rowe, J. Eppig, C. Morrell, and H. Doi. 2000. Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 127: 1737-1749. Korwin-Kossakowska, A., M. Kamyczek, D. Cieslak, M. Pierzchala, and J. Kuryl. 2002. The effect of the polymorphism of leptin (LEP), leptin receptor (LEPR) and osteopontin (OPN) genes on selected reproduction traits of synthetic line 990 sows. Animal Science Papers and Reports 20: 159-168. Lee, L. G., C. R. Connell, and W. Bloch. 1993. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res. 21: 3761-3766. Linville, R. C., D. Pomp, R. K. Johnson, and M. F. Rothschild. 2001. Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67. Liu, Z. J., and J. F. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238: 1-37. Magni, P., M. Motta, and L. Martini. 2000. Leptin: A possible link between food intake, energy expenditure, and reproductive function. Regul. Pept. 92: 51-56. McKinnon, P. J. 2004. ATM and ataxia telangiectasia. EMBO Rep. 5: 772-776. Mellink, C., Y. Lahbib-Mansais, M. Yerle, and J. Gellin. 1995. PCR amplification and physical localization of the genes for pig FSHB and LHB. Cytogenet. Cell Genet. 70: 224-227. Noguera, J. L., L. Varona, L. Go´mez-Raya, A. Sa´nchez, D. Babot, J. Estany, L. A. Messer, M. Rothschild , and M. Pe´rez-Enciso. 2003. Estrogen receptor polymorphism in Landrace pigs and its association with litter size performance. Livestock Production Science 82: 53-58. Mendez, E. A., L. A. Messer, N. J. Larsen, A. Robic, and M. F. Rothschild. 1999. Epidermal growth factor maps to pig chromosome 8. J. Anim. Sci. 77: 494-495. O'Donovan, M. C., P. J. Oefner, S. C. Roberts, J. Austin, B. Hoogendoorn, C. Guy, G. Speight, M. Upadhyaya, S. S. Sommer, and P. McGuffin. 1998. Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics 52: 44-49. Olivier, M. 2005. The invader assay for SNP genotyping. Mutat. Res. 573: 103-110. O'Neill, C. 2005. The role of PAF in embryo physiology. Hum. Reprod. Update 11: 215-228. Orita, M., H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. (U S A) 86: 2766-2770. Panitz, F., H. Stengaard, H. Hornshoj, J. Gorodkin, J. Hedegaard, S. Cirera, B. Thomsen, L. B. Madsen, A. Hoj, R. K. Vingborg, B. Zahn, X. Wang, R. Wernersson, C. B. Jorgensen, K. Scheibye-Knudsen, T. Arvin, S. Lumholdt, M. Sawera, T. Green, B. J. Nielsen, J. H. Havgaard, S. Brunak, M. Fredholm, and C. Bendixen. 2007. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation. Bioinformatics 23: i387-391. Platzer, M., G. Rotman, D. Bauer, T. Uziel, K. Savitsky, A. Bar-Shira, S. Gilad, Y. Shiloh, and A. Rosenthal. 1997. Ataxia-telangiectasia locus: Sequence analysis of 184 kb of human genomic DNA containing the entire ATM gene. Genome Res. 7: 592-605. Prescott, S. M., G. A. Zimmerman, and T. M. McIntyre. 1990. Platelet-activating factor. J. Biol. Chem. 265: 17381-17384. Reima, I., E. Lehtonen, I. Virtanen, and J. E. Flechon. 1993. The cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 54: 35-45. Rogatcheva, M. B., K. L. Fritz, L. A. Rund, C. B. Pollock, J. E. Beever, C. M. Counter, and L. B. Schook. 