Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40961
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孟子青
dc.contributor.authorHsueh-Yen Kuen
dc.contributor.author辜雪硯zh_TW
dc.date.accessioned2021-06-14T17:08:58Z-
dc.date.available2009-08-06
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-28
dc.identifier.citationAndersen, J.N., R.L. Del Vecchio, N. Kannan, J. Gergel, A.F. Neuwald, and N.K. Tonks. 2005. Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods. 35:90-114.
Angers-Loustau, A., J.F. Cote, and M.L. Tremblay. 1999. Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem Cell Biol. 77:493-505.
Baeg, G.H., R. Zhou, and N. Perrimon. 2005. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev. 19:1861-70.
Baumgartner, S., D. Martin, R. Chiquet-Ehrismann, J. Sutton, A. Desai, I. Huang, K. Kato, and R. Hromas. 1995. The HEM proteins: a novel family of tissue-specific transmembrane proteins expressed from invertebrates through mammals with an essential function in oogenesis. J Mol Biol. 251:41-9.
Bier, E. 2005. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet. 6:9-23.
Blanchetot, C., M. Chagnon, N. Dube, M. Halle, and M.L. Tremblay. 2005. Substrate-trapping techniques in the identification of cellular PTP targets. Methods. 35:44-53.
Bogdan, S., O. Grewe, M. Strunk, A. Mertens, and C. Klambt. 2004. Sra-1 interacts with Kette and Wasp and is required for neuronal and bristle development in Drosophila. Development. 131:3981-9.
Bogdan, S., and C. Klambt. 2003. Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development. 130:4427-37.
Bourdeau, A., N. Dube, and M.L. Tremblay. 2005. Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol. 17:203-9.
Brand, A.H., and N. Perrimon. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118:401-15.
Buday, L., L. Wunderlich, and P. Tamas. 2002. The Nck family of adapter proteins: regulators of actin cytoskeleton. Cell Signal. 14:723-31.
Chang, Y.C., S.Y. Lin, S.Y. Liang, K.T. Pan, C.C. Chou, C.H. Chen, C.L. Liao, K.H. Khoo, and T.C. Meng. 2008. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J Proteome Res. 7:1055-66.
Clemens, J.C., Z. Ursuliak, K.K. Clemens, J.V. Price, and J.E. Dixon. 1996. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance. J Biol Chem. 271:17002-5.
Dube, N., and M.L. Tremblay. 2005. Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochim Biophys Acta. 1754:108-17.
Fischer, E.H. 1999. Cell signaling by protein tyrosine phosphorylation. Adv Enzyme Regul. 39:359-69.
Flint, A.J., T. Tiganis, D. Barford, and N.K. Tonks. 1997. Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A. 94:1680-5.
Fogerty, F.J., J.L. Juang, J. Petersen, M.J. Clark, F.M. Hoffmann, and D.F. Mosher. 1999. Dominant effects of the bcr-abl oncogene on Drosophila morphogenesis. Oncogene. 18:219-32.
Freeman, R.M., Jr., J. Plutzky, and B.G. Neel. 1992. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci U S A. 89:11239-43.
Goley, E.D., and M.D. Welch. 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol. 7:713-26.
Grossmann, A.H., K.S. Kolibaba, S.G. Willis, A.S. Corbin, W.S. Langdon, M.W. Deininger, and B.J. Druker. 2004. Catalytic domains of tyrosine kinases determine the phosphorylation sites within c-Cbl. FEBS Lett. 577:555-62.
Hanks, S.K., and A.M. Quinn. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200:38-62.
Hernandez, S.E., M. Krishnaswami, A.L. Miller, and A.J. Koleske. 2004. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol. 14:36-44.
Hill, K.K., V. Bedian, J.L. Juang, and F.M. Hoffmann. 1995. Genetic interactions between the Drosophila Abelson (Abl) tyrosine kinase and failed axon connections (fax), a novel protein in axon bundles. Genetics. 141:595-606.
Huang, C.H., T.Y. Lin, R.L. Pan, and J.L. Juang. 2007. The involvement of Abl and PTP61F in the regulation of Abi protein localization and stability and lamella formation in Drosophila S2 cells. J Biol Chem. 282:32442-52.
Hubbard, S.R., and J.H. Till. 2000. Protein tyrosine kinase structure and function. Annu Rev Biochem. 69:373-98.
Hummel, T., K. Leifker, and C. Klambt. 2000. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization. Genes Dev. 14:863-73.
Hunter, T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 80:225-36.
Hunter, T. 1998. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci. 353:583-605.
Hunter, T. 2000. Signaling--2000 and beyond. Cell. 100:113-27.
Johnson Hamlet, M.R., and L.A. Perkins. 2001. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis. Genetics. 159:1073-87.
Juang, J.L., and F.M. Hoffmann. 1999. Drosophila abelson interacting protein (dAbi) is a positive regulator of abelson tyrosine kinase activity. Oncogene. 18:5138-47.
Kitamura, T., Y. Kitamura, K. Yonezawa, N.F. Totty, I. Gout, K. Hara, M.D. Waterfield, M. Sakaue, W. Ogawa, and M. Kasuga. 1996. Molecular cloning of p125Nap1, a protein that associates with an SH3 domain of Nck. Biochem Biophys Res Commun. 219:509-14.
Kunda, P., G. Craig, V. Dominguez, and B. Baum. 2003. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol. 13:1867-75.
Lee, Y.S., and R.W. Carthew. 2003. Making a better RNAi vector for Drosophila: use of intron spacers. Methods. 30:322-9.
Leng, Y., J. Zhang, K. Badour, E. Arpaia, S. Freeman, P. Cheung, M. Siu, and K. Siminovitch. 2005. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci U S A. 102:1098-103.
Li, W., J. Fan, and D.T. Woodley. 2001. Nck/Dock: an adapter between cell surface receptors and the actin cytoskeleton. Oncogene. 20:6403-17.
McLaughlin, S., and J.E. Dixon. 1993. Alternative splicing gives rise to a nuclear protein tyrosine phosphatase in Drosophila. J Biol Chem. 268:6839-42.
Morrison, D.K., M.S. Murakami, and V. Cleghon. 2000. Protein kinases and phosphatases in the Drosophila genome. J Cell Biol. 150:F57-62.
Mustelin, T., T. Vang, and N. Bottini. 2005. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol. 5:43-57.
Ostman, A., C. Hellberg, and F.D. Bohmer. 2006. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 6:307-20.
Pallen, C.J. 1993. The receptor-like protein tyrosine phosphatase alpha: a role in cell proliferation and oncogenesis. Semin Cell Biol. 4:403-8.
Perkins, L.A., I. Larsen, and N. Perrimon. 1992. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell. 70:225-36.
Rakeman, A.S., and K.V. Anderson. 2006. Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching. Development. 133:3075-83.
Rao, Y. 2005. Dissecting Nck/Dock signaling pathways in Drosophila visual system. Int J Biol Sci. 1:80-6.
Reiter, L.T., L. Potocki, S. Chien, M. Gribskov, and E. Bier. 2001. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11:1114-25.
Rivera, G.M., S. Antoku, S. Gelkop, N.Y. Shin, S.K. Hanks, T. Pawson, and B.J. Mayer. 2006. Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B. Proc Natl Acad Sci U S A. 103:9536-41.
Rivera, G.M., C.A. Briceno, F. Takeshima, S.B. Snapper, and B.J. Mayer. 2004. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr Biol. 14:11-22.
Robertson, S.C., J. Tynan, and D.J. Donoghue. 2000. RTK mutations and human syndromes: when good receptors turn bad. Trends Genet. 16:368.
Robinson, D.R., Y.M. Wu, and S.F. Lin. 2000. The protein tyrosine kinase family of the human genome. Oncogene. 19:5548-57.
Rogers, S.L., and G.C. Rogers. 2008. Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat Protoc. 3:606-11.
Rogers, S.L., U. Wiedemann, N. Stuurman, and R.D. Vale. 2003. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol. 162:1079-88.
Saleh, M.C., R.P. van Rij, A. Hekele, A. Gillis, E. Foley, P.H. O'Farrell, and R. Andino. 2006. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol. 8:793-802.
