請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃玲瓏(Ling-long Kuo-Huang) | |
| dc.contributor.author | Ching-Chu Tsai | en |
| dc.contributor.author | 蔡謦竹 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:06:01Z | - |
| dc.date.available | 2008-08-31 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-27 | |
| dc.identifier.citation | Abe H, Funada R (2005) Review: The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. Iawa Journal 26: 161-174
Alméras T, Yoshida M, Okuyama T (2006) The generation of longitudinal maturation stress in wood is not dependent on diurnal changes in diameter of trunk. Journal of Wood Science 52: 452-455 Araki N, Fujita M, Saiki H, Harada H (1983) Transition of fiber wall structure from normal wood to tension wood in certain species having gelatinous fibers of S1+G and S1+S2+G types. Mokuzai Gakkaishi 29: 491-499 (In Japanese) Archer RR (1986) Growth Stresses and Strains in Tress. Springer-Verlag, Berlin; Heidelberg Bailey IW (1952) Biological Processes in the Formation of Wood. Science 115: 255-259 Bamber RK (1987) The origin of growth stresses - a rebuttal. Iawa Bulletin 8: 80-84 Bamber RK (2001) A general theory for the origin of growth stresses in reaction wood: How trees stay upright. Iawa Journal 22: 205-212 Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews 79: 461-472 Barnett JR, Jerominidis G (2003) Reaction wood In JR Barnett, G Jerominidis, eds, Wood Quality and its Biological Basis. Blackwell Publishing Ltd, Oxford, pp 118-136 Bowling AJ, Vaughn KC (2008) Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose American Journal of Botany 95: 655-663 Boyd JD (1972) Tree growth stresses .5. Evidence of an origin in differentiation and lignification. Wood Science and Technology 6: 251-262 Burgert I, Eder M, Gierlinger N, Fratzl P (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226: 981-987 Cannell MGR, Morgan J (1987) Young’s modulus of section s of living branches and tree trunks. Tree Physiology 3: 355-364 Cannell MGR, Morgan J, Murray MB (1988) Diameters and dry weights of tree shoots: effects of Youngs modulus, taper, deflection and angle. Tree Physiology 4: 219-231 Chaffey N (2002) Introduction. In N Chaffey, ed, Wood Formation in Trees: Cell and Molecular Biology Techniques. Taylor & Francis, London, pp 1-8 Chmura DJ, Rahman MS, Tjoelker MG (2007) Crown structure and biomass allocation patterns modulate aboveground productivity in young loblolly pine and slash pine. Forest Ecology and Management 243: 219-230 Cionca M, Gurau L, Mansfield-Williams H, Sawyer G (2007) Branch wood as an alternative material rescource. A comparison of microscopic structure and mechanical properties of branch and stem wood. In 2007 IUFRO All Division 5 Conference, Taipei, Taiwan, p 104 Clair B, Almeras T, Sugiyama J (2006a) Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Annals of Forest Science 63: 507-510 Clair B, Almeras T, Yamamoto H, Okuyama T, Sugiyama J (2006b) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophysical Journal 91: 1128-1135 Clair B, Ruelle J, Beauchêne J, Prévost MF, Fournier M (2006c) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. Iawa Journal 27: 329-338 Coutand C, Fournier M, Moulia B (2007) The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation. Plant Physiology 144: 1166-1180 de Vries H (1872) Über einige Ursachen der Richtung bilateral symmetrischer Pflanzenteile. Arbeiten des Botanischen Instituts in Würzburg. 1:223-277 (cited in Timell, 1986) del Cerro M, Cogen J, Cerro CD (1980) Stevenel's blue, an excellent stain for optical microscopical study of plastic embedded tissues. Microscopica Acta 83: 117-121 Dickison WC (2000) Integrative Plant Anatomy. Academic Press, San Diego; London, pp406-410 Emhart VI, Martin TA, White TL, Huber DA (2007) Clonal variation in crown structure, absorbed photosynthetically active radiation and growth of loblolly pine and slash pine. Tree Physiology 27: 421-430 Evans LS, Kahn-Jetter Z, Torres J, Martinez M, Tarsia P (2008) Mechanical stresses of primary branches: a survey of 40 woody tree and shrub species. Trees: Structure and Function 22: 283-289 Evert RF (2006) Esau’s Plant Anatomy, Ed 3. John Wiley & Sons, Hoboken; New Jersey, pp 299-302 Fisher JB (1985) Induction of reaction wood in Terminalia (Combretaceae): Roles of gravity and stress. Annals of Botany 55: 237-248 Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Botanical Gazette 142: 82-95 Gere JM (2006) Mechanics of Materials, Ed 6. Thomson, Singapore, p 306 Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiology 140: 1246-1254 Grichko VP, Glick BR (2001) Ethylene and flooding stress in plants. Plant Physiology and Biochemistry 39: 1-9 Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical Trees and Forests: An Architectural Analysis. Springer-Verlag, Berlin; New York, pp 1-5, 182-190 Honda H, Fisher JB (1978) Tree branch angle: maximizing effective leaf area. Science 199: 888-890 Hosoo Y, Yoshida M, Imai T, Okuyama T (2002) Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 215: 1006-1012 Hosoo Y, Yoshida M, Imai T, Okuyama T (2003) Diurnal differences in the innermost surface of the S-2 layer in differentiating tracheids of Cryptomeria japonica corresponding to a light-dark cycle. Holzforschung 57: 567-573 Huang YS, Chen SS, Kuo-Huang LL, Lee CM (2005a) Growth stress of Zelkova serrata and its reduction by heat treatment. Forest Products Journal 55: 88-93 Huang YS, Chen SS, Kuo-Huang LL, Lee CM (2005b) Growth strain in the trunk and branches of Chamaecyparis formosensis and its influence on tree form. Tree Physiology 25: 1119-1126 Japan Material Society (1982) Dictionary of Wood Industry. In Committee of Woody Mate¬rial Department, ed. Wood Industry Publishers, Kyoto, p 573 (In Japanese) Kaitaniemi P (2007) Consequences of variation in tree architecture and leaf traits on light capture and photosynthetic nitrogen use efficiency in mountain birch. Arctic Antarctic and Alpine Research 39: 258-267 Kučera LJ, Philipson WR (1977a) Growth eccentricity and reaction anatomy in branchwood of Drimys winteri and five native New Zealand trees. New Zealand Journal of Botany 15: 517-524 Kučera LJ, Philipson WR (1977b) Occurrence of reaction wood in some primitive dicotyledonous species. New Zealand Journal of Botany 15: 649-654 Kučera LJ, Philipson WR (1978) Growth eccentricity and reaction anatomy in branchwood of Pseudowinera colorata. American Journal of Botany 65: 601-607 Kuo-Huang LL, Chen SS, Huang YS, Chen SJ, Hsieh YI (2007) Growth strains and related wood structures in the leaning trunks and branches of Trochodendron aralioides - A vessel-less dicotyledon. Iawa Journal 28: 211-222 Little CHA (1967) Some aspects of apical dominance in Pinus strobus L. Yale University, New Haven Mattheck C, Kubler H (1995) Wood: The Internal Optimization of Trees. Springer-Verlag, Berlin; Heidelberg, pp1-124 McMahon TA (1973) Size and shape in biology: Elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179: 1201-1204 McMahon TA (1975) The mechanical design of trees. Scientific American 233: 93-102 Morgan J, Cannell MGR (1987) Structural analysis of tree trunks and branches: Tapered cantilever beams subject to large deflections under complex loading. Tree Physiology 3: 365-374 Novoplansky A (2003) Ecological implications of the determination of branch hierarchies. New Phytologist 160: 111-118 Nzunda EF, Griffiths ME, Lawes MJ (2007) Resprouting versus turning up of leaning trees in a subtropical coastal dune forest in South Africa. Journal of Tropical Ecology 23: 289-296 Okuyama T, Yamamoto H, Iguchi M, Yoshida M (1990) Generation process of growth stresses in cell walls II. Growth stresses in tension wood. Mokuzai Gakkaishi 36: 797–803 Onaka F (1949) Studies on compression- and tension-wood. Mokuzai KenKyu 1: 1-88 (In Japanese) Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple J-C, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. Comptes Rendus Biologies 327: 889-901 Prodhan AKMA, Ohtani J, Funada R, Abe H, Fukazawa K (1995) Ultrastructural investigation of tension wood fiber in Fraxinus Mandshurica Rupr. var. japonica Maxim. Annals of Botany 75: 311-317 Ruelle J, Clair B, Beauchêne J, Prévost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria. Iawa Journal 27: 341-376 Ruelle J, Yoshida M, Clair B, Thibaut B (2007) Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees: Structure and Function 21: 345-355 Savidge RA (2000) Biochemistry of seasonal cambial growth and wood formation - an overview of the challenges. In RA Savidge, JR Barnett, R Napier, eds, Cell and Molecular Biology of Wood Formation. BIOS Scientific Publishers, Guildford, pp 1-30 Scurfield G (1973) Reaction wood: Its structure and function. Science 179: 647-655 Sone K, Noguchi K, Terashima I (2006) Mechanical and ecophysiological significance of the form of a young Acer rufinerve tree: vertical gradient in branch mechanical properties. Tree Physiology 26: 1549-1558 Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26: 31-43 Sugiyama K, Okuyama T, Yamamoto H, Yoshida M (1993) Generation process of growth stresses in cell walls: Relation between longitudinal released strain and chemical composition. Wood Science and Technology 27: 257-262 Taiz L, Zeiger E (2006) Plant Physiology, Ed 4. Sinauer Associates, Sunderland, p 577 Tang J-L (1995) Within trunk variation of the strength property of the wood from Formosan alder, long glans oak and Formosan michlia in Taiwan. Taiwan Journal of Forest Science 10: 83-91 Thibaut B, Gril J (2003) Growth stresses. In JR Barnett, G Jerominidis, eds, Wood Quality and its Biological Basis. Blackwell Publishing Ltd, Oxford, pp 137-156 Timell TE (1986) Compression Wood in Gymnosperms, Vol 2. Springer, Berlin Heindelberg New York Tokyo, pp 598-706, 1105-1262 Toda R, Asaki T, Kikuti H (1963) Preventing upward curving of limbs of topped seed trees by growth substance treatment. Journal of the Japanese Forestry Society 45: 227-230 (In Japanese) Tsai C-J, Chien C-T, Lee C-M, Chen S-J, Kuo-Huang L-L (2006) Anatomical characteristics of artificially induced tension wood in seedlings of Honduras Mahogany. Taiwan Journal of Forest Science 21: 147-154 Ueda M, Shibata E (2001) Diurnal changes in branch diameter as indicator of water status of Hinoki cypress Chamaecyparis obtusa. Trees: Structure and Function 15: 315-318 Wilson BF (1973) White pine shoots: Roles of gravity and epinasty in movements and compression wood location. American Journal of Botany 60: 597-601 Wilson BF (1984) The Growing Tree, Ed 2. University of Massachusetts Press, Armherst, pp 111-120 Wilson BF (2000) Apical control of branch growth and angle in woody plants. American Journal of Botany 87: 601-607 Wilson BF, Archer RR (1979) Tree design: Some biological solutions to mechanical problems. Bioscience 29: 293-298 Xu F, Sun R-C, Lu Q, Jones GL (2006) Comparative study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii. Wood Science and Technology 40: 358-370 Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: Roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Science and Technology 32: 171-182 Yamamoto H, Okuyama T (1988) Analysis of the generation process of growth stress in cell walls. Mokuzai Gakkaishi 34: 788-793 (In Japanese) Yamamoto H, Okuyama T, Sugiyama K, Yoshida M (1992) Generation process of growth stresses in cell walls IV. Action of the cellulose microfibril upon the generation of the tensile stresses. Mokuzai Gakkaishi 38: 107-113 Yamamoto H, Okuyama T, Yoshida M (1993) Generation process of growth stresses in cell walls V. Model of tensile stress generation in gelatinous fibers. Mokuzai Gakkaishi 39: 118-125 Yamamoto H, Okuyama T, Yoshida M (1995) Generation process of growth stresses in cell walls VI. Analysis of growth stress generation by using a cell model having three Layers (S1, S2, and I+P). Mokuzai Gakkaishi 41: 1-8 Yamamoto H, Okuyama T, Yoshida M, Sugiyama K (1991) Generation process of growth stresses in cell walls III. Growth stress in compression wood. Mokuzai Gakkaishi 37: 94-100 Yamashita S, Yoshida M, Takayama S, Okuyama T (2007) Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development. Annals of Botany 99: 487-493 Yoshida M, Nakamura T, Yamamoto H, Okuyama T (1999) Negative gravitropism and growth stress in GA3-treated branches of Prunus spachiana Kitamura f. spachiana cv. Plenarosea. Journal of Wood Science 45: 368-372 Yoshida M, Ohta H, Okuyama T (2002a) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). Journal of Wood Science 48: 99-105 Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002b) Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees: Structure and Function 16: 457-464 Yoshida M, Hosoo Y, Okuyama T (2000a) Periodicity as a factor in the generation of isotropic compressive growth stress between microfibrils in cell wall formation during a twenty-four hour period. Holzforschung 54: 469-473 Yoshida M, Okuda T, Okuyama T (2000b) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Annals of Forest Science 57: 739-746 Yoshida M, Yamamoto O, Okuyama T (2000c) Strain changes on the inner bark surface of an inclined coniferous sapling producing compression wood. Holzforschung 54: 664-668 Yumoto M, Ishida S, Fukazawa K (1982) Studies on the formation and structure of the compression wood cells induced by artificial inclination in young trees of Picea glauca. I. Time course of the compression wood formation following inclination. Research Bulletins of the College Experiment Forests Hokkaido University 39: 137-162 Yumoto M, Ishida S, Fukazawa K (1983) Studies on the formation and structure of the compression wood cells induced by artificial inclination on young trees of Picea glauca. IV. Gradation of the severity of compression wood cells. Research Bulletins of the College Experiment Forests Hokkaido University 40: 409-454 郭威武。2006。常見六種闊葉樹枝條構造的比較。國立台灣大學生態學與演化生物學研究所碩士論文。pp 43, 47-48 陳欣欣、黃玲瓏、李金梅、黃彥三。2006。紅檜造林木樹幹與枝條之生長應變探討。臺灣林業科學 21:263-272。 黃彥三、陳欣欣。1990。樹木生長應力之研究。生命科學簡訊 14:15-18。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40904 | - |
| dc.description.abstract | 本篇論文旨在探討生長應力於木本被子植物中的生物功能,及其與木材解剖構造之關係。首先,傾斜主幹生長應力的分布在目前的研究中受到最多的關注,並且直覺性地將結果應用於樹木枝條,然而相關實驗證明仍然缺乏。其次,試圖應用前人在傾斜主幹相關研究中所建立的假說,以枝條研究文獻為佐證,解釋本實驗中樹木枝條為了產生生長應力所生成的相關構造。最後試圖觀察樹木向上彎曲所需之生物性應力的形成過程。
本實驗以測量釋放生長應變的方式研究生長應力的分布,將11具樹木枝條中21個有效測量點區分為4種型式。第I至III型測量點產生向上彎曲力矩(負向重性生長),而第IV型測量點產生向下彎曲力矩(偏上生長)。結果推測第I型測量點最普遍存在於被子植物枝條中,不同於傾斜主幹中最常見的為第II型以及第III型。第IV型測量點只存在於已落葉的台灣欒樹枝條(Koelreuteria henryi)中,其具有相反於第I型測量點的生長應變分布,類似重力解除後的回彈效應。 由枝條產生反應構造的解剖研究,結合前人的理論推測,枝條能夠藉由徑生長來抵抗彎曲應力,例如烏心石(Michelia compressa)。或者枝條能夠調控上、下側差異性生長,以減低應力對木材造成的形變,例如榕樹(Ficus microcarpa)、白雞油(Fraxinus griffithii)、福木(Garcinia multiflora)。又或者改變微纖維排列角度,以控制纖維細胞延展方向,例如福木及台灣欒樹。微纖維角度的測量結果支持除了落葉產生的物理效應外,另有生物性應力產生,共同影響第IV型測量點的應變分布。有些樹種亦藉由生成抗張力強的膠質纖維,例如榕樹、小葉欖仁(Terminalia mantaly),青剛櫟(Cyclobalanopsis glauca),台灣櫸(Zelkova serrata)。雖然膠質纖維被視為是典型引張材的特徵,然而膠質纖維的出現與不同形式的應力分布沒有顯著關聯。 最後以連續監測傾倒苗木應變的方式,將彎曲應力扣除,觀察生物性應力的形成。九種苗木傾斜30°,其達到平衡位置所需的時間皆介於10~20天之內。同時將台灣櫸以及福木苗木各三棵傾斜30°,結果顯示回復平衡速度與物種無關,然而平衡值在不同物種間有顯著不同。將台灣欒樹傾倒於30°以及60°,結果顯示傾斜角60°時苗木的反應較快速。 | zh_TW |
| dc.description.abstract | The present thesis is aimed at further understanding the biological function of growth stress and related structures in woody angiosperms. First, the growth stress distribution in the tilted trunks has been intensively studied and intuitively applied on the branches; however, the supported data are still lacking. Second, the bases of the structural supports used by these branches to resist the bending stress were accessed. Furthermore, the generation of the biological stress to balance the bending moment of tilted trunk of 9 species was traced.
Released growth strains (RGSs) related to growth stress were measured to distinguish 21 measuring site of 11 branches from 8 species into four types. The first three types of measuring site produced upward bending moment (negative gravitropism), and the fourth type of branches produced downward bending moment (epinasty). Based on our results, type I measuring site was suggested to be the most widespread in branches while type II and III were prevailing in the tilted trunks. Type IV was found only in Koelreuteria henryi during leaf-falling season and was the reverse of type I, partly resembling the spring back effect. According to the study of wood anatomy, branches can resist the bending stress (i) by increasing radial growth, such as Michelia compressa; (ii) by inducing differential cambial activity, such as Ficus microcarpa, Fraxinus griffithii, Garcinia multiflora and K. henryi; and/or (iii) by regulating angles of microfibrils (MFAs), such as G. multiflora and K. henryi, which controlled the expansion direction and thus resulting growth stress. The stress distribution of Type IV resembles the spring back effect caused by defoliation; however, the results from MFAs showed that biological stress may also be involved. F. microcarpa, Terminalia mantaly, Cyclobalanopsis glauca, Zelkova serrata produced gelatinous fibers (G-fibers) which bearing high tensile stress in their tension wood. Although it is an important character of typical tension wood, the presence of G-fiber seemed not related to the RGSs typing. The formation of the biological strain was investigated separately from bending stress by successively recording the strains after inclining the seedlings. The time for attaining equilibrium in the tilted seedlings (from 9 species) at 30° was 10~20 day. Each three seedlings of Z. serrata and G. multiflora were inclined at 30° to examine the variation within species. The results indicated that the equilibrium time was species-independent, while the values of equilibrium strains were species-dependent. The seedlings of K. henryi were inclined at 30° and 60° and the result showed that the seedlings inclined at 60° turned up earlier than those at 30°. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:06:01Z (GMT). No. of bitstreams: 1 ntu-97-R95b44006-1.pdf: 60529645 bytes, checksum: 1440ce0cd1941d10dc432c50f8aeb928 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委研省訂書…………………………………………………………i
誌謝……………………………………………………………………ii 中文摘要………………………………………………………………iii Abstract…………………………………………………………………v Table of Contents…………………………………………………vii Index of Figures………………………………………………………x Index of Tables……………………………………………………xii I. Introduction………………………………………………………1 1. Importance of maintaining the tree architecture………1 2. Growth stress and reaction wood in tilted trunks and branches…………………………………………………………………3 3. Lignin Swelling Hypothesis and Cellulose Tension Hypothesis………………………………………………………………4 4. Goals of this thesis……………………………………………5 II. Materials and Methods…………………………………………7 1. Plant materials…………………………………………………7 2. Measurement of longitudinal released growth strains (RGSs)……………………………………………………………………7 3. Calculation of eccentricity…………………………………11 4. G-fiber cartography……………………………………………12 5. Measurement of microfibril angles (MFAs) ………………12 a. The orientation of microfibrils in S2-layer was evaluated by iodine method………………………………………12 b. The orientation of microfibril in gelatinous layer (G-layer) was evaluated by scanning electron microscope (SEM)…………………………………………………………………………13 6. Observation of the cell wall of wood fibers……………14 a. Semi-thin sections observed by LM……………14 b. Ultra-thin sections observed by TEM…………………14 7. Change of growth strains after inclination…………15 8. Calculation of curvature (κ) from growth strain………16 III. Results……………………………………………17 1. Distribution of longitudinal RGSs of branches…………17 2. Upward bending branches………………………………………20 a. Eccentricity……………………………………………………20 b. Distribution of G-fibers in cross section of the measuring site…………………………………………………………21 c. MFAs of S2-layer………………………………………………23 d. MFAs of G-layer…………………………………………………28 e. Cell wall structure of wood fibers………………………29 3. Downward bending branches……………………………………38 a. Eccentricity……………………………………………………38 b. MFAs of S2-layer………………………………………………38 c. Cell wall structure of wood fibers………………………40 4. Formation of growth strain in seedlings after inclination……………………………………………………………41 a. Intraspecies variations………………………………………41 b. Interspecies variations………………………………………41 c. Effects of inclination angle and season…………………42 IV. Discussion…………………………………………………………47 1. Distribution of longitudinal RGSs of branches…………47 2. Upward bending branches (Type I–III): Negative gravitropism……………………………………………………………51 a. Beam Theory and Constant Strain Hypothesis……………52 b. Formation of growth stress and the related anatomical structures………………………………………………………………55 3. Downward bending branches of K. henryi Type (IV): defoliation effect of epinasty?………………………………………………60 4. Biological strains formation in tilted seedlings………63 5. Conclusion and future work……………………………………67 V. Reference……………………………………………………………70 | |
| dc.language.iso | en | |
| dc.subject | 偏上性 | zh_TW |
| dc.subject | 生長應變 | zh_TW |
| dc.subject | 枝條 | zh_TW |
| dc.subject | 負向重性 | zh_TW |
| dc.subject | 微纖維角度 | zh_TW |
| dc.subject | 苗木 | zh_TW |
| dc.subject | MFA | en |
| dc.subject | epinasty | en |
| dc.subject | seedlings | en |
| dc.subject | branch | en |
| dc.subject | negative gravitropism | en |
| dc.subject | growth strain | en |
| dc.title | 十一種被子植物枝條及傾斜苗木主幹生長應變與相關構造之研究 | zh_TW |
| dc.title | Study on the Growth Strain and the Related Structure of Branches and Inclined Seedlings of Eleven Angiosperm Species | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡慶德(Ching-Te Chien),黃國雄(Gwo-Shyong Hwang),黃彥三(Yan-San Huang) | |
| dc.subject.keyword | 枝條,苗木,偏上性,生長應變,負向重性,微纖維角度, | zh_TW |
| dc.subject.keyword | branch,seedlings,epinasty,growth strain,negative gravitropism,MFA, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-29 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 59.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