2007. Characterization of the porcine ATM gene: Towards the generation of a novel non-murine animal model for ataxia-telangiectasia. Gene 405: 27-35. Rothschild, M., C. Jacobson, D. Vaske, C. Tuggle, L. Wang, T. Short, G. Eckardt, S. Sasaki, A. Vincent, D. McLaren, O. Southwood, H. van der Steen, A. Mileham, and G. Plastow. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. (U S A) 93: 201-205. Rothschild, M. F. 1996. Genetics and reproduction in the pig. Anim. Reprod. Sci. 42: 143-151. Rothschild, M. F., A. L. Vincent, C. K. Tuggle, G. Evans, T. H. Short, O. I. Southwood, R. Wales, and G. S. Plastow. 1998. A mutation in the prolactin receptor gene is associated with increased litter size in pigs. pp.105. In: Proceedings of the 26th International Conference on Animal Genetics, International Society for Animal Genetics, Auckland, NZ. Rothschild, M. F., L. Messer, A. Day, R. Wales, T. Short, O. Southwood, and G. Plastow. 2000. Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs. Mamm. Genome 11: 75-77. SAS. 2007. SAS procedure guide for personal computers version 9.0 ed. SAS institude Inc. Cary, NC, USA. Savitsky, K., A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, D. A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashkenazi, I. Pecker, M. Frydman, R. Harnik, S. R. Patanjali, A. Simmons, G. A. Clines, A. Sartiel, R. A. Gatti, L. Chessa, O. Sanal, M. F. Lavin, N. G. Jaspers, A. M. Taylor, C. F. Arlett, T. Miki, S. M. Weissman, M. Lovett, F. S. Collins, and Y. Shiloh. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749-1753. Schoenbeck, R. A., M. S. Peters, L. F. Rickords, T. T. Stumpf, and R. S. Prather. 1992. Characterization of deoxyribonucleic acid synthesis and the transition from maternal to embryonic control in the 4-cell porcine embryo. Biol. Reprod. 47: 1118-1125. Schultz, R. M. 2002. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8: 323-331. Semagn, K., Å. Bjørnstad, and M. N. Ndjiondjop. 2006. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 5: 2540-2568. Shi, Y., P. Zhang, L. Zhang, H. Osman, E. R. Mohler III, C. Macphee, A. Zalewski, A. Postle, and R. L. Wilensky. 2007. Role of lipoprotein-associated phospholipase A2 in leukocyte activation and inflammatory responses. Atherosclerosis 191: 54-62. Short, T. H., M. F. Rothschild, O. I. Southwood, D. G. McLaren, A. de Vries, H. van der Steen, G. R. Eckardt, C. K. Tuggle, J. Helm, D. A. Vaske, A. J. Mileham, and G. S. Plastow. 1997. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J. Anim. Sci. 75: 3138-3142. Soller, M. 1998. Marker-assisted selectionin animal biotechnology. In: Agriculture Biotechnology: Books in soils, plants and the environment. A. Altman (ed). pp.387-406. New York Marcel Decker, Inc., NY. Spotter, A., and O. Distl. 2006. Genetic approaches to the improvement of fertility traits in the pig. Vet. J. 172: 234-247. Spotter, A., C. Drogemuller, H. Hamann, and O. Distl. 2005. Evidence of a new leukemia inhibitory factor-associated genetic marker for litter size in a synthetic pig line. J. Anim. Sci. 83: 2264-2270. Spotter, A., C. Drogemuller, H. Kuiper, B. Brenig, T. Leeb, and O. Distl. 