Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40941
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾仁賜
dc.contributor.authorYu-Wen Wuen
dc.contributor.author吳伃雯zh_TW
dc.date.accessioned2021-06-14T17:07:53Z-
dc.date.available2008-09-01
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-26
dc.identifier.citation何念祖、孟賜福。1987。植物營養學原理。上海科學技術出版社。 上海,中國。
周宏祈。2005。喜樹組織培養與喜樹鹼誘導之研究。國立台灣大學研究所碩士論文。臺北,臺灣。
吳天賞。2004。青脆枝之天然物成分研究。青脆枝產業現況與發展研討會。嘉義,臺灣。
吳妍儒。2006。不同量牛糞堆肥對青脆枝生長及生理營養的影響。國立台灣大學研究所碩士論文。臺北,臺灣。
李興進。2004。青脆枝栽培簡介。青脆枝產業現況與發展研討會。嘉義,臺灣。
肥料檢驗法。1993。經濟部中央標準局,臺北,臺灣。
鍾仁賜、鄧雯玉。2004。環境因子對藥用植物生長與有效成分之影響。藥用植物之栽培與利用研討會論文集,pp. 1-11。臺北,臺灣。
徐麗芬、黃啟彰。2006。知識天地-開發藥用植物資源於癌症化學預防之應用。中央研究院週報,第1152期,臺北,臺灣。
Asghar, M. and Y. Kanehiro. 1976. Effects of sugarcane trash and pineapple residue incorporation on soil nitrogrn, pH and redox potential. Plant Soil, 44: 209-218.
Asghar, M. and Y. Kanehiro. 1980. Effects of sugarcane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe and Mn. Trop. Agric., 57: 245-258.
Ball, D. F. 1964. Loss-on ignition as estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci., 15: 84-92.
Barrow, N. J. 1989. Testing a mechanistic model. IX. Competition between anions for sorption by soil. J. Soil Sci., 40: 415– 425.
Blacquiere, T., R. Hofstra, and I. Stulen. 1987. Ammonium and nitrate nutrition in Plantgo lanceolata and Plantgo major L. ssp. Major. I. Aspects of growth, chemical composition and root respiration. Plant Soil, 104: 129-141.
Bloom, P. R. and M. B. McBride. 1979. Metal ion binding and exchange with hydrogen ions in acid-washed peat. Soil Sci. Soc. Am. J., 43: 687-693.
Broaddus, G. M., J. E. York, and J. M. Hoseley. 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tob. Sci., 9: 149-157.
Bremner, J. M. 1965. Inorganic forms of nitrogen, pp. 1149-1178. In“Methods of Soil Analysis. Part 2” C. A. Black (ed.) Agro. No. 9 ASA-SSSA. Wisconsin, USA.
Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite, pp. 621-622. In“Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.) Academic Press, New York, USA.
Burlat, V., A. Oudin, M. Courtois, M. Rideau, and B. St-Pierre. 2004. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J., 38: 131–141.
Chapman, H. D. 1966. Diagnostic Criteria for Plants and Soils, pp. 484-499. Univ. of Calif., Riverside, USA.
Evans, JR. A. 1985. The adsorption of inorganic phosphate by a sandy soil as influenced by dissolved organic comounds. Soil Sci., 140: 251-255.
Fulzele, Devanand P. and Ramesh K. Satdive. 2005. Distribution of anticancer drug camptothecin in Nothapodytes foetida. Fitoterapia, 76: 643-648.
Gerke, J., U. Meyer, and W. Romer. 1995. Phosphate, Fe and Mn uptake of N2 fixing red clover and ryegrass from an Oxisol as affected by P and model humic substances application. 1. Plant parameters and soil solution composition. Z. Pflanzenernahr. Bodenk, 158: 261-268.
Goedert, W. J. 1983. Management of the Cerrsdo soils of Brazil: a review. J. Soil Sci., 34: 405-428.
Hansen, J. W., R. S. Yost, and N. V. Hue. 1988. Influence of decomposing organic material on soil solusion aluminum activity and phytotoxicity. Agron. Abstr. pp. 198.
Haynes, R. J. 1986. The decomposition process: Mineralization, immobilization, humus formation, and degradation. pp. 52-109. In R. J. Haynes (ed) Mineral nitrogen in the plant-soil system. Academic press, New York.
