請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40976
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 牟中原(Chung-Yuan Mou) | |
dc.contributor.author | Chih-Pin Tsai | en |
dc.contributor.author | 蔡智斌 | zh_TW |
dc.date.accessioned | 2021-06-14T17:09:46Z | - |
dc.date.available | 2008-07-30 | |
dc.date.copyright | 2008-07-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | Reference
(1) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538-544. (2) Cai, W. B.; Shin, D. W.; Chen, K.; Gheysens, O.; Cao, Q. Z.; Wang, S. X.; Gambhir, S. S.; Chen, X. Y. Nano Lett. 2006, 6, 669-676. (3) Pierschbacher, M. D.; Ruoslahti, E. Nature 1984, 309, 30-33. (4) Kim, S. J.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J. Y.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2004, 22, 93-97. (5) Rajan, S. S.; Vu, T. Q. Nano Lett. 2006, 6, 2049-2059. (6) Vu, T. Q.; Maddipati, R.; Blute, T. A.; Nehilla, B. J.; Nusblat, L.; Desai, T. A. Nano Lett. 2005, 5, 603-607. (7) Rajan, S. S.; Liu, H. Y.; Vu, T. Q. ACS Nano 2008, ASAP. (8) Heerssen, H. M.; Segal, R. A. Trends Neurosci. 2002, 25, 160-165. (9) O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593-596. (10) Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4984-4989. (11) Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y. M.; Dai, H. J. Nano Lett. 2002, 2, 285-288. (12) Kam, N. W. S.; Dai, H. J. J. Am. Chem. Soc. 2005, 127, 6021-6026. (13) Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. Nat. Nanotechnol. 2007, 2, 47-52. (14) Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. J. Nano Lett. 2008, 8, 586-590. (15) Livramento, J. B.; Tóth, É.; Sour, A.; Borel, A.; Merbach, A. E.; Ruloff, R. Angew. Chem. Int. Edit. 2005, 44, 1480-1484. (16) Thompson, M. K.; Botta, M.; Nicolle, G.; Helm, L.; Aime, S.; Merbach, A. E.; Raymond, K. N. J. Am. Chem. Soc. 2003, 125, 14274-14275. (17) Caravan, P., Chem. Soc. Rev. 2006, 35, 512-523. (18) Zhang, S. R.; Merritt, M.; Woessner, D. E.; Lenkinski, R. E.; Sherry, A. D., Accounts Chem. Res. 2003, 36, 783-790. (19) Jun, Y. W.; Huh, Y. M.; Choi, J. S.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732-5733. (20) Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 12387-12391. (21) Wang, F. H.; Lee, I. H.; Holmstrom, N.; Yoshitake, T.; Kim, D. K.; Muhammed, M.; Frisen, J.; Olson, L.; Spenger, C.; Kehr, J. Nanotechnology 2006, 17, 1911-1915. (22) Na, H. B.; Lee, J. H.; An, K. J.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. H.; Kim, S. T.; Kim, S. H.; Kim, S. W.; Lim, K. H.; Kim, K. S.; Kim, S. O.; Hyeon, T., Angew. Chem. Int. Edit. 2007, 46, 5397-5401. (23) Choi, J. S.; Jun, Y. W.; Yeon, S. I.; Kim, H. C.; Shin, J. S.; Cheon, J., J. Am. Chem. Soc. 2006, 128, 15982-15983. (24) Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G.; Dai, H. J. Nat. Mater. 2006, 5, 971-976. (25) Fahmy, T. M.; Fong, P. M.; Goyal, A.; Saltzman, W. M. nanotoday 2005, Augest, 18-26. (26) Kim, G. J.; and Nie, S. nanotoday 2005, Augest, 28-33. (27) Couvreur, P.; Vauthier, C. Pharm. Res. 2006, 23, 1417-1450. (28) Alonso, M. J. Biomed. Pharmacother. 2004, 58, 168-172. (29) Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nat. Nanotechnol. 2007, 2, 751-760. (30) Ferrari, M., Nat. Rev. Cancer 2005, 5, 161-171. (31) Koziara, J. M.; Lockman, P. R.; Allen, D. D.; Mumper, R. J. Pharm. Res. 2003, 20, 1772-1778. (32) Lockman, P. R.; Oyewumi, M. O.; Koziara, J. M.; Roder, K. E.; Mumper, R. J.; Allen, D. D. J. Control. Release 2003, 93, 271-282. (33) Wu, J.; Akaike, T.; Maeda, H. Cancer Research 1998, 58, 159-165. (34) Gopin, A.; Pessah, N.; Shamis, M.; Rader, C.; Shabat, D. Angew. Chem. Int. Edit. 2003, 42, 327-332. (35) Kim, S. H.; Jeong, J. H.; Chun, K. W.; Park, T. G. Langmuir 2005, 21, 8852-8857. (36) Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J. J. Am. Chem. Soc. 2004, 126, 11936-11943. (37) Guo, X.; Szoka, F. C. Accounts Chem. Res. 2003, 36, 335-341. (38) Park, J. W. Breast Cancer Res. 2002, 4, 93-97. (39) Zahr, A. S.; Davis, C. A.; Pishko, M. V. Langmuir 2006, 22, 8178-8185. (40) Duncan, R. Nat. Rev. Cancer 2006, 6, 688-701. (41) Calvo, P.; RemunanLopez, C.; VilaJato, J. L.; Alonso, M. J. Pharm. Res. 1997, 14, 1431-1436. (42) Elsamaligy, M. S.; Rohdewald, P. Journal of Pharmacy and Pharmacology 1983, 35, 537-539. (43) Chytil, P.; Etrych, T.; Konak, C.; Sirova, M.; Mrkvan, T.; Boucek, J.; Rihova, B.; Ulbrich, K. J. Control. Release 2008, 127, 121-130. (44) Seow, W. Y.; Xue, J. M.; Yang, Y. Y. Biomaterials 2007, 28, 1730-1740. (45) Mundargi, R. C.; Babu, V. R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T. M. J. Control. Release 2008, 125, 193-209. (46) Kang, S. W.; Lim, H. W.; Seo, S. W.; Jeon, O.; Lee, M.; Kim, B. S. Biomaterials 2008, 29, 1109-1117. (47) Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Chem. Rev. 1999, 99, 3181-3198. (48) Danson, S.; Ferry, D.; Alakhov, V.; Margison, J.; Kerr, D.; Jowle, D.; Brampton, M.; Halbert, G.; Ranson, M. Br. J. Cancer 2004, 90, 2085-2091. (49) Lee, K. S.; Chung, H. C.; Im, S. A.; Park, Y. H.; Kim, C. S.; Kim, S. B.; Rha, S. Y.; Lee, M. Y.; Ro, J. Breast Cancer Res. Treat. 2008, 108, 241-250. (50) Moses, M. A.; Brem, H.; Langer, R. Cancer Cell 2003, 4, 337-341. (51) Farokhzad, O. C.; Langer, R. Adv. Drug Deliv. Rev. 2006, 58, 1456-1459. (52) Torchilin, V. P. Nat. Rev. Drug Discov. 2005, 4, 145-160. (53) Gabizon, A.; Shmeeda, H.; Barenholz, Y. Clin. Pharmacokinet. 2003, 42, 419-436. (54) Brigger, I.; Dubernet, C.; Couvreur, P. Adv. Drug Deliv. Rev. 2002, 54, 631-651. (55) Patri, A. K.; Majoros, I. J.; Baker, J. R. Curr. Opin. Chem. Biol. 2002, 6, 466-471. (56) Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W. J. Am. Chem. Soc. 2003, 125, 15485-15489. (57) Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z. Y.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R. Cancer Res. 2005, 65, 5317-5324. (58) Gillies, E. R.; Frechet, J. M. J. Drug Discov. Today 2005, 10, 35-43. (59) Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. J. Control. Release 2000, 65, 133-148. (60) Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J. Acs Nano 2007, 1, 50-56. (61) Kam, N. W. S.; Liu, Z.; Dai, H. J. J. Am. Chem. Soc. 2005, 127, 12492-12493. (62) Torchilin, V. P. Pharm. Res. 2007, 24, 1-16. (63) Batrakova, E. V.; Dorodnych, T. Y.; Klinskii, E. Y.; Kliushnenkova, E. N.; Shemchukova, O. B.; Goncharova, O. N.; Arjakov, S. A.; Alakhov, V. Y.; Kabanov, A. V. Br. J. Cancer 1996, 74, 1545-1552. (64) Nakanishi, T.; Fukushima, S.; Okamoto, K.; Suzuki, M.; Matsumura, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. J. Control. Release 2001, 74, 295-302. (65) Matsumura, Y.; Hamaguchi, T.; Ura, T.; Muro, K.; Yamada, Y.; Shimada, Y.; Shirao, K.; Okusaka, T.; Ueno, H.; Ikeda, M.; Watanabe, N. Br. J. Cancer 2004, 91, 1775-1781. (66) Kato, K.; Hamaguchi, T.; Yasui, H.; Okusaka, T.; Ueno, H.; Ikeda, M.; Shirao, K.; Shimada, Y.; Nakahama, H.; Muro, K.; Matsumura, Y. J. Clin. Oncol. 2006, 24, 83S-83S. (67) Nasongkla, N.; Bey, E.; Ren, J. M.; Ai, H.; Khemtong, C.; Guthi, J. S.; Chin, S. F.; Sherry, A. D.; Boothman, D. A.; Gao, J. M. Nano Lett. 2006, 6, 2427-2430. (68) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710-712. (69) Suzuki, K.; Ikari, K.; Imai, H. J. Am. Chem. Soc. 2004, 126, 462-463. (70) Wang, A. Q.; Hsieh, Y.; Chen, Y. F.; Mou, C. Y. Journal of Catalysis 2006, 237, 197-206. (71) Dai, S.; Burleigh, M. C.; Shin, Y.; Morrow, C. C.; Barnes, C. E.; Xue, Z. L. Angew. Chem. Int. Edit. 1999, 38, 1235-1239. (72) Johansson, E.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 14437-14443. (73) Miyake, Y.; Hanaeda, M.; Asada, M. Ind. Eng. Chem. Res. 2007, 46, 8152-8157. (74) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc. 2003, 125, 4451-4459. (75) Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y. Angew. Chem. Int. Edit. 2005, 44, 5038-5044. (76) Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc. 2004, 126, 13216-13217. (77) Yang, Q.; Wang, S. H.; Fan, P. W.; Wang, L. F.; Di, Y.; Lin, K. F.; Xiao, F. S. Chem. Mat. 2005, 17, 5999-6003. (78) Lu, J.; Liong, M.; Zink, J. I.; Tamanoi, F. Small 2007, 3, 1341-1346. (79) Lin, Y. S.; Tsai, C. P.; Huang, H. Y.; Kuo, C. T.; Hung, Y.; Huang, D. M.; Chen, Y. C.; Mou, C. Y. Chem. Mat. 2005, 17, 4570-4573. (80) Huang, D. M.; Hung, Y.; Ko, B. S.; Hsu, S. C.; Chen, W. H.; Chien, C. L.; Tsai, C. P.; Kuo, C. T.; Kang, J. C.; Yang, C. S.; Mou, C. Y.; Chen, Y. C. Faseb J. 2005, 19, 2014-2016. (81) Lin, Y. S.; Wu, S. H.; Hung, Y.; Chou, Y. H.; Chang, C.; Lin, M. L.; Tsai, C. P.; Mou, C. Y. Chem. Mat. 2006, 18, 5170-5172. (82) Webb, A. Introduction to Biomedical Imaging John Wiley & Sons, 2003. (83) Weissleder, R.; Mahmood, U. Radiology 2001, 219, 316-333. (84) Weissleder, R. Science 2006, 312, 1168-1171. (85) Shah, K.; Jacobs, A.; Breakefield, X. O.; Weissleder, R. Gene Therapy 2004, 11, 1175-1187. (86) Rradley, R. H. H.;William G. MRI : The Basics; Williams &Wilkins: Philadephia, 1997. (87) Tóth, E.; Merbach, A. É. The Chemiatry of Contrast Agents in Medical Megnetic Resonance Imaging; John Wiley & Sons: Singapore, 2001. (88) Xu, Z. P.; Kurniawan, N. D.; Bartlett, P. F.; Lu, G. Q. Chem.-Eur. J. 2007, 13, 2824-2830 (89) Pierre, V. C.; Botta, M.; Raymond, K. N. J. Am. Chem. Soc. 2005, 127, 504-505. (90) Santra, S.; Bagwe, R. P.; Dutta, D.; Stanley, J. T.; Walter, G. A.; Tan, W.; Moudgil, B. M.; Mericle, R. A. Adv. Mater. 2005, 17, 2165-2169. (91) Khalil, I. A.; Kogure, K.; Futaki, S.; Hama, S.; Akita, H.; Ueno, M.; Kishida, H.; Kudoh, M.; Mishina, Y.; Kataoka, K.; Yamada, M.; Harashima, H. Gene Therapy 2007, 14, 682-689. (92) Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R. S.; Farokhzad, O. C. Nano Today 2007, 2, 14-21. (93) Allen, T. M. Nat. Rev. Cancer 2002, 2, 750-763. (94) Adams, G. P.; Weiner, L. M. Nat. Biotechnol. 2005, 23, 1147-1157. (95) Mehren, M. V.; Adams, G. P.; Weiner, L. M. Annu. Rev. Med. 2003, 54, 343-369. (96) Weiner, L. M.; Adams, G. P. Oncogene 2000, 19, 6144-6151. (97) Romond, E. H.; Perez, E. A.; Bryant, J.; Suman, V. J.; Geyer, C. E.; Davidson, N. E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P. A.; Swain, S. M.; Pisansky, T. M.; Fehrenbacher, L.; Kutteh, L. A.; Vogel, V. G.; Visscher, D. W.; Yothers, G.; Jenkins, R. B.; Brown, A. M.; Dakhil, S. R.; Mamounas, E. P.; Lingle, W. L.; Klein, P. M.; Ingle, J. N.; Wolmark, N. N. Engl. J. Med. 2005, 353, 1673-1684. (98) Smith, I.; Procter, M.; D Gelber, R.; Guillaume, S.; Feyereislova, A.; Dowsett, M.; Goldhirsch, A.; Untch, M.; Mariani, G.; Baselga, J.; Kaufmann, M.; Cameron, D.; Bell, R.; Bergh, J.; Coleman, R.; Wardley, A.; Harbeck, N.; Lopez, R. I.; Mallmann, P.; Gelmon, K.; Wilcken, N.; Wist, E.; Rovira, P. S.; Piccart-Gebhart, M. Lancet 2007, 369, 29-36. (99) Piccart-Gebhart, M. J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; Cameron, D.; Dowsett, M.; Barrios, C. H.; Steger, G.; Huang, C. S.; Andersson, M.; Inbar, M.; Lichinitser, M.; Lang, I.; Nitz, U.; Iwata, H.; Thomssen, C.; Lohrisch, C.; Suter, T. M.; Ruschoff, J.; Suto, T.; Greatorex, V.; Ward, C.; Straehle, C.; McFadden, E.; Dolci, M. S.; Gelber, R. D. N. Engl. J. Med. 2005, 353, 1659-1672. (100) Kay, N. E.; Geyer, S. M.; Call, T. G.; Shanafelt, T. D.; Zent, C. S.; Jelinek, D. F.; Tschumper, R.; Bone, N. D.; Dewald, G. W.; Lin, T. S.; Heerema, N. A.; Smith, L.; Grever, M. R.; Byrd, J. C. Blood 2007, 109, 405-411. (101) Khan, K. D.; Emmanouilides, C.; Benson, D. M.; Hurst, D.; Garcia, P.; Michelson, G.; Milan, S.; Ferketich, A. K.; Piro, L.; Leonard, J. P.; Porcu, P.; Eisenbeis, C. F.; Banks, A. L.; Chen, L.; Byrd, J. C.; Caligiuri, M. A. Clin. Cancer Res. 2006, 12, 7046-7053. (102) Nellis, D. F.; Ekstrom, D. L.; Kirpotin, D. B.; Zhu, J. W.; Andersson, R.; Broadt, T. L.; Ouellette, T. F.; Perkins, S. C.; Roach, J. M.; Drummond, D. C.; Hong, K. L.; Marks, J. D.; Park, J. W.; Giardina, S. L. Biotechnol. Prog. 2005, 21, 205-220. (103) Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J. Nat. Med. 2007, 13, 95-99. (104) Wilson, D. S.; Szostak, J. W. Annu. Rev. Biochem. 1999, 68, 611-647. (105) Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818-822. (106) Schneider, D.; Tuerk, C.; Gold, L. J. Mol. Biol. 1992, 228, 862-869. (107) Irvine, D.; Tuerk, C.; Gold, L. J. Mol. Biol. 1991, 222, 739-761. (108) Ellington, A. D.; Szostak, J. W. Nature 1992, 355, 850-852. (109) Green, R.; Ellington, A. D.; Szostak, J. W. Nature 1990, 347, 406-408. (110) Gragoudas, E. S.; Adamis, A. P.; Cunningham, E. T.; Feinsod, M.; Guyer, D. R. N. Engl. J. Med. 2004, 351, 2805-2816. (111) Farokhzad, O. C.; Cheng, J. J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 6315-6320. (112) Bibby, D. C.; Talmadge, J. E.; Dalal, M. K.; Kurz, S. G.; Chytil, K. M.; Barry, S. E.; Shand, D. G.; Steiert, M. Int. J. Pharm. 2005, 293, 281-290. (113) Xie, J.; Chen, K.; Lee, H. Y.; Xu, C.; Hsu, A. R.; Peng, S.; Chen, X. Y.; Sun S. H. J. Am. Chem. Soc. 2008, 130, 7542-7543. (114) Randolph, J. T.; Waid, P.; Nichols, C.; Sauer, D.; Haviv, F.; Diaz, G.; Bammert, G.; Besecke, L. M.; Segreti, J. A.; Mohning, K. M.; Bush, E. N.; Wegner, C. D.; Greer, J. J. Med. Chem. 2004, 47, 1085-1097. (115) Cortijo, J.; Sanz, M. J.; Iranzo, A.; Montesinos, J. L.; Abu Nabah, Y. N.; Alfon, J.; Gomez, L. A.; Merlos, M.; Morcillo, E. J. Br. J. Pharmacol. 2006, 147, 661-670. (116) Antony, A. C. Blood 1992, 79, 2807-2820. (117) Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A. K.; Thomas, T.; Mule, J.; Baker, J. R. Pharmaceutical Res. 2002, 19, 1310-1316. (118) Hong, S.; Leroueil, P. R.; Majoros, I. J.; Orr, B. G.; Baker, J. R.; Holl, M. M. B. Chem. Biol. 2007, 14, 105-113. (119) Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nat. Nanotechnol. 2008, 3, 145-150. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40976 | - |
dc.description.abstract | 本研究主要在探索奈米中孔洞二氧化矽材料於生物影像及具生物辨識功能的藥物輸送系統上之應用。我們利用離子交換的方法將擁有正價介面電荷的中孔洞二氧化矽奈米顆粒與具負價電荷之三價釓金屬錯合物(Gd-DTPA)結合在一起,形成一具有高弛緩率(relaxivity)的核磁共振顯影劑。相較於現今臨床上使用的顯影劑,此顯影劑上的順磁中心(釓金屬錯合物)可緩慢的由動物體內排出。此特性可應用於核磁共振顯影上長時間的血管造影。另一方面,於細胞影像及細胞治療上的應用,我們也成功的合成出兩種具螢光及順磁性質的多功能性中孔洞奈米矽材。這多功能的奈米中孔洞材二氧化矽同樣具有高的弛緩率,好的光穩定性並能高效率的標定細胞。最重要的是此奈米材料對細胞具有很低的毒性。利用光學顯微鏡及核磁共振顯影技術均可清楚的觀察到以奈米顆粒標定過的細胞於動物體內的位置。
於本研究的最後一部份,我們成功的發展出具辨識功能奈米輸送系統。將單源抗體(monoclonal antibody; Herceptin)嫁接於中孔洞二氧化矽奈米粒子的表面並有效的辨識Her2/neu蛋白過度表現的乳癌細胞。我們發現抗體於奈米粒子上的分布密度愈高表現出對特定細胞的選擇性愈佳。並且利用再修飾上聚乙二醇分子(polyethylene glycol),可有效的降低具低密度抗體的中孔洞二氧化矽奈米粒子對非Her2/neu蛋白過度表現細胞的非專一性黏附。最後我們利用共軛焦螢光顯微鏡及穿隧式電子顯微鏡證明此奈米顆粒主要利用受體介導的內吞作用機制(receptor-mediated endocytosis)進入細胞中。 | zh_TW |
dc.description.abstract | In this research, we explored the bio-applications of mesoporous silica nanomaterials for bio-imaging and targeted drug delivery. Mesoporous silica nanoparticles (MSNs) with positive surface charge incorporated with Gd(DTPA) by electrostatic force show the high r1 and r2 relaxivity, which are much higher than those of free Gd(DTPA). These composite nanomaterials show the slower excretion rate from animal body and could be a potential blood-pool MRI contrast agent for angiography. For cellular imaging and effective cell therapy, we also successfully synthesized two types of multifunctional MSNs nanoprobes with fluorescence and paramagnetism. Both nanomaterials show high sensitivity to MRI, good photo-stability, high cell labeling efficiency and low cytotoxicity. The nanoprobes labeled cells could be clearly visualized by MRI and optical modalities.
In the last part, green fluorescence MSNs were modified with monoclonal antibody, Herceptin, to target the Her2/neu over-expressing breast cancer cell. MSNs with highest density of Herceptin on the outer surface show the highest selectivity to the targeted cell and the further modification with polyethylene glycol (PEG) can prevent from the non-specific targeting for the MSNs with low density of Herceptin. We also used the confocal microscope and TEM to demonstrate the Herceptin functionalized MSNs could be engulfed by Her2/neu positive breast cancer cells through the receptor-mediated endocytosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:09:46Z (GMT). No. of bitstreams: 1 ntu-97-D92223008-1.pdf: 43017908 bytes, checksum: e988507ca8394cab6ac35e246e767bf6 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要………………………………………………………………... I
Abstract…………………………………………………………... II Table of Contents……………………………………………….. III List of Tables…………………………………………………….. VI List of Figures…………………………………………………… VII List of Schemes…………………………………………………. XVII Chapter 1 Introduction………………………………………….. 1 1.1 Nano-materials on Bio-imaging………………………………………….. 1 1.2 Nanomedicine……………………………………………………………. 8 1.3 Porous Silica on Biomedicine……………………………………………. 17 Chapter 2 Mesoporous Silica Nanomaterials Incorporated with [Gd(DTPA)H2O]2- for Biomedical and Molecular Imaging Applications…………………. 23 2.1 Introduction…………………………………………………………….. 23 2.1.1 Biomedical and Molecular Imaging……………………………….. 23 2.1.2 A Brief Introduction of Magnetic Resonance Imaging (MRI)…….. 26 2.1.3 Relaxivity of Gd3+ complexes: A Simple Introduction of Theory…. 30 2.2 [Gd(DTPA)H2O]2- Incorporated with Mesoporous Silica Nanoparticles Through Ion Exchange to be a High Relaxivity Blood-Pool MR Contrast Agent………………………………………………………….. 33 2.2.1 Experiments………………………………………………………… 33 2.2.1.1 Synthesis of Mesoporous Silica Nanoparticles Incorporated with [Gd(DTPA)H2O]2-………………………………………. 33 2.2.1.2 Physical and Chemical Characterizations……………………. 35 2.2.1.3 Characterization on Magnetic Resonance Properties………… 37 2.2.2 Results and Discussion 39 2.2.2.1 Physical and Chemical Properties of MPG500N and MPG500P. 39 IV 2.2.2.2 Magnetic Resonance Properties of MPG500N-Gd and MPG500P-Gd………………………………………………….. 45 2.2.2.3 Solvent Effect on the Release of [Gd(DTPA)H2O]2- from MPG500P-Gd………………………………………………….. 55 2.2.2.4 Results of Intravenous Injection into Mice…………………... 57 2.2.3 Summary…………………………………………………………… 60 2.3 High Contrast Paramagnetic Fluorescent Mesoporous Silica Nanomaterials as Multifunctional Cell-Imaging Probes (Gd-Dye@MSN and Gd-Dye@MSN-R)................................................. 61 2.3.1 Experiments………………………………………………………… 61 2.3.1.1 Synthesis of Gd-Dye@MSN and Gd-Dye@MSN-R………… 61 2.3.1.2 Materials and Magnetic Resonance Characterization………... 62 2.3.1.3 Cell Cultures and Assays……………………………………... 64 2.3.2 Results and Discussion……………………………………………... 69 2.3.2.1 Physical and Chemical Properties of Gd-Dye@MSN and Gd-Dye@MSN-R…………...................................................... 69 2.3.2.2 Relaxivity and Phantom Images……………………………… 73 2.3.2.3 Gd-Dye@MSN-R for 3T3-L1 Cell Labeling………………… 78 2.3.3 Conclusion………………………………………………………….. 86 Chapter 3 Green Fluorescence Meosporous Silica Nanoparticles Functionalized with Herceptin Targeting Her2/neu Over-expressing Breast Cancer Cells………………………………………... 87 3.1 Introduction…………………………………………………………….. 87 3.2 Experiments…………………………………………………………….. 92 3.2.1 Synthesis of Green Fluorescence Mercapto (Outer surface)- Mesoporous Silica Nanoparticles (GFMO@MSN) Functionalized with Herceptin or Polyethylene Glycol (PEG5000) ………………… 92 3.2.2 Cell Culture, Assays and Materials Characterization………………. 96 3.3 Results and Discussions………………………………………………... 101 3.3.1 Physical and Chemical Properties………………………………….. 101 3.3.2 Modification of Polyethylene Glycol (PEG) Prevents MSN from Non-specific Binding to Cells……………………………………… 109 3.3.3 Effect of HP5k-GFMO@MSN with Different GFMO@MSN / Herceptin Ratios on Cell Recognition……………………………… 116 V 3.3.4 Effect of Further Modification with PEG5k………………………… 124 3.3.5 Competition Reaction and TEM : The Evidence of HP5k- GFMO@MSN-1 Engulfed by BT474 through Receptor- mediated Endocytosis………………………………………………………… 129 3.4 Conclusion……………………………………………………………… 138 Chapter 4 Conclusion and Perspective 139 Reference 143 | |
dc.language.iso | zh-TW | |
dc.title | 中孔洞二氧化矽奈米材料於生物醫學上之應用:核磁共振造影及癌細胞辨識 | zh_TW |
dc.title | Biomedical Applications of Mesoporous Silica Nanomaterials: Magnetic Resonance Imaging and Cancer Cell Targeting | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張程(Chen Chang),陳昭岑(Chao-Tsen Chen),羅履維(Leu-Wei Lo),黃東明(Dong-Ming Huang) | |
dc.subject.keyword | 中孔洞二氧化矽奈米顆粒,多功能性奈米顆粒,細胞影像,核磁共振影像,具辨識性藥物傳輸,單源的抗體, | zh_TW |
dc.subject.keyword | Mesoporous silica nanoparticles,Multifunctional nanoprobes,Cellular images,Targeted drug delivery,MRI,monoclonal antibody, | en |
dc.relation.page | 148 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 42.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。