Schenck, A., A. Qurashi, P. Carrera, B. Bardoni, C. Diebold, E. Schejter, J.L. Mandel, and A. Giangrande. 2004. WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Dev Biol. 274:260-70.
Sossey-Alaoui, K., X. Li, and J.K. Cowell. 2007. c-Abl-mediated phosphorylation of WAVE3 is required for lamellipodia formation and cell migration. J Biol Chem. 282:26257-65.
Takenawa, T., and S. Suetsugu. 2007. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 8:37-48.
Tonks, N.K. 2006. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 7:833-46.
Tonks, N.K., and B.G. Neel. 2001. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 13:182-95.
Ulvila, J., M. Parikka, A. Kleino, R. Sormunen, R.A. Ezekowitz, C. Kocks, and M. Ramet. 2006. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem. 281:14370-5.
Ursuliak, Z., J.C. Clemens, J.E. Dixon, and J.V. Price. 1997. Differential accumulation of DPTP61F alternative transcripts: regulation of a protein tyrosine phosphatase by segmentation genes. Mech Dev. 65:19-30.
Wills, Z., J. Bateman, C.A. Korey, A. Comer, and D. Van Vactor. 1999. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron. 22:301-12.
Yokota, Y., C. Ring, R. Cheung, L. Pevny, and E.S. Anton. 2007. Nap1-regulated neuronal cytoskeletal dynamics is essential for the final differentiation of neurons in cerebral cortex. Neuron. 54:429-45.
Zinn, K. 1993. Drosophila protein tyrosine phosphatases. Semin Cell Biol. 4:397-401.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40961-
dc.description.abstract藉由干擾性核醣核酸(RNA Interference; RNAi)技術,在果蠅不同的組織中,專一性地抑制酪胺酸去磷酸酵素dPTP61F的表現,顯示dPTP61F負責調控果蠅多種組織器官的發育。為了進一步了解dPTP61F所調控的分子機制,我們利用質譜儀鑑定的方式找到dPTP61F可能的調控的受質為蛋白質Kette;另一方面,我們證明Kette受到磷酸激酶dAbl的調控。有趣的是,我們發現dAbl同時也是dPTP61F的受質,表示dPTP61F與dAbl共同調控著Kette的磷酸化程度,而dPTP61F更同時會對於Kette與其上游的dAbl進行去磷酸化作用,以更快速有效地抑制Kette的訊息傳遞。此外,我們在果蠅中驗證了Kette、dPTP61F與dAbl之間的交互作用確實會造成果蠅眼睛發育的缺陷,顯示在生物體中,此三種蛋白質之間的確參與相同的訊息傳遞途徑。以定點突變的方式,我們找到蛋白質Kette上受到dPTP61F與dAbl調控的特定的酪胺酸,當此酪胺酸突變之後,Kette的磷酸化程度不再受到dPTP61F與dAbl的影響。利用免疫螢光染色法,我們觀察到Kette的磷酸化對細胞骨架蛋白actin的影響,當Kette的磷酸化程度上升,會造成Kette由原本散佈在細胞質中變成分布在細胞膜附近,而此時細胞骨架蛋白actin也明顯出現在細胞膜附近聚合的現象;而當我們將Kette上受到dPTP61F與dAbl調控的酪胺酸突變之後,Kette則失去往細胞膜分布與調控細胞骨架蛋白actin聚合的能力。這些實驗結果顯示dPTP61F會藉由調控Kette與dAbl,進而影響細胞骨架蛋白actin,最後造成細胞形狀與附著能力的改變。zh_TW
dc.description.abstractTo date, the functional role of Drosophila protein tyrosine phosphatases (PTPs) remains largely elusive. We have characterized dPTP61F, which is the smallest member in the Drosophila PTP family and the ortholog of human PTP1B and T-Cell PTP, to delineate its involvement in controlling signal transduction pathways and developmental processes. Employing the RNAi-based, tissue-specific knockdown technique in flies, we found that dPTP61F plays an essential role in the formation of the central nervous system, eyes, and bristles. The ubiquitous suppression of dPTP61F expression led to the lethality that occurred at the third instar larval stage. We used the substrate trapping approach in combination with the mass spectrometry-based analysis to identify that Kette, the Drosophila ortholog of human NAP-1 and a key component of WASP and SCAR/WAVE complexes for controlling actin polymerization, is a potential substrate of dPTP61F. When ectopically expressed in Drosophila S2 cells, the