2001. Molecular characterization and chromosome assignment of the porcine gene for leukemia inhibitory factor LIF. Cytogenet. Cell Genet. 93: 87-90. Stafforini, D. M., K. Satoh, D. L. Atkinson, L. W. Tjoelker, C. Eberhardt, H. Yoshida, T. Imaizumi, S. Takamatsu, G. A. Zimmerman, T. M. McIntyre, P. W. Gray, and S. M. Prescott. 1996. Platelet-activating factor acetylhydrolase deficiency. A missense mutation near the active site of an anti-inflammatory phospholipase. J. Clin. Invest. 97: 2784-2791. Stratil, A., L. Peelman, M. Van Poucke, and S. Cepica. 1997. A Hinf I PCR-RFLP at the porcine leptin (LEP) gene. Anim. Genet. 28: 371-372. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463-6471. Terman, A. 2005. Effect of the polymorphism of prolactin receptor (PRLR) and leptin (LEP) genes on litter size in Polish pigs. J. Anim. Breed Genet. 122: 400-404. Tobe, V. O., S. L. Taylor, and D. A. Nickerson. 1996. Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Res. 24: 3728-3732. Trott, J. F., N. R. Farley, D. J. Taatjes, and R. C. Hovey. 2007. Cloning and functional characterization of allelic variation in the porcine prolactin receptor. Domest. Anim. Endocrinol. 33: 313-334. Vallet, J. L., B. A. Freking, K. A. Leymaster, and R. K. Christenson. 2005. Allelic variation in the erythropoietin receptor gene is associated with uterine capacity and litter size in swine. Anim. Genet. 36: 97-103. van Rens, B. T., G. J. Evans, and T. van der Lende. 2003. Components of litter size in gilts with different prolactin receptor genotypes. Theriogenology 59: 915-926. van Rens, B. T., and T. van der Lende. 2002. Litter size and piglet traits of gilts with different prolactin receptor genotypes. Theriogenology 57: 883-893. Vignal, A., D. Milan, M. SanCristobal, and A. Eggen. 2002. A review on snp and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34: 275-305. Vincent, A. L., L. Wang, C. K. Tuggle, A. Robic, and M. F. Rothschild. 1997. Prolactin receptor maps to pig chromosome 16. Mamm. Genome 8: 793-794. Vincent, A. L., G. Evans, T. H. Short, O. I. Southwood, G. S. Plastow, C. K. Tuggle, and M. F. Rothschild. 1998. The prolactin receptor gene is associated with increased litter size in pigs. In: Proc. 6th World Cong. Genet. Appl. Livest. Prod., Armidale, Australia. pp.15-18. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. Wernersson, R., M. H. Schierup, F. G. Jorgensen, J. Gorodkin, F. Panitz, H. H. Staerfeldt, O. F. Christensen, T. Mailund, H. Hornshoj, A. Klein, J. Wang, B. Liu, S. Hu, W. Dong, W. Li, G. K. Wong, J. Yu, C. Bendixen, M. Fredholm, S. Brunak, H. Yang, and L. Bolund. 2005. Pigs in sequence space: A 0.66x coverage pig genome survey based on shotgun sequencing. BMC Genomics 6: 70. Whitworth, K., G. K. Springer, L. J. Forrester, W. G. Spollen, J. Ries, W. R. Lamberson, N. Bivens, C. N. Murphy, N. Mathialagan, J. A. Green, and R. S. Prather. 2004. Developmental expression of 2489 gene clusters during pig embryogenesis: An expressed sequence tag project. Biol. Reprod. 71: 1230-1243. Whitworth, K. M., C. Agca, J. G. Kim, R. V. Patel, G. K. Springer, N. J. Bivens, L. J. Forrester, N. Mathialagan, J. A. Green, and R. S. Prather. 2005. Transcriptional profiling of pig embryogenesis by using a 15-k member unigene set specific for pig reproductive tissues and embryos. Biol. Reprod. 72: 1437-1451. Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. Wilson, M. E., T. S. Sonstegard, T. P. Smith, S. C. Fahrenkrug, and S. P. Ford. 2000. Differential gene expression during elongation in the preimplantation pig embryo. Genesis 26: 9-14. Xu, Y., and D. Baltimore. 1996. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10: 2401-2410. Yan, W., A. H. Assadi, A. Wynshaw-Boris, G. Eichele, M. M. Matzuk, and G. D. Clark. 2003. Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proc. Natl. Acad. Sci. (U S A) 100: 7189-7194. Yang, J., Z. P. Xu, Y. Huang, H. E. Hamrick, P. J. Duerksen-Hughes, and Y. N. Yu. 2004. ATM and ATR: sensing DNA damage. World J. Gastroenterol. 10: 155-160. Yu, W. H., M. Kimura, A. Walczewska, S. Karanth, and S. M. McCann. 1997. Role of leptin in hypothalamic-pituitary function. Proc. Natl. Acad. Sci. (U S A) 94: 1023-1028. Zhang, Q., J. L. Wrana, and J. Sodek. 1992. Characterization of the promoter region of the porcine opn (osteopontin, secreted phosphoprotein 1) gene. Identification of positive and negative regulatory elements and a 'silent' second promoter. Eur. J. Biochem. 207: 649-659. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41010 | - |
| dc.description.abstract | 母豬繁殖性能為影響養豬產業生產效率之重要因子,其中又以母豬窩仔數為最重要之繁殖性狀,若能改進窩仔數將能提升養豬產業之經濟效益。隨著分子生物技術之發展,藉由候選基因分析方法 (candidate gene approach) 找尋分子遺傳標記,並應用於標記輔助選拔 (marker-assisted selection),將可助於改善母豬繁殖性狀之選拔效應。而藍瑞斯品種之母豬為台灣育種策略中的重要豬種,但目前仍未出現能夠顯著影響純種藍瑞斯母豬窩仔數的分子遺傳標記。
豬桑椹胚到囊胚時期的發育,為埋殖前胚成功著床以及胎體成功發育之關鍵時期。有鑑於此,本研究藉由桑椹胚發育至早期囊胚階段中,mRNA 表現量顯著增加或降低之基因作為候選基因,並進一步找尋其調控區域之單核苷酸多型性 (single nucleotide polymorphism, SNP) 分子遺傳標記,同時利用大量鑑定 SNP 基因型技術以瞭解其與窩仔數關係,期能篩選出區分藍瑞斯母豬高低窩仔數的標記,以協助遺傳育種改良。 經由 30 頭純種藍瑞斯母豬定序後發現,在 10 個候選基因裡,共有 37 個 SNP發生於調控區域、14 個 SNP 位於 5’ 端未轉譯區域 (untranslated region, UTR),以及 8 個發生於轉譯區域或內插子 (intron) 的 SNP,合計共有 59 個新開發之 SNP。進一步利用 SNP 基因定型系統鑑定 161 頭純種藍瑞斯母豬之 SNP 基因型,同時分析各 SNP 基因型對於母豬不同胎次之出生仔豬總頭數 (total number of pigs born, TNB) 與存活仔豬頭數 (number born alive, NBA) 之差異。結果發現,位於 ataxia-telangiectasia mutated (ATM) 基因調控區域與 5’UTR、plasma platelet-activating factor acetylhydrolase (plasma PAFAH) 基因調控區域,以及泌乳素 (prolactin, PRL) 基因調控區域等 7 個 SNP,其基因型與藍瑞斯品種母豬之TNB 及 NBA 有顯著關係存在 (P < 0.05),說明了這些調控區域的 SNP 可能與控制基因表現有密切關係存在,而 ATM 基因與 plasma PAFAH 基因也可能為調控母豬繁殖效能的重要基因。本研究新開發之 SNP 標記,發現為影響純種藍瑞斯母豬窩仔數的分子遺傳標記,未來若能取得更多之藍瑞斯母豬樣本數及生產紀錄,將能更進一步確認這些 SNP 在遺傳育種改良上之價值,對於純種藍瑞斯之選拔將是一大貢獻。 | zh_TW |
| dc.description.abstract | Reproductive traits, especially litter size, are important components for reducing the costs of pig production. DNA molecular markers can be used for marker-assisted selection (MAS) program through candidate gene approach to improve the rate of selection response. Landrace is the major strain of sow used in commercial pig production in Taiwan but there is no available molecular marker associated with purebred Landrace.
The survival and proper development of early embryos are important factors affecting the reproductive traits of sows. The purpose of this study is to discover the SNPs located on the regulatory regions of differentially expressed genes between morula and blastocyst. We also characterized the SNP genotypes of these genes and studied the association of litter size with these genotypes in Landrace sows. After cloning and sequencing regulatory region of the 10 candidate genes in 30 Landrace sows, we found 59 novel SNPs. Furthermore, we genotyped the SNP markers within the candidate genes in 161 Landrace sows. The effects of SNP markers on total number of pigs born (TNB) and number born alive (NBA) were tested. Our results showed the SNPs located on ataxia-telangiectasia mutated (ATM) gene, plasma platelet-activating factor acetylhydrolase (plasma PAFAH) gene and prolactin (PRL) gene were associated with TNB and NBA (P < 0.05). As most of these SNPs located on the regulatory sequences of the candidate genes, they may have direct effects on regulating expression levels of those genes. We therefore propose ATM, plasma PAFAH and prolactin, the host genes for litter size related SNPs, are likely to have major effects on litter size in pigs, and these efforts may help us to improve the reproductive efficiency of pigs. We developed an efficient and effective platform based on litter size related SNPs associated with the regulatory sequences of differentially regulated genes from morula to blastocyst preimplantation embryos. Once validated further with larger sample size from multiple farms, this SNP based screening platform will significantly facilitate the selection of best breeding herd of Landrace sow. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:11:41Z (GMT). No. of bitstreams: 1 ntu-97-R95626002-1.pdf: 2393149 bytes, checksum: e163d6d08b5b72b31e58b6409b1e5bdd (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄......................................................I
圖目錄..................................................III 表目錄...................................................IV 中文摘要..................................................V 英文摘要................................................VII 壹、 前言 .................................................1 貳、 文獻探討.............................................2 一、 母豬繁殖相關性狀之 DNA 分子遺傳標記..................2 (一) 台灣養豬產業與窩仔數...............................2 (二) 影響母豬窩仔數之因子...............................2 (三) 母豬繁殖性狀相關之候選基因.........................3 二、 開發母豬窩仔數相關之單核苷酸多型性分子遺傳標記......10 (一) 單核苷酸多型性之應用..............................10 (二) 候選基因:豬桑椹胚及早期囊胚差異性表現基因........16 三、 研究動機............................................19 參、 材料與方法..........................................21 試驗一、候選基因調控區域之選殖...........................21 一、 候選基因之選擇......................................21 二、 選殖調控區域序列....................................21 三、 豬基因組庫之建構....................................22 (一) 豬完整基因組 DNA 之抽取...........................22 (二) 基因組 DNA EcoR I 限制酶部分切割片段之製備........22 (三) 基因組 DNA 片段與 Lambda DASH® II 載體接合........24 (四) 試管外噬菌體的包裝................................24 (五) 噬菌體價數的測定與基因組庫之增幅..................25 四、 選殖株之篩選及確認..................................25 (一) 基因組庫之塗佈與轉印..............................25 (二) 探針之選殖........................................26 (三) 探針雜合反應......................................28 (四) 正反應選殖株之分離純化............................29 (五) 噬菌體 DNA 之抽取.................................29 (六) 次選殖與南方雜合分析法............................30 試驗二、母豬窩仔數相關 SNP 之開發........................32 一、 試驗材料............................................32 二、 基因組 DNA 之抽取...................................32 三、 聚合酶連鎖反應......................................33 四、 定序分析............................................34 五、 母豬繁殖性狀相關之 DNA 分子遺傳標記.................34 試驗三、SNP 基因型與母豬窩仔數之遺傳相關.................35 一、 試驗材料與資料收集..................................35 二、 分析 SNP 系統平台之建構與分析.......................35 (一) 引子設計與多重聚合酶連鎖反應......................35 (二) SNP 標籤引子延伸反應..............................37 (三) 雜合反應..........................................38 (四) 影像偵測..........................................38 三、 統計分析............................................38 肆、 試驗結果............................................39 試驗一、候選基因調控區域之選殖...........................39 一、 豬基因組庫之建構....................................39 (一) 豬完整基因組 DNA..................................39 (二) EcoR I 限制酶部分切割片段之製備...................39 (三) 豬基因組庫之建構..................................39 二、 候選基因調控區域之選殖..............................42 (一) 篩選正反應之選殖株................................42 (二) 次選殖............................................43 試驗二、母豬窩仔數相關 SNP 之開發........................47 一、 候選基因調控區域序列分析與 SNP 分布.................47 二、 母豬繁殖性狀相關之 DNA 分子遺傳標記之 SNP 基因型....47 三、 候選 SNP 之調控功能.................................47 試驗三、SNP 基因型與母豬窩仔數之遺傳相關.................51 一、 候選基因 SNP 基因型分析.............................51 (一) 48-SNP 基因型分析.................................51 (二) 24-SNP 基因定型系統分析...........................51 二、 候選基因 SNP 基因型與母豬窩仔數之遺傳相關...........52 (一) SNP 之基因型頻率..................................52 (二) SNP 與窩仔數之關係................................52 伍、 討論 ................................................59 一、 豬基因組庫之效率....................................59 二、 新開發之 SNP 數量...................................59 三、 SNP 基因定型系統之效能..............................60 四、 SNP 基因型與母豬窩仔數..............................61 (一) 新開發之 SNP......................................61 (二) 母豬繁殖性狀相關之 DNA 分子遺傳標記...............62 (三) 新穎 SNP 之發展...................................63 五、 候選基因之生理功能..................................64 (一) SSC.21876 (ataxia-telangiectasia mutated).........65 (二) SSC.19691 (plasma platelet-activating factor acetylhydrolase).........................................66 (三) 泌乳素 (prolactin)................................67 六、 未來方向............................................68 陸、 結論 ................................................70 柒、 參考文獻............................................71 【附錄1】引子設計........................................80 【附錄2】候選基因之序列與 SNP............................86 【附錄3】SNP 基因型分析結果..............................97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酸多型性 | zh_TW |
| dc.subject | 單核苷 | zh_TW |
| dc.subject | 窩仔數 | zh_TW |
| dc.subject | 早期胚 | zh_TW |
| dc.subject | 藍瑞斯母豬 | zh_TW |
| dc.subject | 差異性表現基因 | zh_TW |
| dc.subject | Plasma platelet-activating factor acetylhydrolase 基因 | zh_TW |
| dc.subject | Ataxia-telangiectasia mutated 基因 | zh_TW |
| dc.subject | Landrace sow | en |
| dc.subject | Early embryo | en |
| dc.subject | Differentially expressed gene | en |
| dc.subject | Plasma platelet-activating factor acetylhydrolase gene | en |
| dc.subject | Ataxia-telangiectasia mutated gene | en |
| dc.subject | Single nucleotide polymorphism | en |
| dc.subject | Litter size | en |
| dc.title | 藍瑞斯母豬早期胚差異性表現基因之單核苷酸多型性與窩仔數之相關 | zh_TW |
| dc.title | The identification of litter size related single nucleotide polymorphisms from differentially regulated genes of early embryo in Landrace sows | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王佩華,林恩仲,歐柏榮 | |
| dc.subject.keyword | 窩仔數,單核苷,酸多型性,Ataxia-telangiectasia mutated 基因,Plasma platelet-activating factor acetylhydrolase 基因,差異性表現基因,早期胚,藍瑞斯母豬, | zh_TW |
| dc.subject.keyword | Litter size,Single nucleotide polymorphism,Ataxia-telangiectasia mutated gene,Plasma platelet-activating factor acetylhydrolase gene,Differentially expressed gene,Early embryo,Landrace sow, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