Hodgson, J. F., W. L. Lindsay, and J. F. Trierweiler. 1966. Micronutrient cation complexing in soil solusion. II Complexing of znic and copper indisplacing solusion from calcareous soil. Proc. Soil Sci. Soc. Am., 30: 723-726.
Hornok, L. 1992. General aspects of medical plants, pp. 3-68. In ‘’Cultivation and processing of medicinal plants’’. Hornok L. (ed.) John Wiley & Sons, New York, USA.
Hue, N. V., I. Amen, and J. Hansen. 1989. Aluminum detoxification with green manure. Common. Soil Sci. Plant Anal., 20: 1499-1511.
Karlen, D. C., M. J. Mousbach, J. W. Doran, K. G. Cline, R. F. Harris, and G. E. Schuman. 1997. Soil quality: A concept, definition, and frame work for evaluation. Soil Sci. Soc. Am. J., 61: 4-10.
Keeney, D. R. and D. W. Nelson. 1982. Modified Griess-Ilosvay method, pp. 684-687. In “Methods of Soil Analhsis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Kumar, N. Savitri., P. Hewavitharanage, and N. KB. Adikaram. 1995. Attack on tea by Xyleborus fornicatus: inhibition of the symbiote, Monacrosporium ambrosium, by caffeine. Phytochemistry, 40: 1113–1116.
Kunimoto, T., K. Nitta, T. Tannka, N. Uehara, H. Baba, M. Takeuchi, T. Yokokura, S. Sawada, T. Miyasaka and M. Mutai. 1987. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin, a noval water-soluble derivative of camptothecin, against murine tumors. Cancer Res., 47: 5944-5947.
Li, S., Y. Yi, Y. Wang, Z. Zhang, and R. S. Beasly. 2002. Camptothecin accumulation and variations in camptotheca. Planta Med., 68: 1010–1016.
Liu, L. F. and K. G. Miller. 1981. Eukaryotic DNA topoisomerases: two forms of type I DNA topoisomerases from HeLa cell nuclei. Proc. Natl. Acad. Sci. USA, 78: 3487-3491.
McLean, E. O. 1982. Soil pH and lime requirement, pp. 199-224. In“Methods of Soil Analysis Part 2 Chemical and Microbiological Properties”2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Mehlich, A. 1985. Mehlish 3 soil test extractant: A modification of Mehlish 2 extractant. Commun. Soil Sci. Plant Anal., 15: 1409-1416.
Morris, R. A. C., D. F. Ewing, J. M. Whipps, J. R. Coley-Smith. 1995. Antifungal hydroxymethyl-phenols from the mycoparasite Verticillium biguttatum. Phytochemistry, 39: 1043–1048.
Muller, A. J., J. B. DuHadaway, P. S. Donover, E. Sutanto-Ward and G. C. Prendergast. 2005. Inhibition of indoleamine 2,3-dioxygenase, a target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med., 11: 312-319.
Murphy, J. and J. P. Riley. 1962. A modified single solution for determination of phosphate in natural waters. Anal. Chem. Acta., 27: 31-36.
Newman, D. J. and G. M. Cragg. 2007. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 70: 461-477.
Nobel, A. D., I. Zenneck, and P. J. Randall. 1966. Leaf litter ash alkalinity and neutralization of soil acidty. Plant Soil, 179: 293-302.
Osheroff, N. 1989. Biochemical basis for the interactions of type I and type II topoisomerases with DNA. Pharmacol. Ther., 41: 223-241.
Padmanabha, B. V., M. Chandrashekar, B. T. Ramesha, H. C. Hombe Gowda, Rajesh P. Gunaga, S. Suhas, R. Vasudeva, K. N. Ganeshaiah and R. Uma Shaanker. 2006. Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Current Sci., 90: 95-100.
Rhoades, J. D. 1982. Soluble salts, pp. 167-178. In“Method of Soil Analysis Part 2 Chemical and Microbiological Properties”, 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Scott, A. I. and S. L. Lee. 1975. Biosynthesis of the indole alkaloids. A cell-free system from Catharanthus roseus. J. Am. Chem. Soc., 97: 6906-6908.
Sibanada, H. M. and S. D. Young. 1986. Competitive adsorption of humus scids and. phosphate on goethite, gibbsite and two tropical soils. J. Soil Sci., 37: 197-204.
Sibanda, Y. K. and S. Abboud. 1991. A comparision of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal., 22: 943-954.
Sposito, G. 1989. Soil adsorption phenomena. pp. 148-169. In Sposito. G (ed) The chemistry of soils. Oxford University Press, Inc. New York.
Stockigt, J. and M. H. Zenk. 1977. Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J. Chem. Soc., Chem. Commun., 646–648.
Stockigt, J. and M. Ruppert. 1999. Strictosidine—the biosynthetic key to monoterpenoid indole alkaloids. pp. 109–138. In: Barton, S. D., Nakanishi, K., Meth-Cohn, O. (eds.), Comprehensive Natural Products Chemistry, Vol. 4. Pergamon, Oxford.
Suhas, S., B. T. Ramesha, G. Ravikanth, Rajesh P. Gunaga, R. Vasudeva, K. N. Ganeshaiah and R. Uma Shaanker. 2007. Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin. Current Sci., 92: 1142-1147.
Takkar, P. N. 1969. Effect of organic matter on soil iron and manganese. Soil Sci., 108: 108-112.
Torssell, K. B. G. 1983. Natural Product Chemistry---a mechanistic and biosynthetic approach to secondary metabolism. JohnWiley and Sons, New York, USA.
Van, D. M. E. 1996. Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol. Exp. Appl., 80: 307–310.
Wall, M. E., M. C. Wani, C. E. Cook, K. H. Palmer. 1966. Plant antitumor agent. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate. Amer. Chem. Soc., 88: 3888-3890.
Wang, J. C. 1985. DNA topoisomerases. Annu. Rev. Biochem., 54: 665-697.
Wang, J. C. 1987. Recent studies of DNA topoisomerases. Biochem. Biophys. ACta., 909: 665-697.
Yamzaki, Y., U. Akiko, H. Sudo, M. Kitajima, H. Takayama, M. Yamazaki, N. Aimi, and K. Saito. 2003. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochem., 62: 461-470.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40941-
dc.description.abstract喜樹鹼 (camptothecin) 是21世紀最受矚目的抗癌藥物之一,青脆枝是被國際公認含喜樹鹼成分最高的植物。由於全世界的需要量增加造成自然資源短缺、環境及種源破壞且不同區域之青脆枝喜樹鹼含量不同,應可歸因於遺傳特性與環境因子之差異,人工栽培的方式愈形重要。喜樹鹼為含氮的二次代謝物,因此,與氮的營養之關係如何,仍不清楚。雖然根中喜樹鹼為各器官中最高者,但整株採收不合經濟效應。一般利用採摘青脆枝的莖、葉以萃取喜樹鹼。本研究之目的在探討不同量及不同來源的氮肥對青脆枝新梢枝葉養分及喜樹鹼濃度周年變化的影響。本研究採盆栽試驗地點位於農場溫室,共六種處理 (N1、N2、N3 、N4、O1、O2),其中N1為每兩個月施氮0.5 g/pot,N2為1.0 g/pot,N3為1.5 g/pot,N4為2.0 g/pot,O1施氮0.5 g/pot,O2則為1.0 g/pot。N1-N4處理施尿素,O1與O2處理施有機肥料。每處理六重複,逢機完全區集排列。磷與鉀每三個月施用一次,其施用量均為0.5 g P/pot及0.5 g K/pot。從2007年4月4日至2007年12月4日,每兩個月由每盆每株採兩支枝條,剪取二十公分長度。2008年2月4日全株採收時並採集盆栽土樣。分析青脆枝收成後之土壤基本性質、有機質肥料及植物體樣品。結果顯示,不同量氮肥處理對二十公分長新生長枝條之乾重、總氮、硝酸態氮、磷、鉀、鈣與鎂之濃度均無顯著差異之影響。各處理青脆枝新梢枝葉進入秋冬季時的乾重下降,應是溫度與日照降低,影響光合作用、水與養分的吸收及乾物生產。處理一年後之全株乾重,則隨氮肥施用量增加而增加。青脆枝新梢之葉與莖中總氮、磷、鉀與鈣濃度以四月採收者顯著較高,六月與八月者最低,可歸因於五至八月時溫度與日照較高,植物體生長旺盛,乾物生長量較大所造成之稀釋效應;至十月以後則又因日照與溫度下降,植體之生長量下降,因此,其濃度上升;鎂之變化則不同,至十與十二月時之濃度最低。第二年二月全株採收後全株之乾重、氮與鎂的吸收量隨氮肥施用量增加而增加,磷、鉀與鈣的吸收量,則不因處理而有顯著差異。不同量有機肥料處理亦有相同之趨勢。各個處理新梢莖與葉之硝酸態氮濃度均低。所有處理的可溶性還原態氮佔總氮濃度高比例,為植物體中氮的主要成分。青脆枝全株均含喜樹鹼,不同器官中喜樹鹼濃度依次為根>幼莖>老莖>葉。青脆枝整株喜樹鹼濃度540-933 mg/kg。不同量氮肥處理對新梢莖與葉之喜樹鹼濃度無一致性之影響。不同時間之莖與葉喜樹鹼濃度,則以六月及八月之葉部喜樹鹼濃度顯著高於他月份者,顯示夏天有利於喜樹鹼在葉片之累積。除六月老枝條之莖以外,各時期莖中喜樹鹼濃度皆高於葉中者,顯示喜樹鹼有在莖中累積之傾向。由處理一年後之不同部位喜樹鹼濃度可知,新莖與根中之濃度隨氮肥用量增加而有增加之趨勢,但N4處理例外,老莖與葉中的濃度則不受氮肥用量所影響。氮肥的施用可增進作物的品質及產量,乾物質產量增加,喜樹鹼的產量也隨之增加。環境因子對喜樹鹼影響十分複雜,不同營養、氣候與都會影響喜樹鹼含量。zh_TW
dc.description.abstractCamptothecin (CPT) is regarded as one of the most promising anti-cancer drugs of the twenty-first century. Among several plant species known to contain the compound, by far the highest concentration has been reported from Nothapodytes nimmoniana (Icacinaceae). Owing to the growing demand for CPT, the species has been declared as endangered. There is significant variation in CPT content in N. nimmoniana among the plants growing in different regions. It is likely that the differences in the levels of CPT in N. nimmoniana are a function of both the genetic and environmental conditions of the population. Cultivation of N. nimmoniana becomes important to harvest CPT. CPT is a secondary metabolite which contains nitrogen (N). The concentration of CPT in N. nimmoniana in relation to N nutrition is not clear. The highest concentration of CPT in N. nimmoniana occurs in roots. Harvest the whole N. nimmoniana to get CPT is not economic. In practice, the new shoots of N. nimmoniana are harvested and extracted for CPT. The objective of this study was to investigate the effect of different kinds and rates of N fertilizers on the growth and physiological-nutrition of new shoot of N. nimmoniana and the camptothecin concentration around a year. The experiment was conducted in the pot culture in the greenhouse. There were six treatments, which were: 1. chemical N fertilizer of rate I (0.5 g N/pot/2 mon, N1); 2. chemical N fertilizer of rate II (1.0 g N/pot/2 mon, N2); 3. chemical N fertilizer of rate III (1.5 g N/pot/2 mon, N3); 4. chemical N fertilizer of rate IV (2.0 g N/pot/2 mon, N4); 5. Organic fertilizer of rate I (0.5 g N/pot/2 mon, O1); 6. Organic fertilizer of rate II (1.0 g N/pot/2 mon, O2). All treatments were replicated six times and arranged in a randomized complete block design. Phosphorous (P) and potassium (K) were applied every three months with the rates of 0.5 g P/pot and 0.5 g K/pot, respectively. Two new shoots with 20-cm in length were harvested every two months for each plant. The whole plants were harvested after treating for one year. The soil were also sampled after harvesting of the plants. The soil chemical properties, plant nutrient composition, and CPT concentration in each organs were analyzed. The results indicated that dry weight of 20-cm long new shoots the N, NO3-N, P, K, calcium (Ca), magnesium (Mg) concentrations were not affected by the rates of N applied. The dry weight of new shoots decreased during the fall and the winter. The N, P, K, and Ca concentrations in new shoots were also affected by the climatic condition. The higher concentration of the elements of the shoots growing in the fall and the winter and lower in summer. The growth of the whole plant and the amount of uptake of N and Mg after treating for one year increased as increased the rates of N applied. There were no significant difference as in the amount of uptake of P, K and Ca. The same effect was observed in organic fertilizer treatments. The NO3-N concentrations in different plant parts were low. However, the soluble N concentrations in different plant parts were high and were the most abundant composition of N. All plant organs contain CPT and the concentrations of CPT in different organs decrease in the following order: root > new stem > old stem > leaves. The concentrations of CPT in the whole plants were 540-933 mg/kg. Different rates of N fertilizer has litter effect on the CPT concentration of the plants. However, there were significant differences in CPT concentrations of the new shoots sampled in different times. Higher concentrations of CPT in leaves were observed in the samples harvested in June and August, which meant that CPT accumulated in leaves in summer. The stems contain higher concentration of CPT than the leaves. Higher concentrations of CPT in new stems and roots were observed with the increase in N application rates except for the N4 treatment after treating for one year. The CPT concentrations in old stems and leaves were not affected by the rates of N applied after treating for one year. Higher N application rate results in the higher yield and the amount of CPT. The effect of environmental factor on the yield of CPT was complex. The concentration of CPT affected by the nutrition and climatic condition.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:07:53Z (GMT). No. of bitstreams: 1
ntu-97-R95623017-1.pdf: 877247 bytes, checksum: 7bb9997493aec116b8f3b707c7dc3f93 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要---------------------------------------------------------------------------------------------------I
Abstract---------------------------------------------------------------------------------------------III
目錄------------------------------------------------------------------------------------------------VI
圖目錄--------------------------------------------------------------------------------------------VIII
表目錄----------------------------------------------------------------------------------------------X
附錄目錄------------------------------------------------------------------------------------------XI
前言--------------------------------------------------------------------------------------------------1
前人研究--------------------------------------------------------------------------------------------2
材料與方法----------------------------------------------------------------------------------------10
結果與討論----------------------------------------------------------------------------------------23
一、不同施肥處理對土壤基本性質的影響--------------------------------------------------23
(一) pH---------------------------------------------------------------------------------------------23
(二) 土壤飽和水電導度------------------------------------------------------------------------23
(三) 土壤有機質---------------------------------------------------------------------------------23
(四) 氮---------------------------------------------------------------------------------------------25
(五) 土壤Bray-1磷------------------------------------------------------------------------------25
(六) 土壤Mehlich III可萃取鉀----------------------------------------------------------------26
(七) 土壤Mehlich III可萃取鈣與鎂----------------------------------------------------------26
(八) 土壤Mehlich III可萃取鐵與錳----------------------------------------------------------26
(九) 土壤Mehlich III可萃取銅與鋅----------------------------------------------------------27
二、青脆枝生長、養分吸收與分佈-----------------------------------------------------------28
(一) 乾重------------------------------------------------------------------------------------------28
(二) 氮的吸收與分佈---------------------------------------------------------------------------28
1. 總氮---------------------------------------------------------------------------------------------32
2. 硝酸態氮---------------------------------------------------------------------------------------32
3. 可溶性還原態氮------------------------------------------------------------------------------38
4. 不溶性氮---------------------------------------------------------------------------------------43
(三) 對磷吸收與濃度之影響------------------------------------------------------------------43
(四) 對鉀吸收與濃度之影響------------------------------------------------------------------50
(五) 對鈣吸收與濃度之影響------------------------------------------------------------------50
(六) 對鎂吸收與濃度之影響------------------------------------------------------------------58
(七) 對喜樹鹼濃度及累積之影響------------------------------------------------------------65
(八) 迴歸分析------------------------------------------------------------------------------------70
結論-------------------------------------------------------------------------------------------------75
參考文獻-------------------------------------------------------------------------------------------76
附錄-------------------------------------------------------------------------------------------------84
dc.language.isozh-TW
dc.title氮肥用量對青脆枝新梢枝葉養分及喜樹鹼含量周年變化的影響zh_TW
dc.titleInfluence of nitrogen rates and anniversary changes on nutrient and camptothecin contents of Nothapodytes nimmonianaen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王一雄,陳建德,陳仁炫,黃裕銘
dc.subject.keyword氮肥施用,青脆枝,養分吸收,喜樹鹼,二次代謝物,zh_TW
dc.subject.keywordnitrogen fertilizer,Nothapodytes nimmoniana,nutrient uptake,camptothecin,secondary metabolite,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
856.69 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved