請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達 | |
| dc.contributor.author | Chih-Wei Wang | en |
| dc.contributor.author | 王志維 | zh_TW |
| dc.date.accessioned | 2021-05-13T09:20:37Z | - |
| dc.date.available | 2017-08-01 | |
| dc.date.available | 2021-05-13T09:20:37Z | - |
| dc.date.copyright | 2016-11-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | 1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 3. L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966). 4. A. Seidl, A. G orling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996). 5. M. E. Casida, Recent Advances in Density Functional Methods (World Scienti c, Singapore, 1995), Pt. 1. 6. E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density Functional Theory II (Springer, Heidelberg, 1996). 7. H. Stoll and A. Savin, in Density Functional Methods in Physics, edited by R. M. Dreizler and J. d. Providencia (Plenum, New York, 1985), p. 177. 8. A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996), pp. 327-357. 9. T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett. 275, 151 (1997). 10. J. Toulouse, F. Colonna, and A. Savin, J. Chem. Phys. 122, 014110 (2005). 11. J. G. Angy an, I. C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72, 012510 (2005). 12. E. Goll, H.-J. Werner, and H. Stoll, Phys. Chem. Chem. Phys. 7, 3917 (2005). 13. E. Goll, H.-J. Werner, H. Stoll, T. Leininger, P. Gori-Giorgi, and A. Savin, Chem. Phys. 329, 276 (2006). 14. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001). 15. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004). 16. I. C. Gerber and J. G. Angy an, Chem. Phys. Lett. 415, 100 (2005). 17. I. C. Gerber, J. G. Angy an, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 054101 (2007). 18. O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006). 19. O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006). 20. J.-W. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105 (2007). 21. A. J. Cohen, P. Mori-S anchez, and W. Yang, J. Chem. Phys. 126, 191109 (2007). 22. C.-W. Tsai, Y.-C. Su, G.-D. Li, and J.-D. Chai, Phys. Chem. Chem. Phys. 15, 8352 (2013). 23. Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai, J. Chem. Theory Comput. 9, 263 (2013). 24. R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011). 25. J.-D. Chai, J. Chem. Phys. 136, 154104 (2012). 26. J.-D. Chai, J. Chem. Phys. 140, 18A521 (2014). 27. N. A. Besley, M. J. G. Peach, and D. J. Tozer, Phys. Chem. Chem. Phys. 11, 10350 (2009). 28. N. A. Besley and F. A. Asmuruf, Phys. Chem. Chem. Phys. 12, 12024 (2010). 29. T. M. Maier, H. Bahmann, A. V. Arbuznikov, and M. Kaupp, J. Chem. Phys. 144, 074106 (2016). 30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 31. A. D. Becke, J. Chem. Phys. 107, 8554 (1997). 32. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). 33. J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008). 34. A. Fetter and D. Walecka, Quantum Theory of Many-Particle Systems, (Dover, 2003). 35. J. A. Parkhill, J.-D. Chai, A. D. Dutoi, and M. Head-Gordon, Chem. Phys. Lett. 478, 283 (2009). 36. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 37. O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006). 38. T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008). 39. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997). 40. L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 109, 42 (1998). 41. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000). 42. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys. 90, 5622 (1989). 43. Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 2715 (2004). 44. Y. Zhao, N. Gonz alez-Garc a, and D. G. Truhlar, J. Phys. Chem. A 109, 2012 (2005); 110, 4942(E) (2006). 45. P. Jure cka, J. Sponer, J. Cern y, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006). 46. T. Takatani, E. G. Hohenstein, M. Malagoli, M. S. Marshall, and C. D. Sherrill, J. Chem. Phys. 132, 144104 (2010). 47. M. S. Marshall, L. A. Burns, and C. D. Sherrill, J. Chem. Phys. 135, 194102 (2011). 48. H. Stoll, C. M. E. Pavlidou, and H. Preuss, Theor. Chim. Acta 49, 143 (1978); H. Stoll, E. Golka, and H. Preuss, ibid. 55, 29 (1980). 49. S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. Fischer, Phys. Rev. A 47, 3649 (1993). 50. Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. K us, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L.Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio Jr., H. Dop, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M.W. D. Hanson-Heine, P. H. P. Harbach, A.W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt, T. Stein, D. St uck, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xua, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht,W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Mol. Phys. 113, 184 (2015). 51. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). 52. J.-D. Chai and M. Head-Gordon, Chem. Phys. Lett. 467, 176 (2008). 53. C. W. Murray, N. C. Handy, and G. J. Laming, Mol. Phys. 78, 997 (1993). 54. V. I. Lebedev and D. N. Laikov, Dokl. Math. 59, 477 (1999). 55. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). 56. D. P. Chong, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 116, 1760 (2002). 57. Y. Takahata and D. P. Chong, J. Electron Spectrosc. Relat. Phenom. 133, 69 (2003). 58. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999). 59. N. A. Besley, Chem. Phys. Lett. 390, 124 (2004). 60. J. Rez a c, K. Riley, and E. P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011). 61. Y.-S. Lin, C.-W. Tsai, G.-D. Li, and J.-D. Chai, J. Chem. Phys. 136, 154109 (2012). 62. J. F. Janak, Phys. Rev. B 18, 7165 (1978). 63. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr., Phys. Rev. Lett. 49, 1691 (1982). 64. M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A: At., Mol., Opt. Phys. 30, 2745 (1984). 65. C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985). 66. J. P. Perdew and M. Levy, Phys. Rev. B: Condens. Matter 56, 16021 (1997). 67. M. E. Casida, Phys. Rev. B: Condens. Matter 59, 4694 (1999). 68. A. Seidl, A. G orling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B: Condens. Matter 53, 3764 (1996). 69. A. J. Cohen, P. Mori-S anchez, and W. Yang, Phys. Rev. B: Condens. Matter Mater. Phys. 77, 115123 (2008). 70. T. Tsuneda, J.-W. Song, S. Suzuki, and K. Hirao, J. Chem. Phys. 133, 174101 (2010). 71. T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Phys. Rev. Lett. 105, 266802 (2010). 72. W. Yang, A. J. Cohen, and P. Mori-S anchez, J. Chem. Phys. 136, 204111 (2012). 73. X. Andrade and A. Aspuru-Guzik, Phys. Rev. Lett. 107, 183002 (2011). 74. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983). 75. L. J. Sham and M. Schl uter, Phys. Rev. Lett. 51, 1888 (1983). 76. L. J. Sham and M. Schl uter, Phys. Rev. B 32, 3883 (1985). 77. W. Kohn, Phys. Rev. B 33, 4331 (1986). 78. G. K.-L. Chan, J. Chem. Phys. 110, 4710 (1999). 79. D. J. Tozer and N. C. Handy, Mol. Phys. 101, 2669 (2003). 80. E. Sagvolden and J. P. Perdew, Phys. Rev. A: At., Mol., Opt. Phys. 77, 012517 (2008). 81. P. Mori-S anchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett. 102, 066403 (2009). 82. J.-D. Chai and P.-T. Chen, Phys. Rev. Lett. 110, 033002 (2013). 83. T. Bally and G. N. Sastry, J. Phys. Chem. A 101, 7923 (1997). 84. B. Bra da, P. C. Hiberty, and A. Savin, J. Phys. Chem. A 102, 7872 (1998). 85. M. Gr uning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Phys. Chem. A 105, 9211 (2001). 86. D. J. Tozer, N. C. Handy, and A. J. Cohen, Chem. Phys. Lett. 382, 203 (2003). 87. M. Lundberg and P. E. M. Siegbahn, J. Chem. Phys. 122, 224103 (2005). 88. P. Mori-S anchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125, 201102 (2006). 89. A. D. Dutoi and M. Head-Gordon, Chem. Phys. Lett. 422, 230 (2006). 90. A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria, J. Chem. Phys. 126, 104102 (2007). 91. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999). 92. A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003). 93. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4091 | - |
| dc.description.abstract | 為了改善長程修正(LC)的混成密度泛函在核電子游離與核電子激發的表現,本研究藉由加一個餘補誤差函數至原本作為分程函數的誤差函數上以調整Hartree-Fock交換能中的分程函數。此混成觀點被應用於LSDA、PBE、B97三種密度泛函近似之上,並加入改善的經驗原子-原子色散修正D3以減少非共價作用誤差。我們透過ωB97訓練集最佳化泛函參數。所得之泛函:SLC-LDA-D3、SLC-PBE-D3、SLC-B97-D3,通稱短長程修正的(SLC)混成密度泛函,與PBE、LC-ωPBE、ωB97、ωB97X、ωB97X-D、ωB97X-D3在廣泛的測試集比較,包含核電子游離、核電子激發、S66集、AE113、IP131、EA131、FG131、雙同原子陽離子解離、價激發與Rydberg激發、長程電荷轉移激發。SLC泛函在核電子游離與核電子激發比起其他泛函準確很多,並在其他應用和LC泛函的表現相近。 | zh_TW |
| dc.description.abstract | In order to improve the performance of long-range corrected (LC) hybrid density functionals in core ionizations and core excitations, we adjust the range separation function for Hartree-Fock exchange by adding a complementary error function to the original error function. This hybrid scheme is applied to various density functional approximations including LSDA, PBE, and B97. The D3 empirical atom-atom dispersion corrections is also applied in order to correct non-covalent interactions. We optimize the functional parameters via the ωB97 training set. The resulting functionals, SLC-LDA-D3, SLC-PBE-D3, and SLC-B97-D3, are compared with PBE, LC-ωPBE, ωB97, ωB97X, ωB97X-D, and ωB97X-D3 on a wide range of test sets, including core ionizations, core excitations, S66 Set, AE113, IP131, EA131, and FG131 database, homonuclear diatomic cation dissociations, valence and Rydberg excitations, and long-range charge-transfer excitations. The SLC functionals are much more accurate in core ionizations and core excitations than other functionals, and perform similarly to the LC functionals in other applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T09:20:37Z (GMT). No. of bitstreams: 1 ntu-105-R01222001-1.pdf: 2508193 bytes, checksum: 619f338689b0b0d308f5a0f074048699 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Methods 5 2.1 The short- and long-range corrected (SLC) hybrid scheme . . . . . . . 5 2.2 The DFT-D3 scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 SLC-B97-D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Results 11 3.1 Optimized parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 ωB97 training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Test sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Core ionization energies . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Core excitation energies . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 The S66 set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Atomization energies . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.5 Frontier orbital energies . . . . . . . . . . . . . . . . . . . . . . 21 3.3.6 Fundamental gaps . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.7 Dissociation of symmetric radical cations . . . . . . . . . . . . . 26 3.3.8 Valence and Rydberg excitation energies . . . . . . . . . . . . . 28 3.3.9 Long-range charge-transfer excitations . . . . . . . . . . . . . . 29 4 Conclusion 31 A Reference 33 B Supporting Information 42 | |
| dc.language.iso | en | |
| dc.subject | 交換相關 | zh_TW |
| dc.subject | 分程的 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 色散修正 | zh_TW |
| dc.subject | 核電子游離 | zh_TW |
| dc.subject | 核電子激發 | zh_TW |
| dc.subject | core ionization | en |
| dc.subject | range-separated | en |
| dc.subject | exchange-correlation | en |
| dc.subject | dispersion correction | en |
| dc.subject | density functional theory | en |
| dc.subject | core excitation | en |
| dc.title | 短長程修正的混成密度泛函帶改善色散修正 | zh_TW |
| dc.title | Short- and Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙聖德,林祥泰 | |
| dc.subject.keyword | 密度泛函理論,交換相關,分程的,色散修正,核電子游離,核電子激發, | zh_TW |
| dc.subject.keyword | density functional theory,exchange-correlation,range-separated,dispersion correction,core ionization,core excitation, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU201603151 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 2.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
