請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40944完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝國煌(Kuo-Huang Hsieh) | |
| dc.contributor.author | Kun-Rung Lin | en |
| dc.contributor.author | 林坤榮 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:08:04Z | - |
| dc.date.available | 2011-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-26 | |
| dc.identifier.citation | Chapter 1.
(1) Bernanose, A.; Comte, M.; Vouaux, P. J. Chem. Phys. 1953, 50, 64-68. (2) Pope, M.; Kallman, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042-2049. (3) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915. (4) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539-541. (5) Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982. (6) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (7) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2, 1988, 27, L269. (8) Tamoto, N.; Adachi, C.; Nagai, K. Chem. Mater. 1997, 9, 1077-1085. (9) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (10) Spreitzer, H.; Schenk, H.; Salbeck, J; Reil, H.; Reiss, W. in Organic Light Emitting Materials and Devices III, edited by Kafafi, Z. H., Proc. SPIE 3979, 316 (SPIE, Bellingham, WA, 1999). (11). (a) Burn, P. L.; Grice, A. W.; Tajbakhsh, A.; Bradley, D. D. C.; Thomas, A. C. Adv. Mater. 1997, 9, 1171-1174. (b) Kraft, A.; Grimsdale, A. C.; Holmes A. B. Angew. Chem. Int. Ed. 1998, 37, 402-428. (c) Becker, H.; Spreitzer, H.; Kreuder, W.; Kluge, E.; Schenk, H.; Parker, I. Cao, Y. Adv. Mater. 2000, 12, 130-133. (d) Edman, L.; Pauchard, M.; Moses, D.; Heeger, A. J. J. Appl. Phys. 2004, 95(8), 4357. (e) Ouyang, J.; Guo, T. F.; Yang, Y.; Higuchi, H.; Yoshiko, M.; Nagatsuka, T. Adv. Mater. 2002, 14, 915. (f) Hua, Jianli; Meng, Fanshun; Li, Jin; Ding, Fang; Fan, Xin; Tian, He. Eur. Polym. J. 2006, 42, 2686. (12). Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev.; 2005; 105(4); 1491-1546 (13). Lin, H.-C.; Tsai, C.-M.; Tao, Y.-T. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2922-2936. (14) Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Brown, J. J.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422. (15) Pai, D. M.; Yanus, J. F.; Stolka, M. J. Phys. Chem. 1984, 88, 4714. (16) Yu, W.-L.; Pei, J.; Cao, Y.; Huang, W. J. Appl. Phys. 2001, 89, 2343. (17) (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799. (b) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 57, 513. (18) Kido, J.; Nagai, K.; Okamoto, Y.; Skotheim, T. Chem. Lett. 1991, 1267. (19) Hamada, Y.; Sano, T.; Fujita, M.; Nishio, Y.; Shibata, K. Chem. Lett. 1993, 905. (20) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048. (21) (a) Loy, D. E.; Koene, B. E.; Thompson, M. E. Adv. Funct. Mater. 2002, 12, 245. (b) Tanaka, H.; Tokito, S.; Taga, Y.; Okada, A. Chem. Commun. 1996, 2175. (c) Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1996, 66, 2679. (22) (a) Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989,65, 3610. (b) Niu, Y. H.; Liu, M. S.; Ka, J. W.; Jen, A. K. Y. Appl. Phys. Lett. 2006, 88, 093505. (23) (a) Gu G.; Shen Z.; Burrows, P. E.; Forrest S. R. Adv. Mater. 1997, 9, 725-728. (b) Tsutsui, T.; Fujita, K. Adv. Mater. 2002, 14, 949-952. (c) Yang, Y.; Huang, Q.; Metz, A. W.; Ni, J.; Jin, S.; Marks, T. J.; Madsen, M. E.; DiVenere, A.; Ho, S.-T. Adv. Mater. 2004, 16, 321-324. (d) Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G.. Adv. Mater. 2005, 17, 2332-2336. (e) Hide, F.; Díaz-García, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430. (f) Greenham, N. C.; Friend, R. H. In Solid State Physics; Enhrenreich, H., Spaepen, F., Eds.; Academic, San Diego, 1995; Vol. 49, p 1-149. (g) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. (h) Lin, K.-R.; Kuo, C.-H.; Leung, M.-k.; Hsieh, K.-H. Eur. Polym. J. 2007, 43, 4279-4288. (i) Ku, C.-H.; Kuo, C.-H.; Chen, C.-Y.; Leung, M.-k.; Hsieh, K.-H. J. Mater. Chem. 2008, 18, 1296-1301. (24) (a) Pu, Y. J.; Soma, M.; Kido J.; Nishide, H.; Journal of Photopolymer Science and Technology 2002, 15, 259-260. (b) Liao, L.; Pang, Y.; Ding, L.; Karasz, F. E. Macromolecules 2004, 37, 3970-3972. (c) Niu, H.; Huang, Y., Bai, X.; Li X.; Zhang, G. Materials Chemistry and Physics 2004, 86, 33-37. (25) (a) Son, J. M.; Mori, T.; Ogino, K.; Sato, H. Macromolecules 1999, 32, 4849-4854. (b) Mori, T.; Strzelec, K.; Sato, H. Synth. Met. 2002, 126, 165-171. (c) Ostrauskaite, J.; Karickal, H. R.; Leopold, A.; Haarer, D.; Thelakkat, M. J. Mater. Chem. 2002, 12, 58-64. (d) Ohsawa, Y.; Ishikawa, M.; Miyamoto, T.; Murofushi, Y.; Kawai, M. Synth. Met. 1987, 18, 371-374. (26) (a) Bellmann, E.; Shaheen, S. E.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N. Chem. Mater. 1998, 10, 1668-1676. (b) Kolb, E. S.; Gaudiana, R. A.; Mehta, P. G. Macromolecules 1996, 29, 2359-2364. (c) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2000, 33, 3514-3517. (d) Feast, W. J.; Peace, R. J.; Sage, I. C.; Wood, E. L. Polymer Bulletin 1999, 42, 167-174. (e) Behl, M.; Hattemer, E.; Brehmer, M.; Zentel, R. Macromol. Chem. Phys. 2002, 203, 503. (f) Behl, M.; Zentel, R. Macromol. Chem. Phys. 2004, 205, 1633. (g) Compton, R. G.; Laing, M. E.; Ledwith, A.; Abu-Abdoun, I. I. J. Appl. Electrochem. 1988, 18, 431-440. (h) Cravino, A.; Roquet, S.; Aleveque, O.; Leriche, P.; Frere, P.; Roncali, J. Chem. of Mater. 2006, 18, 2584. (i) Cravino, A.; Roquet, S.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. Chem. Commun. 2006, 13, 1416. (j) Deng, S.; Advincula, R. C. Chem. Mater. 2002. 14, 4073-4080. Advincula, R. C. PMSE Preprints 2006, 94, 271-272. (27) (a) Kim, Y. H. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1685-1698. (b) Voit, B. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2505. (c) Chang, H. T.; Frechet, J. M. J. J. Am. Chem. Soc. 1999, 121, 2313. (d) Guan, Z. J. Am. Chem. Soc. 2002, 124, 5616. (e) Stiriba, S. E.; Kautz, H.; Frey, H. J. Am. Chem. Soc. 2002, 124, 9698. (28) (a) Cao, C.; Yan, D. Y. Macromolecules 2003, 36, 613. (b) Xu, M. H.; Zhang, H. C. ; Pu, L. Macromolecules 2003, 36, 2689. (c) Chen, J.; Peng, H.; Law, C. C. W.; Dong, Y.; Lam, J. W. Y.; Williams, I. D.; Tang, B. Z. Macromolecules 2003, 36, 4319. (d) Kang, S. H.; Luo, J.; Ma, H.; Barto, R. R.; Frank, C. W.; Dalton, L. R.; Jen, A. K. Y. Macromolecules 2003, 36, 4355. (e) Schmaljohann, D.; Komber, H.; Barratt, J. G.; Appelhans, D,; Voit, B. I. Macromolecules 2003, 36, 97. (29) (a) Wang, F.; Wilson, M. S.; Rauh, R. D.; Schottland, P.; Reynold, J. R. Macromolecules 1999, 32, 4272. (b) Hua, J. L.; Li, B.; Meng, F. S.; Qian, S. X.; Tian, H Polymer 2004, 45, 7143. (c) Meng, F. S.; Mi, J.; Qian, S. X.; Chen, K. C.; Tian, H Polymer 2003, 44, 6851. (d) Paul, G. K.; Mwaura, A.; Argun, A. A.; Taranekar, P.; Reynolds, J. R. Macromolecules 2006, 39, 7789-7792. (30) Kuo, C.-H.; Lee, J.-H.; Leung, M.-k.; Hsieh, K.-H. Chem. Mater. 2006, 18, 4121-4129. (31) Sandler, S. R.; Karo, W. Polymer Syntheses; Academic Press: New York, 1992; Chapter 8. (32) Caraculacu, A. A.; Coseri, S. Prog. Polym. Sci. 2001, 26, 799-851. (33) Qiu, Y.; Gao, Y.; Wei, P.; Wang, L. Appl. Phys. Lett. 2002, 80, 2628. (34) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. (35) Xie, Z. Y.; Hung, L. S.; Lee, S. T. Appl. Phys. Lett. 2001, 79, 1048. (36) Sprengard, R.; Bonrad, K.; Däubler, T. K.; Frank, T.; Hagemann, V.; Köhler, I; Pommerehne, J.; Ottermann, C.; Voges, F.; Vingerling, B. Proceeding of SPIE, 2004, 5519, 173-183. (37) Ho, G.-K.; Meng, H.-F.; Lin, S.-C.; Horng, S.-F.; Hsu, C.-S.; Chen, L.-C.; Chang, S.-M. Appl. Phys. Lett. 2004, 85, 4576-4578. (38) Lee, J.; Jung, B.-J.; Lee, J.-I.; Chu, H. Y.; Do, L.¬-M.; Shim, H. K. J. Mater. Chem. 2002, 12, 3494-3498. (39) Chiang, C. C.; Chen, H.-C.; Lee, C.-S.; Leung, M.-k.; Lin, K.-R.; Hsieh, K.-H. Chem. Mater. 2008, 20, 540-552. (40) Chou, M.-Y.; Leung, M.-k.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2004, 16, 654-661. (41) Leung, M.-k.; Chou, M.-Y.; Su, Y. O.; Chiang, C. L.; Chen, H.-L.; Yang, C. F.; Yang, C.-C.; Lin, C.-C.; Chen, H.-T. Org. Lett. 2003, 5, 839-842. (42) Lin, K.-R.; Chang Chien, Y.-H.; Chang C.-C.; Leung, M.-k.; Hsieh, K.-H. Manuscript just accepted by Macromolecules. (43) Nuyken, O.; Bacher, E.; Braig, T.; Fáber, R.; Mielke, F.; Rojahn, M.; Wiederhirn, V.; Meerholz, K.; Müller, D. Designed Monomers and Polymers 2002, 5, 195-210. (44) (a) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498. (b) Petr, A.; Kvarnstr¨om, C.; Dunsch, L; Ivaska, A. Synth. Met. 2000, 108, 245. (c) Lambert, C.; Nöll, G. Synth. Met. 2003, 139, 57. (45) (a) Ma, W.; Iyer, P. K.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 274-277. (b) Gong X.; Wang, S.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 2053-2058. (c) Tonzola, C.J.; Alam, M. M.; Jenekhe, S. A.; Adv. Mater. 2002, 14, 1086. (d) Cui, Y.; Zhang, X.; Jenekhe, S. A. Macromolecules 1999, 32, 3824. (46) (a) Edman, L.; Pauchard, M.; Moses, D.; Heeger, A. J. J. Appl. Phys. 2004, 95(8), 4357. (b) Ouyang, J.; Guo, T. F.; Yang, Y.; Higuchi, H.; Yoshiko, M.; Nagatsuka, T. Adv. Mater. 2002, 14, 915. (47) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737-1750. (48) Randall, D.; Lee, S., Eds. “The polyurethanes book”, Wiley, New York, 2002. (49) (a) Jenekhe, S. A.; Zhang, X.; Chen, L. Chem. Mater. 1997, 9, 409. (b) Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, 2069. (c) Maksudul, M.; Jenekhe, S. A. Chem. Mater. 2002, 14, 4775. (50) (a) Park, J. H.; Park, O. O.; Yu, J. W.; Kim, J. K.; Kim Y. C. Appl. Phys. Lett. 2004, 84, 1783. (b) Wang, H.-L.; Wen, T.-C. Mater. Chem. Phys. 2003, 82, 341-346. (c) Ishchenko, A. Polymers for Advanced Technologies 2002, 13, 744-752. (d) Lim, H.; Noh, J. Y.; Lee, G. H.; Lee, S. E.; Jeong, H.; Lee, K.; Cha, M.; Suh, H.; Ha, C.-S. Thin Solid Films 2000, 363, 152-155. (e) Jeong, H.; Zou, D.; Tsutsui, T.; Ha, C.-S. Thin Solid Films 2000, 363, 279-281. (f) Lee, T. W.; Park, O. O. Appl. Phys. Lett. 2000, 76, 3161-3163. (g) Jeong, H.; Ha, C.-S. Molecular Crystals and Liquid Crystals Science and Technology, Section A 1999, 337, 349-352. Chapter 2. (1) Chiang, C. C.; Chen, H.-C.; Lee, C.-S.; Leung, M.-k.; Lin, K.-R.; Hsieh, K.-H. Chem. Mater. 2008, 20, 540-552. (2) Chou, M.-Y.; Leung, M.-k.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2004, 16, 654-661. (3) Leung, M.-k.; Chou, M.-Y.; Su, Y. O.; Chiang, C. L.; Chen, H.-L.; Yang, C. F.; Yang, C.-C.; Lin, C.-C.; Chen, H.-T. Org. Lett. 2003, 5, 839-842. (4) Lin, K.-R.; Chang Chien, Y.-H.; Chang C.-C.; Leung, M.-k.; Hsieh, K.-H. Manuscript just accepted by Macromolecules. (5) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1993, 365, 628. Chapter 3. (1) (a) Loy, D. E.; Koene, B. E.; Thompson, M. E. Adv. Funct. Mater. 2002, 12, 245. (b) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (c) Tanaka, H.; Tokito, S.; Taga, Y.; Okada, A. Chem. Commun. 1996, 2175. (d) Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1996, 66, 2679. (2) (a) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.(b) Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989,65, 3610. (c) Niu, Y. H.; Liu, M. S.; Ka, J. W.; Jen, A. K. Y. Appl. Phys. Lett. 2006, 88, 093505. (d) Kuo, C.-H.; Lee, J.-H.; Leung, M.-k.; Hsieh, K.-H. Chem. Mater. 2006, 18, 4121. (3) (a) Gu G.; Shen Z.; Burrows, P. E.; Forrest S. R. Adv. Mater. 1997, 9, 725-728. (b) Tsutsui, T.; Fujita, K. Adv. Mater. 2002, 14, 949. (c) Yang, Y.; Huang, Q.; Metz, A. W.; Ni, J.; Jin, S.; Marks, T. J.; Madsen, M. E.; DiVenere, A.; Ho, S.-T. Adv. Mater. 2004, 16, 321. (d) Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G.. Adv. Mater. 2005, 17, 2332. (e) Hide, F.; Díaz-García, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430. (f) Greenham, N. C.; Friend, R. H. Solid State Physics; Enhrenreich, H., Spaepen, F., Eds.; Academic: San Diego, 1995, Vol. 49, p 1. (g) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. (h) Lin, K.-R.; Kuo, C.-H.; Leung, M.-k.; Hsieh, K.-H. Eur. Polym. J. 2007, 43, 4279. (4) (a) Pu, Y. J.; Soma, M.; Kido J.; Nishide, H.; J. Photopolym. Sci. Tech. 2002, 15, 259. (b) Liao, L.; Pang, Y.; Ding, L.; Karasz, F. E. Macromolecules 2004, 37, 3970. (c) Niu, H.; Huang, Y., Bai, X.; Li X.; Zhang, G. Mater. Chem. Phys. 2004, 86, 33. (5) (a) Son, J. M.; Mori, T.; Ogino, K.; Sato, H. Macromolecules 1999, 32, 4849. (b) Mori, T.; Strzelec, K.; Sato, H. Synth. Met. 2002, 126, 165. (c) Ostrauskaite, J.; Karickal, H. R.; Leopold, A.; Haarer, D.; Thelakkat, M. J. Mater. Chem. 2002, 12, 58. (d) Ohsawa, Y.; Ishikawa, M.; Miyamoto, T.; Murofushi, Y.; Kawai, M. Synth. Met. 1987, 18, 371. (6) (a) Bellmann, E.; Shaheen, S. E.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N. Chem. Mater. 1998, 10, 1668. (b) Kolb, E. S.; Gaudiana, R. A.; Mehta, P. G. Macromolecules 1996, 29, 2359. (c) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2000, 33, 3514. (d) Feast, W. J.; Peace, R. J.; Sage, I. C.; Wood, E. L. Polym. Bull. 1999, 42, 167. (e) Behl, M.; Hattemer, E.; Brehmer, M.; Zentel, R. Macromol. Chem. Phys. 2002, 203, 503. (f) Behl, M.; Zentel, R. Macromol. Chem. Phys. 2004, 205, 1633. (g) Compton, R. G.; Laing, M. E.; Ledwith, A.; Abu-Abdoun, I. I. J. Appl. Electrochem. 1988, 18, 431. (h) Cravino, A.; Roquet, S.; Aleveque, O.; Leriche, P.; Frere, P.; Roncali, J. Chem. of Mater. 2006, 18, 2584. (i) Cravino, A.; Roquet, S.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. Chem. Commun. 2006, 13, 1416. (j) Deng, S.; Advincula, R. C. Chem. Mater. 2002. 14, 4073. (k) Advincula, R. C. Polym. Mater. Sci. Eng. 2006, 94 271. (7) (a) Kim, Y. H. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1685. (b) Voit, B. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2505. (c) Chang, H. T.; Fréchet, J. M. J. J. Am. Chem. Soc. 1999, 121, 2313. (d) Guan, Z. J. Am. Chem. Soc. 2002, 124, 5616. (e) Stiriba, S. E.; Kautz, H.; Frey, H. J. Am. Chem. Soc. 2002, 124, 9698. (8) (a) Cao, C.; Yan, D. Y. Macromolecules 2003, 36, 613. (b) Xu, M. H.; Zhang, H. C. ; Pu, L. Macromolecules 2003, 36, 2689. (c) Chen, J.; Peng, H.; Law, C. C. W.; Dong, Y.; Lam, J. W. Y.; Williams, I. D.; Tang, B. Z. Macromolecules 2003, 36, 4319. (d) Kang, S. H.; Luo, J.; Ma, H.; Barto, R. R.; Frank, C. W.; Dalton, L. R.; Jen, A. K. Y. Macromolecules 2003, 36, 4355. (e) Schmaljohann, D.; Komber, H.; Barratt, J. G.; Appelhans, D,; Voit, B. I. Macromolecules 2003, 36, 97. (9) (a) Wang, F.; Wilson, M. S.; Rauh, R. D.; Schottland, P.; Reynold, J. R. Macromolecules 1999, 32, 4272. (b) Hua, J. L.; Li, B.; Meng, F. S.; Qian, S. X.; Tian, H Polymer 2004, 45, 7143. (c) Meng, F. S.; Mi, J.; Qian, S. X.; Chen, K. C.; Tian, H Polymer 2003, 44, 6851. (d) Paul, G. K.; Mwaura, A.; Argun, A. A.; Taranekar, P.; Reynolds, J. R. Macromolecules 2006, 39, 7789. (10) (a) Chou, M.-Y.; Leung, M.-k.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2004, 16, 654-661. (b) Leung, M.-k.; Chou, M.-Y.; Su, Y. O.; Chiang, C. L.; Chen, H.-L.; Yang, C. F.; Yang, C.-C.; Lin, C.-C.; Chen, H.-T. Org. Lett. 2003, 5, 839. (c) 張簡瑛雪,“以三伸苯為核心之星狀化合物及新型三苯胺聚合物的合成與性質研究及其在有機光電元件的應用”碩士論文 (2007). (11) Boiteau, L.; Moroni, M.; Hilberer, A.; Werts, M.; De Boer, B.; Hadziioannou, G. Macromolecules 2002, 35, 1543. (12) (a) Deng, L.; Furuta, P. T.; Garon, S.; Li, J.; Kavulak, D.; Thompson, M. E.; Frechet, J. M. J. Chem. Mater. 2006, 18, 386-395. (b) Lindner, S. M.; Thelakkat, M. Macromolecules 2004, 37, 8832. The synthetic procedures were reported in their corresponding supporting information. (13) Moon, K. J.; Shim, H. K.; Lee, K. S.; Prasad, P. N. Macromolecules 1996, 29, 861. (14) Lee, J.; Jung, B. J.; Lee, J. I.; Chu, H. Y.; Shim, H. K. J. Mater. Chem. 2002, 12, 3494. (15) Martin, A. E.; Ford, T. M.; Bulkowski, J. E. J. Org. Chem. 1982, 47, 412. (16) Son, J.-M.; Nakao, M.; Ogino, K.; Sato, H. Macromol. Chem. Phys. 1999, 200, 65. (17) Pretsch, E., Seibl, J., Simon, W., Clerc, T. Tables of Spectral Data for Structure Determination of Organic Compounds, 2nd ed., Springer-Verlag: Hong Kong, Berlin, and Heidelberg, 1989, pC120. (18) Silverstein, R. M., Bassler, G. C., Morrill, T. C. Spectrometric Identification of Organic Compounds, 5th ed., Wiley: New York, 1991; p 250. (19) (a) Muraki, T.; Ueta, M.; Ihara, E.; Inoue, K. Polym. Degrad. Stab. 2004, 84, 87-93. (b) Roland, A. I.; Schmidt-Naake, G. J. Anal. Appl. Pyrolysis 2001, 58-59, 143. (20) Yu, W.-L.; Pei, J.; Cao, Y.; Huang, W. J. Appl. Phys. 2001, 89, 2343. (21) (a) Kohler, A.; Wilson, J. S.; Friend, R. H. Adv. Mater. 2002, 14, 701. (b) Beeby, A.; Bettington, S.; Samuel, I. D. W.; Wang, Z. J. Mater. Chem. 2003, 13, 80. (22) Mutaguchi, D.; Okumoto, K.; Ohsedo, Y.; Moriwaki, K.; Shirota, Y. Org. Elect. 2003, 4, 49. (23) Chiang, C. C.; Chen, H.-C.; Lee, C.-S.; Leung, M.-k.; Lin, K.-R.; Hsieh, K.-H. Chem. Mater. 2008, 20, 540. Chapter 4. (1) (a) Loy, D. E.; Koene, B. E.; Thompson, M. E. Adv. Funct. Mater. 2002, 12, 245. (b) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (c) Tanaka, H.; Tokito, S.; Taga, Y.; Okada, A. Chem. Commun. 1996, 2175. (d) Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1996, 66, 2679. (e) Nishikitani, Y.; Kobayashi, M.; Uchida, S.; Kubo, T. Electrochim. Acta 2001, 46, 2040-2045. (f) Kuo, C.-H.; Cheng, W.-K.; Lin, K.-R.; Leung, M.-k.; Hsieh, K.-H. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4504-4513. (2) (a) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.(b) Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989,65, 3610. (c) Niu, Y. H.; Liu, M. S.; Ka, J. W.; Jen, A. K. Y. Appl. Phys. Lett. 2006, 88, 093505. (d) Kuo, C.-H.; Lee, J.-H.; Leung, M.-k.; Hsieh, K.-H. Chem. Mater. 2006, 18, 4121-4129. (3) Lin, K.-R.; Kuo, C.-H.; Leung, M.-k.; Hsieh, K.-H. Eur. Polym. J. 2007, 43, 4279-4288. (4) (a) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498. (b) Petr, A.; Kvarnstr¨om, C.; Dunsch, L; Ivaska, A. Synth. Met. 2000, 108, 245. (c) Lambert, C.; Nöll, G. Synth. Met. 2003, 139, 57. (5) Chiang, C. C.; Chen, H.-C.; Lee, C.-S.; Leung, M.-k.; Lin, K.-R.; Hsieh, K.-H. Chem. Mater. 2008, 20, 540-552. (6) (a) Chou, M.-Y.; Leung, M.-k.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2004, 16, 654-661. (b) Leung, M.-k.; Chou, M.-Y.; Su, Y. O.; Chiang, C. L.; Chen, H.-L.; Yang, C. F.; Yang, C.-C.; Lin, C.-C.; Chen, H.-T. Org. Lett. 2003, 5, 839-842. (c) Lin, K.-R.; Chang Chien, Y.-H.; Chang C.-C.; Leung, M.-k.; Hsieh, K.-H. Manuscript just accepted by Macromolecules. (7) (a) Compton, R. G.; Laing, M. E.; Ledwith, A.; Abu-Abdoun, I. I. J. Appl. Electrochem. 1988, 18, 431-440. (b) Deng, L.; Furuta, P. T.; Garon, S.; Li, J.; Kavulak, D.; Thompson, M. E.; Frechet, J. M. J. Chem. Mater. 2006, 18, 386-395. (c) Boiteau, L.; Moroni, M.; Hilberer, A.; Werts, M.; De Boer, B.; Hadziioannou, G. Macromolecules 2002, 35, 1543-1548. (d) Furuta, P. T.; Deng, L.; Garon, S.; Thompson, M. E.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2004, 126, 15388. (e) Suzuki, M.; Tokito, S. Sato, F.; Igarashi, T.; Kondo, K.; Koyama, T.; Yamaguchi, T. Appl. Phys. Lett. 2005, 86, 103507. (8) Feast, W. J.; Peace, R. J.; Sage, I. C.; Wood, E. L. Polymer Bulletin 1999, 42, 167-174. (9) Lindner, S. M.; Thelakkat, M. Macromolecules 2004, 37, 8832-8835. The synthetic procedures were reported in their corresponding supporting information. (10) (a) Muraki, T.; Ueta, M.; Ihara, E.; Inoue, K. Polym Degrad Stab 2004, 84, 87-93. (b) Roland, A. I.; Schmidt-Naake, G. Journal of Analytical and Applied Pyrolysis. 2001, 58-59, 143-154. (11) (a) Sales, M. J. A.; Dias, S. C. L.; Dias, J. A.; Pimentel, T. A. P. F. Polym Degrad Stab 2005, 87, 153-160. (b) Chang, L. L.; Woo, E. M. Polymer 2003, 44, 1711-1719. (12) Yu, W.-L.; Pei, J.; Cao, Y.; Huang, W. J. Appl. Phys. 2001, 89, 2343. Chapter 5. (1) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539. (2) Ohmori Y, Uchida M, Muro K, Yoshino K. Jpn J Appl Phys 1991, 30, L1938. (3) Braun D, Heeger A. J. Appl Phys Lett 1991,58, 1982. (4) (a) Gu G.; Shen Z.; Burrows, P. E.; Forrest S. R. Adv. Mater. 1997, 9, 725-728. (b) Tsutsui, T.; Fujita, K. Adv. Mater. 2002, 14, 949-952. (c) Yang, Y.; Huang, Q.; Metz, A. W.; Ni, J.; Jin, S.; Marks, T. J.; Madsen, M. E.; DiVenere, A.; Ho, S.-T. Adv. Mater. 2004, 16, 321-324. (d) Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G.. Adv. Mater. 2005, 17, 2332-2336. (e) Hide, F.; Díaz-García, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430. (f) Greenham, N. C.; Friend, R. H. In Solid State Physics; Enhrenreich, H., Spaepen, F., Eds.; Academic, San Diego, 1995; Vol. 49, pp 1-149. (g) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. (5) Qiu, Y.; Gao, Y.; Wei, P.; Wang, L. Appl. Phys. Lett. 2002, 80, 2628. (6) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. (7) Xie, Z. Y.; Hung, L. S.; Lee, S. T. Appl. Phys. Lett. 2001, 79, 1048. (8) Sprengard, R.; Bonrad, K.; Däubler, T. K.; Frank, T.; Hagemann, V.; Köhler, I; Pommerehne, J.; Ottermann, C.; Voges, F.; Vingerling, B. Proceeding of SPIE, 2004, 5519, 173-183. (9) Ho, G.-K.; Meng, H.-F.; Lin, S.-C.; Horng, S.-F.; Hsu, C.-S.; Chen, L.-C.; Chang, S.-M. Appl. Phys. Lett. 2004, 85, 4576-4578. (10) Nuyken, O.; Bacher, E.; Braig, T.; Fáber, R.; Mielke, F.; Rojahn, M.; Wiederhirn, V.; Meerholz, K.; Müller, D. Designed Monomers and Polymers 2002, 5, 195-210. (11) (a) Ma, W.; Iyer, P. K.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 274-277. (b) Gong X.; Wang, S.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 2053-2058. (c) Tonzola, C.J.; Alam, M. M.; Jenekhe, S. A.; Adv. Mater. 2002, 14, 1086. (d) Cui, Y.; Zhang, X.; Jenekhe, S. A. Macromolecules 1999, 32, 3824. (12) (a) Burn, P. L.; Grice, A. W.; Tajbakhsh, A.; Bradley, D. D. C.; Thomas, A. C. Adv. Mater. 1997, 9, 1171-1174. (b) Kraft, A.; Grimsdale, A. C.; Holmes A. B. Angew. Chem. Int. Ed. 1998, 37, 402-428. (c) Becker, H.; Spreitzer, H.; Kreuder, W.; Kluge, E.; Schenk, H.; Parker, I. Cao, Y. Adv. Mater. 2000, 12, 130-133. (d) Edman, L.; Pauchard, M.; Moses, D.; Heeger, A. J. J. Appl. Phys. 2004, 95(8), 4357. (e) Ouyang, J.; Guo, T. F.; Yang, Y.; Higuchi, H.; Yoshiko, M.; Nagatsuka, T. Adv. Mater. 2002, 14, 915. (13) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737-1750. (14) Randall, D.; Lee, S., Eds. “The polyurethanes book”, Wiley, New York, 2002. (15) (a) Kuo, C.-H.; Lee, J.-H.; Leung, M.-k.; Hsieh, K.-H. Chem. Mater. 2006, 18, 4121-4129. (b) Jenekhe, S. A.; Zhang, X.; Chen, L. Chem. Mater. 1997, 9, 409. (c) Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, 2069. (d) Maksudul, M.; Jenekhe, S. A. Chem. Mater. 2002, 14, 4775. (16) (a) Park, J. H.; Park, O. O.; Yu, J. W.; Kim, J. K.; Kim Y. C. Appl. Phys. Lett. 2004, 84, 1783. (b) Wang, H.-L.; Wen, T.-C. Mater. Chem. Phys. 2003, 82, 341-346. (c) Ishchenko, A. Polymers for Advanced Technologies 2002, 13, 744-752. (d) Lim, H.; Noh, J. Y.; Lee, G. H.; Lee, S. E.; Jeong, H.; Lee, K.; Cha, M.; Suh, H.; Ha, C.-S. Thin Solid Films 2000, 363, 152-155. (e) Jeong, H.; Zou, D.; Tsutsui, T.; Ha, C.-S. Thin Solid Films 2000, 363, 279-281. (f) Lee, T. W.; Park, O. O. Appl. Phys. Lett. 2000, 76, 3161-3163. (g) Jeong, H.; Ha, C.-S. Molecular Crystals and Liquid Crystals Science and Technology, Section A 1999, 337, 349-352. (17) 'Sket, B.; Zupan, M. J. Org. Chem. 1986, 51, 929-931. (18) Kauffman, J. M.; Moyna, G.; J. Org. Chem., 2003, 68, 839-853. (19) Tewari, R. S.; Kumari, N.; Kendurkar, P. S. Indian J. Chem. (B) 1977, 15, 753-5. (20) (a) Trigwell, S.; Grable, N.; Yurteri, C. U.; Mazumder, M. K. Seo, S. Surface and Interface Analysis, 1998, 26, 483-489. (b) Nakajima,Y.; Yamashita, D Jpn patent JP2005257538, CAN 143:338608, AN 2005:1023803. (c) Yoshino, K.; Onoda, M.; Manda, Y.; Yokoyama, M. Jpn. J. Appl. Phys. 1988, 27, L1606-1608. (21) Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605. (22) Ishii, H.; Seki, K. “Conjugated Polymer and Molecular Interfaces”; Salaneck, W. R., Seki, K., Kahn, A., Pireaux, J. J., Eds.; Marcel Dekker: New York, 2002, Chapter 10, pp 293-350. (23) Reichardt, C. “Solvents and solvent effects in organic chemistry” Wiley-WCH, Weinheim, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40944 | - |
| dc.description.abstract | 在本論文中,應用不同的合成方法來製備出二系列之新型三苯胺聚合物和聚胺酯,分別利用電化學的方法和一般傳統旋轉塗佈法來製作成元件,應用於有機發光二極體。
首先,我們採用不同的結構而分成二個系統來加以探討 (1) 分別以hyperbranched poly(p-methylenetriphenylamine) (PMTPA) 及linear poly(4-vinyltriphenylamine) (PVTPA) 為電聚前驅物。(2) 以OPV(oligo (para-phenylene-(E)-vinylene)) 為主體之聚胺酯。藉由第一個系統的電化學性質對此類三苯胺聚合物應用於電洞傳導層,有了更深入的了解,其優異表現遠超過一般市售之PEDOT:PSS;另外,在第二個系統中我們發現以 IPDI (isophorone diisocyanate) 來當胺酯連接基團,反應所生成之 OPV-IPDI 亦具有良好的電洞傳導性質,並可應用於可撓式高分子發光二極體。 同時,我們也發現在第一個系統中若使用表面改質方法,則可以獲得平整、均一的電聚膜。如此,該電聚膜具有良好的電洞傳導特性並可製作出高性能的發光二極體元件。 | zh_TW |
| dc.description.abstract | The synthesis and characterization of hyperbranched poly(p-methylenetriphenylamine) (PMTPA) are described. We discovered that N-[4-(tosyloxybutyloxymethyl)phenyl]-N,N-diphenylamine showed unexpected chemical reactivity and polymerized to form hyperbranched PMTPA under neat conditions. The hyperbranched PMTPA was electrochemically active and was deposited on electrode surface when oxidized. The SEM study revealed that electropolymerization of PMTPA would form uniform coating onto ITO surface. Polymeric light-emitting diodes (PLEDs) employing electroactive polymers of either hyperbranched PMTPA or linear Poly(4-vinyltriphenylamine) (PVTPA) as hole-transport layer in the EL device of ITO/electrochemically polymerized HTL/EML(PVK-PBD-Ir(ppy)3)/Mg/Ag demonstrated the brightness over 20,000 cd/m2 and low turn-on voltage. In particular, the device performance was very steady regardless of the thickness of the PMTPA layer, ranging from 4 to 10 nm.
In addition, PLEDs using a series of linear poly(4-vinyltriphenylamines) (PVTPAs) as hole-transport layer were fabricated. The relationships between their molecular weight, thermal stabilities, surface morphology and electronic properties were investigated. The SEM study revealed that electropolymerization of lowest molecular weight (~2700 g/mol) of PVTPA with 3 CV cycles would form uniform coating on ITO surface and show the highest brightness (~34,400 cd/m2) among others. However, surface modification tactic has to be adopted for the other higher molecular weight of PVTPAs because numerous cracks were observed on the electrode surface. We discovered applying some homogeneous thin film primed the ITO anode prior to the electrodeposition of PVTPA would reduce dramatically the uneven distribution of the electroactive layer and eventually have a smooth, crack-free film surface. By the way, our experiments also showed that the PU polymer could also be applied for flexible PLED with similar performance enhancement. Based on the promising results, we concluded that OPV-IPDI was a good hole-transport material for light-emitting diode application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:08:04Z (GMT). No. of bitstreams: 1 ntu-97-D93549011-1.pdf: 7334012 bytes, checksum: 1ff36d05eda5699f81e0719f0b5f302f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… ii Chapter 1 Introduction.................................................................... 1 1.1. An overview of PLED History……………………………………................. 1 1.2. Structure of OLEDs………………………………………………………….. 4 1.2.1. Single-layer structure……………………………………………………4 1.2.2. Double-layer structure………………………………………………….. 5 1.2.3. Three-layer structure……………………………………………………..6 1.2.4. Multilayer structure…………………………………………………….. 6 1.3. Materials for OLEDs and PLEDs …………………………………………..... 8 1.3.1. Hole-transport materials…………………………………………………8 1.3.2. Hole-injection materials………………………………………………… 9 1.3.3. Emissive materials………………………………………………………10 1.3.4. Electron-transport materials……………………………………………. 12 1.3.5. Cathode materials………………………………………………………. 12 1.4. Basic Operation of OLEDs…………………………………………………… 14 1.5. Motivation and Organization…………………………………………………16 1.5.1. Research incentive…………………………………………………16 1.5.2. Thesis Motivation and Organization………………………………18 References………………………………………………………………………22 Chapter 2 Experimental……………………………………………….28 2.1. Instrumentation………………………………………………………28 2.2. Strategy for polymer design…………………………………………………32 Reference………………………………………………………………………33 Chapter 3 The Synthesis, Electrochemical Behavior, and Electronic Properties of Hyperbranched Poly(p-methylenetriphenylamine): An Unexpected Condensation Polymerization from N-[4-(Tosyloxybutyloxymethyl)phenyl]-N,N-diphenylamine………… 34 3.1. Introduction …………………………………………………………………..35 3.2. Experimental Section………………………………………………….………37 3.3. Results and discussion…………………………………………….………….. 41 3.3.1. Preparation of PMTPA………………………..……………………… 41 3.3.2. Thermal Properties of PMTPA and PVTPA……..……………………48 3.3.3. Electrochemical Characteristics.…..…………………………………. 49 3.3.4. Surface Work-Function Measurement.………………………………. 50 3.3.5. Device Performance………………..………………………………… 51 3.3.6. Surface morphology investigation into electrodeposited HTL films.………………………………………………………………………… 54 3.4. Conclusion…………………………………………………………………...... 56 Reference………………………………………………………………………....... 57 Chaper 4 The Morphology, Electrochemical Behavior, and Electronic Properties of the Electrochemically Deposited Poly(4-vinyltriphenylamines) (PVTPA): An approach to afford a smooth, crack-free electrodeposited PVTPA films………………………………………………………………………….….. 60 4.1. Introduction …………………………………………………………………...61 4.2. Experimental Section………………………………………………….……….63 4.3. Results and discussion…………………………………………………………66 4.3.1. Thermal Properties of PMTPA and PVTPA…………………………...66 4.3.2. Electrochemical Characteristics.…..…………………………………. 67 4.3.3. Surface Work-Function Measurement.……………………………….. 70 4.3.4. Device Performance………………..…………………………………. 71 4.3.5. Investigations into morphological differences to the electrodeposited PVTPA films.…………….………………………………………………... 72 4.3.6. An approach to afford a smooth, crack-free electrodeposited PVTPA films.…………….…………………………………………………………. 77 4.3.7. Device performance comparison between PMTPA and Fc-11 primed composite HTL films.……………………………………………………… 90 4.4. Conclusion………………………………………….……………………….. 92 Reference………………………………………………………………………… 93 Chapter 5 New Hole-Transport Polyurethanes Applied to Multilayer and Flexible Polymeric Light-Emitting Diodes…………………………………..……… 95 5.1. Introduction ……………………………………………………….………….96 5.2. Experimental Section…………………………………………………..……. 97 5.3. Results and discussion……………………………………………………….102 5.3.1. Monomer Synthesis…………………………….……………………102 5.3.2. Polymer Characterization…………………………………………….102 5.3.3. Optical properties.…..………………………………………..……. ..104 5.3.4. Thermal properties.…………..……………………………..………. 106 5.3.5. Electroluminescence properties…....…………….…………………. 108 5.4. Conclusion…………………………………………………………………. ..116 Reference………………………………………………………………………… 116 Table and Figure Contents Chapter 1 Figure 1. Schematic structure diagram of Tang’s first double-layer OLED……….2 Figure 2. Schematic structure diagram of Friend’s first single-layer PLED……….3 Figure 3. Some familiar light-emitting conjugated polymeric materials……….….3 Figure 4. Schematic structure diagram of a single-layer OLED……….…………..4 Figure 5. Schematic structure diagram of double-layer OLEDs……….…………..5 Figure 6. Schematic structure diagram of a three-layer OLED……….…………....6 Figure 7. Schematic structure diagram of a multilayer OLED……….……….…....7 Figure 8. Molecular structures of some commonly used hole-transport materials…8 Figure 9. Molecular structures of some commonly used hole-injection materials…9 Figure 10. Chemical structures of the IrBtp2acac and Ir(ppy)3……….……….…....10 Figure 11. Chemical structures of the oxadiazole derivatives……….……………...13 Figure 12. Chemical structures of Alq3 and BeBq2……….………………………...13 Figure 13. Schematic energy-level diagram of an OLED…………………………...14 Scheme 1. The overall reaction scheme of TPB formation……..…………………...19 Scheme 2. Electropolymerization of Bis-diphenylamino Substituted Ferrocenes..…20 Chapter 2 Figure 1. Dual-beam UV-Vis spectrophotometer…………………………..……….29 Figure 2. PL measurement system…………………………………………….…….30 Figure 3. Schematic diagram of B-I-V measurement system……………………….30 Figure 4. Schematic diagram of Surface Analyzer (Model AC-2) ………………….31 Figure 5. AC-2 data format…………………………………………………….…….31 Chapter 3 Scheme 1. Synthesis of PMTPA…………………………………..………………….41 Scheme 2. Proposed Friedel-Crafts polymerization for PMTPA..…………..……….42 Figure 1. 1H NMR trace for the growth of polymer 2 from 1…………........….…….43 Figure 2. MALDI mass-analysis of 2………………………..……………………….44 Table 1. 13C NMR chemical shifts of the Ph3N derivatives as reference…………….45 Figure 3. 13C NMR spectra of the PMTPA (2)……………………………………….47 Table 2. 13C NMR chemical shifts of the PMTPA (2) ……………………………….47 Table 3. Characterization and thermal properties of PMTPA and PVTPA…………...48 Figure 4. Cyclic voltammograms of PMTPA with 30 repeated redox scan cycles ….49 Figure 5. Cyclic voltammograms of PVTPA with 30 repeated redox scan cycles ….50 Table 4. HOMO levels of electrochemically polymerized films for different repeated redox scan cycles…………………………………………………………………….51 Table 5. Dependence of the PLED device characteristics on the thickness of electrochemical polymerized PMTPA HTL………………………………………….53 Table 6. Dependence of the PLED device characteristics on the thickness of electrochemical polymerized PVTPA HTL…………………………………………..53 Figure 6. SEM picture of PMTPA film obtained by 40 CV cycles……………….….55 Figure 7. SEM picture of PVTPA film obtained by 3 CV cycles……………...….….55 Chapter 4 Scheme 1. Electropolymerization of Bis-diphenylamino Substituted Ferrocenes…...61 Scheme 2. Electropolymerization of PVTPA..……………………….……..……….62 Table 1. Characteristics of the PVTPAs..……………………….…………...……….66 Figure 1. Cyclic voltammograms of PVTPA 1 (Mw= 2701 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….67 Figure 2. Cyclic voltammograms of PVTPA 2 (Mw= 4434 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….68 Figure 3. Cyclic voltammograms of PVTPA 3 (Mw= 9097 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….68 Figure 4. Cyclic voltammograms of PVTPA 4 (Mw= 13034 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….69 Table 2. ∆E(pa-pc) of PVTPAs..……………………….…………...……………….….69 Table 3. HOMO levels of electropolymerized PVTPA films for three repeated redox scan cycles..……………………….…………...………………………………….….70 Table 4. Dependence of the PLED device characteristics on the different molecular weight of electropolymerized PVTPAs with three CV cycles………….......…….….72 Figure 5. SEM micrographs of electropolymerized PVTPA 1 film obtained by 3 CV cycles……………………….…………............………………………………….….73 Figure 6. SEM micrographs of electropolymerized PVTPA 2 film obtained by 3 CV cycles……………………….…………............………………………………….….74 Figure 7. SEM micrographs of electropolymerized PVTPA 3 film obtained by 3 CV cycles……………………….…………............………………………………….….75 Figure 8. SEM micrographs of electropolymerized PVTPA 4 film obtained by 3 CV cycles……………………….…………............………………………………….….76 Table 5. Contact angle comparison between bare ITO, Fc-11 3 cycles only and PMTPA-coated ITO glass….…………............………………………………….….79 Table 6. Summary of SEM observation for composite films…………………….….79 Figure 9. SEM micrographs of single-layer electropolymerized Fc-11 film obtained by 3 CV cycles….…………............……………………………………………..….….80 Figure 10. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 3 CV cycles) ….…………......…………………………………..….….81 Figure 11. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 5 CV cycles) ….…………......…………………………………….….….82 Figure 12. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 7 CV cycles) ….………......…………………………………….….…..83 Figure 13. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 10 CV cycles) ….………......…………………………………….…….84 Figure 14. SEM micrographs of single-layer electropolymerized PMTPA film obtained by 3 CV cycles ….………......………………………………..….….…….85 Figure 15. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 3 CV cycles) ….......………………………………..….….…….86 Figure 16. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 5 CV cycles) ….......………………………………..….….…….87 Figure 17. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 7 CV cycles) ….......………………………………..….….…….88 Figure 18. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 10 CV cycles) ….......……………………………..….…..…….89 Table 7. Dependence of the PLED device characteristics with vs. w/o surface modification primed layer….......……………………………..….….………..…….90 Figure 19. J-V comparison curves of composite film (PMTPA 3 CV cycles + PVTPA 4 3 CV cycles), (Fc-11 3 CV cycles + PVTPA 4 3 CV cycles) and PVTPA 4 3 CV cycles alone….......……………………………..….….………………..…..……….91 Chapter 5 Scheme 1. Synthesis of the OPV monomer………………………………..…….....102 Scheme 2. Condensation polymerization of the OPV monomer with diisocyanates.103 Fig. 1 Infrared (IR) spectra of TDI, OPV, OPV-TDI, OPV-IPDI and OPV-H12MDI.104 Table 1. Characterization and optical properties of PUs…...……………………….104 Fig. 2 Normalized UV-Vis absorption and PL spectra of OPV-TDI, OPV-IPDI and OPV-H12MDI polymeric films on glass……………………………..……..…….....105 Fig. 3 UV-Vis absorption spectra of OPV-TDI, OPV-IPDI and OPV-H12MDI in solid-state films……………………………………………………...……..…….....106 Fig. 4 DSC curves of OPV-TDI, OPV-IPDI and OPV-H12MDI….....……..…….....107 Fig. 5 TGA curves of OPV-TDI, OPV-IPDI and OPV-H12MDI….....……..…….....107 Table 2. PLED structure of devices 1 to 5 on ITO glass….....……..…………….....109 Fig. 6 Characteristic brightness-voltage curves of devices 1 to 5….....………….....110 Fig. 7 Current efficiency-voltage characteristic of devices 1 to 5….....………….....110 Table 3. Electroluminescence performance of devices 1 to 5 on ITO glass…….......111 Table 4. PLED structure of the flexible PLED devices 6 and 7…………..…….......112 Table 5. Electroluminescene performance of the flexible PLED devices 6 and 7.....112 Fig. 8 Characteristic brightness-voltage curves of the flexible devices 6 and 7…....112 Fig. 9 Current efficiency-voltage characteristic of the flexible devices 6 and 7…....113 Fig. 10 The electroluminescence (EL) spectra of Device 4 at various driving voltage……………………………………………...……..………………………...113 Fig. 11 The electroluminescence (EL) spectra of the flexible devices 6 and 7 at 9 V…………………………………………………114 Fig. 12 The flexible PLED with PU hole-transport modification layer at 9 V……..115 Appendix Figure S1. 13C NMR Spectrum of N(p-tolyl)3…………………………………121 Figure S2. 13C NMR Spectrum Ph2N(p-tolyl) ………………122 Figure S3. 13C NMR Spectrum of PhN(p-tolyl)2………………………………123 Figure S4.13C NMR Spectrum of Ph3N………………………124 Figure S5. Original 13C NMR Spectrum of polymer 2………………………125 Figure S6. GPC data of polymer 2 (PMTPA) ……………………126 Figure S7. GPC data of PVTPA ……………………………………………126 Figure S8. TGA curves of polymer 2 (PMTPA) …………………………...…….....127 Figure S9. TGA curves of PVTPA…………………………127 Figure S10. DSC curves of polymer 2: (Top) run 1; (Bottom) run 2……...…….....128 Figure S11. DSC curves of PVTPA: (Top) run 1; (Bottom) run 2………....…….....129 Figure S12. Cyclic voltammograms of PMTPA: (Top) run 1; (Bottom) run 2…......130 Figure S13. Cyclic voltammograms of PVTPA: (Top) run 1; (Bottom) run 2…………………131 Figure S14. B-V curves of PMTPA with 3 CV cycles…………………132 Figure S15. B-V curves of PMTPA with 5 CV cycles…………………132 Figure S16. B-V curves of PMTPA with 10 CV cycles.………………133 Figure S17. B-V curves of PMTPA with 15 CV cycles…………………133 Figure S18. B-V curves of PMTPA with 20 CV cycles…………………134 Figure S19. B-V curves of PMTPA with 40 CV cycles………………134 Figure S20. B-V curves of PVTPA with 3 CV cycles………………135 Figure S21. EL spectra of PVK-PBD-Ir(ppy)3-based LEDs incorporating electrodeposited PMTPA as HTL at different driving voltage………………136 Figure S22. EL spectra of PVK-PBD-Ir(ppy)3-based LEDs incorporating electrodeposited PVTPA as HTL at different driving voltage……………………137 Figure S23. Normalized EL spectra of PVK-PBD-Ir(ppy)3-based LEDs incorporating different thickness of electrodeposited PMTPA as HTL……………………137 Figure S24. SEM micrographs of electropolymerized PVTPA 4 film obtained by 1 CV cycle..…………………138 Figure S25. SEM micrographs of electropolymerized PVTPA 4 film obtained by 2 CV cycles………………140 Figure S26. SEM micrographs of electropolymerized PVTPA 4 film obtained by 3 CV cycles………………141 Figure S27. SEM micrographs of electropolymerized PVTPA 4 film obtained by 5 CV cycles………………142 Figure S28. SEM micrographs of electropolymerized PVTPA 4 film obtained by 10 CV cycles………………143 Figure S29. GPC data of PVTPA 1………………144 Figure S30. GPC data of PVTPA 2………………144 Figure S31. GPC data of PVTPA 3………………145 Figure S32. GPC data of PVTPA 4………………146 Figure S33. TGA curves of PVTPA 1………………146 Figure S34. TGA curves of PVTPA 2………………147 Figure S35. TGA curves of PVTPA 3………………147 Figure S36. TGA curves of PVTPA 4………………148 Figure S37. DSC curves of PVTPA 1: (Top) run 1; (Bottom) run 2………………149 Figure S38. DSC curves of PVTPA 2: (Top) run 1; (Bottom) run 2………………150 Figure S39. DSC curves of PVTPA 3: (Top) run 1; (Bottom) run 2………………………………………………151 Figure S40. B-V curves of PVTPA 1 with 3 CV cycles………………………………152 Figure S41. B-V curves of PVTPA 2 with 3 CV cycles………………………………………………152 Figure S42. B-V curves of PVTPA 3 with 3 CV cycles………………………………153 Figure S43. B-V curves of PVTPA 4 with 3 CV cycles………………………………153 Figure S44-1. Device structure with hole blocking layer (BCP=100 Å) and molecular structure of BCP………………………………………………154 Figure S44-2. B-V and E-V curves of devices with vs.without HBL (BCP=100 Å)………………155 Figure S45. Field-emission SEM images (15 KV) of the (a) bare ITO and the electrochemically deposited polymeric films of (b) Fc-8, (c) Fc-10, and (d) Fc-11 on ITO glass………………………………………157 Figure S46. Contact angle images: (Top) water droplet image on electrodeposited PMTPA-coated ITO glass (3 CV cycles); C/A= 70°. (Middle) water droplet image on electrodeposited Fc-11-coated ITO glass (3 CV cycles); C/A= 63°. (Bottom) water droplet image on bare ITO glass; C/A= 23°…………………………………158 Figure S47. Composite film thickness vs. CV cycle numbers with Fc-11 and PMTPA priming layers, respectively………………………………159 Figure S48-1. B-V and J-V curves of composite film (Fc-11 3 CV cycles + PVTPA 4 3 CV cycles) ………………………………………………160 Figure S48-2. B-V and J-V curves of composite film (PMTPA 3 CV cycles + PVTPA 4 3 CV cycles) ………………………………………………161 | |
| dc.language.iso | en | |
| dc.subject | 三苯胺聚合物 | zh_TW |
| dc.subject | 聚胺酯 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 電洞傳導層 | zh_TW |
| dc.subject | 電聚合 | zh_TW |
| dc.subject | Hole-transport layer (HTL) | en |
| dc.subject | Triphenylamine (TPA) | en |
| dc.subject | Poly(p-methylenetriphenylamine) (PMTPA) | en |
| dc.subject | Poly(4-vinyltriphenylamine) (PVTPA) | en |
| dc.subject | Polymeric light-emitting diodes (PLEDs) | en |
| dc.subject | Electropolymerization | en |
| dc.subject | Electroluminescence (EL) | en |
| dc.subject | Polyurethanes (PUs) | en |
| dc.title | 高性能電洞注入/傳遞之新型三苯胺聚合物和聚胺酯的合成與性質研究及其在有機電致發光元件的應用 | zh_TW |
| dc.title | High-Performance Hole-Injection/Transport Poly(p-methylenetriphenylamine), Poly(4-vinyltriphenylamine) and Polyurethane for Light-Emitting Diodes (LEDs) Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 梁文傑(Man-kit Leung) | |
| dc.contributor.oralexamcommittee | 邱文英,林江珍,陳雲 | |
| dc.subject.keyword | 有機發光二極體,三苯胺聚合物,聚胺酯,電洞傳導層,電聚合, | zh_TW |
| dc.subject.keyword | Triphenylamine (TPA),Poly(p-methylenetriphenylamine) (PMTPA),Poly(4-vinyltriphenylamine) (PVTPA),Polymeric light-emitting diodes (PLEDs),Electropolymerization,Electroluminescence (EL),Hole-transport layer (HTL),Polyurethanes (PUs), | en |
| dc.relation.page | 118 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