tyrosine phosphorylation level of Kette was down-regulated by dPTP61F. Conversely, the tyrosine phosphorylation level of Kette was up-regulated by dAbl, the Drosophila ortholog of human tyrosine kinase c-Abl. We also showed that dAbl itself is a substrate of dPTP61F. Interestingly, Kette, dPTP61F, and dAbl genetically interact with each other, suggesting that tyrosine phosphorylation-dependent signaling may be important in regulating the activity of Kette in vivo. To test this hypothesis further, the subcellular localization of Kette was investigated in S2 cells. Importantly, only the WT form but not the YF mutant form of Kette was relocated to plasma membrane in response to suppressed expression of endogenous dPTP61F or overexpression of ectopic dAbl, consistent with the current view that Kette regulates actin dynamics at the membrane proximity.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:08:58Z (GMT). No. of bitstreams: 1
ntu-97-R95b46007-1.pdf: 1993033 bytes, checksum: d17d06222d4e28062340e3d3473ef3c8 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsVerification Form for Graduate Student Oral Defence ………i
Acknowledgements………………………………………………………ii
Abstract in Chinese…………………………………………………iii
Abstract in English…………………………………………………iv
Table of Contents……………………………………………………vi
List of Figures……………………………………………………viii
Chapter 1– Introduction……………………………………………1
Chapter 2– Materials and Methods…………………………………8
2.1 Molecular cloning…………………………………………………8
2.2 Genetics……………………………………………………………9
2.3 In vitro substrate trapping and mass spectrometer based analysis…………………………………………………………………9
2.4 Cell culture, transfection, and western blot……………11
2.5 Immunofluoresence microscopy…………………………………13
2.6 Immunolabeling……………………………………………………13
2.7 Scanning electron microscopy………………………………14
Chapter 3– Results…………………………………………………15
3.1 Characterization of Drosophila Tyrosine phosphatase dPTP61F in flies………………………………………………………15
3.2 Identification of Kette as the substrate of dPTP61Fm…17
3.3 Kette is regulated by protein tyrosine kinase dAbl in S2 cells…………………………………………………………………20
3.4 dAbl is a substrate of dPTP61Fm……………………………20
3.5 Genetic interaction between Kette, dPTP61F, and dAbl…22
3.6 Kette-Tyr482 is the primary regulatory site of dAbl and dPTP61F…………………………………………………………………23
3.7 Subcellular localization of Kette was regulated in a phosphorylation dependent manner by dAbl and dPTP61F………25
Chapter 4– Discussion……………………………………………29
Chapter 5– References……………………………………………34
Figures…………………………………………………………………41
dc.language.isoen
dc.subject酪胺酸去磷酸&#37238zh_TW
dc.subjectKettezh_TW
dc.subjectdPTP61Fzh_TW
dc.subjectdAblzh_TW
dc.subject細胞骨架zh_TW
dc.subjectactinzh_TW
dc.subject果蠅zh_TW
dc.subjectKetteen
dc.subjectdrosophilaen
dc.subjectactinen
dc.subjectdAblen
dc.subjectdPTP61Fen
dc.subjectphosphataseen
dc.title果蠅酪胺酸去磷酸酶dPTP61F與磷酸激酶dAbl透過對蛋白質Kette的調節而影響細胞骨架蛋白actin之組合zh_TW
dc.titleDrosophila protein tyrosine phosphatase dPTP61F and kinase dAbl coordinate to control Kette for regulation of actin organizationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超,范聖興
dc.subject.keywordKette,dPTP61F,dAbl,細胞骨架,actin,果蠅,酪胺酸去磷酸&#37238,zh_TW
dc.subject.keywordKette,dPTP61F,dAbl,actin,drosophila,phosphatase,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved