請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁昭旼(Jau-Min Wong) | |
| dc.contributor.author | Shun-Hsiang Yang | en |
| dc.contributor.author | 楊舜翔 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:05:08Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.copyright | 2011-08-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-22 | |
| dc.identifier.citation | [1] PubMed , http://www.ncbi.nlm.nih.gov/pubmed/
[2] Wilczynski NL, Haynes RB for the Hedges Team. Developing optimal search strategies for detecting clinically sound prognostic studies in MEDLINE: an analytic survey. BMC Med. 2004 Jun 09 [3] Haynes RB, McKibbon KA, Wilczynski NL, Walter SD, Werre SR. Optimal search strategies for retrieving scientifically strong studies of treatment from Medline: analytical survey. BMJ. 2005 May 13 [4] Haynes RB, Wilczynski NC for the Hedges Team. Optimal search strategies for retrieving scientifically strong studies of diagnosis from MEDLINE: analytical survey. BMJ. 2004 May 1 [5] Angela A. Chang. 'Searching the Literature Using Medical Subject Headings versus Text Word with PubMed'. The LaryngoscopeVolume 116, 2006 [6] MARGARET H. COLETTI, MLS, HOWARD L. BLEICH,'Medical Subject Headings Used to Search the Biomedical Literature' ,JAMIA ,Jul/Aug ,2001 [7] Connie Schardt , Martha B Adams, Thomas Owens, Sheri Keitz and Paul Fontelo .Utilization of the PICO framework to improve searching PubMed for clinical questions,BMC,2007 [8] Florian Boudin,Improving Medical Information Retrieval with PICO Element Detection,Advances in Information Retrieval,2010 [9] Florian Boudin,Jian-Yun Nie,Martin Dawes .Clinical Information Retrieval using Document and PICO Structure,The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics ,2010 [10] Frakes, W.-B., and Ricardo, B.-Y., 1992, 'Information Retrieval data structures andalgorithms' Prentice Hall, pp.44-65. [11]Ricardo, B.-Y. and Berthier, R.-N., 1999, 'Modern information retrieval' New York,Addison-Wesley. [12]曾元顯,1997,「關鍵詞自動擷取技術之探討」,中國圖書館學會會訊,第一零六期,第26-29 頁 [13] Burgin, R., Dillon, M. 'Improving Disambiguation in FASIT,' Journal of American Society for Information Science, 43(2), 1992, 101-114. [14] Fagan, J. L. 'The Effectiveness of a Nonsyntactic Approach to Automatic Phrase Indexing for Document Retrieval,' Journal of American Society for Information Science, 40(2), 1989, 115-132. [15] Jones, L. P., Gassie, E. W., & Radhakrishnan, S. 'INDEX: The Statistical Basis for an Automatic Conceptual Phrase-indexing System,' Journal of American Society for Information Science, 41(2), 1990, 87-98. [16] Paijmans, H, 'Comparing the Document Representation of Two IR Systems: CLARIT and TOPIC,' Journal of American Society for Information Science, 44(7), 1993, 383-392. [17] Zimin Wu and Gwyneth Tseng, 'ACTS: An Automatic Chinese Text Segmentation System for Full Text Retrieval,' Journal of American Society for Information Science, 46(2), 1995, 83-96. [18]W. Frawley and G. Piatetsky-Shapiro and C. Matheus (Fall 1992). 'Knowledge Discovery in Databases: An Overview'. AI Magazine: pp. 213-228 [19]D. Hand, H. Mannila, P. Smyth (2001). 'Principles of Data Mining'. MIT Press, Cambridge, MA [20]張云濤,龔玲 .資料探勘原理與技術 [21]Kristin, R. N., and I. P. Matkovsky (1999), “Using Data Mining Techniques for Fraud Detection.”, SAS Institute Inc. and Federal Data Corporation. [22]Lavrac, N. (1999), “Selected techniques for data mining in medicine.”, Artificial Intelligence in Medicine, Vol. 16, p.3-23. [23]Lang, K., (1995). 'Newsweeder: Learning to Filter Netnews', Proceedings of the Machine Learning conference, Tahoe City, Calif, pp. 331-339. [24]Shardanand, U., & Maes, P. (1995). “Social information filtering: algorithms for automating ‘Word of Mouth,” In Proceedings of the Conference on Human Factors in Computing Systems-CHI’95. [25]Karypis, G. (2001). 'Evaluation of Item-Based Top-N Recommendation Algorithms,' Proceedings of the 10th International Conference on Information and Knowledge Management, pp. 247-254. [26]Balabanovic, M. & Shoham, Y. (1997). 'Fab: Content-based, Collaborative Recommendation, ' Communications of the ACM, Vol.40, No.1997,pp.66-72. [27]Andrew I. S., Alexandrin P. and Lyle H. U. (2002). “Methods and Metrics for Cold-start Recommend ations,” Appeared in Proceedings of the 25’th Annual International ACM SIGIR Conference on Research and Development in information Retrieval(SIGIR 2002), pp. 253-260. [28]O Bartunov ,Full-Text-Search in Postgresql ,2007 [29]Postgresql , http://www.postgresql.org/docs/9.0/static/textsearch.html [30]Salton, G. and McGill, M. J. 1983 Introduction to modern information retrieval. McGraw-Hill, ISBN 0-07-054484-0. [31]Salton, G., Fox, E. A. and Wu, H. 1983 Extended Boolean information retrieval. Commun. ACM 26, 1022–1036. [32]Salton, G. and Buckley, C. 1988 Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5): 513–523. [33]NLTK ,http://www.nltk.org/ [34]WordPress , http://wptw.org/ [35]Florian Boudin, Jian-Yun Nie, Joan C Bartlett, Roland Grad, Pierre Pluye and Martin Dawes .'Combining classifiers for robust PICO element detection' BMC , 2010 [36] Demner-Fushman D, Lin J: Answering clinical questions with knowledgebased and statistical techniques. Computational Linguistics 2007, 33(1):63-103. [37]Recommender Systems in E-Commerce J. Ben Schafer 1999 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40886 | - |
| dc.description.abstract | 醫學文獻數量隨著電腦與網路的普及呈現指數成長,在MEDLINE/PubMed上的文獻數量從1990年底的676萬筆,到2011年的現在已經累積2000萬筆以上的文獻。對於繁忙的醫療專業人員來說,要從這樣的龐大的資料庫中搜尋適合的文獻是一大負擔。
為了輔助使用者的搜尋工作,搜尋引擎的介入是必要的。然而,PubMed所提供預設的搜尋策略並沒有辦法有效回傳相關結果,經驗不足的使用者需要不斷的try and error才能找到符合的文章,且缺乏良好的排序機制。 本研究試著實作一系統,在搜尋的部份使用者除了可以透過關鍵字查詢外,還可以輸入句子甚至是文章來做搜尋,透過使用者與系統介面的互動,來達到快速優化查詢的效果,並以相關性來作為排序文章的機制。另外在系統中針對醫學文獻的摘要即時利用PICO的分類器作句子的分類,協助使用者在閱讀時更快的鎖定目標句。最後在實驗結果與討論的部分,本研究從PubMed中蒐集明確描述Patients、Intervention、Outcome相關的句子當成實驗的材料,實驗材料中有分成訓練資料與測試資料,訓練資料透過NLTK的貝氏分類器建構三組分類模型並且透過PICO分類演算法來對測試資料進行分類,最後透過10-fold cross validation評估PICO分類系統的效能。 | zh_TW |
| dc.description.abstract | The number of medical literature as the popularity of computer and network grow exponentially , the number of medical literature end of 1990 from 676 million in the MEDLINE / PubMed and in 2011 has now accumulated more than 20 million medical literature. For busy medical researcher and physician, from this huge database to search for literature is a major burden.
To complement the work of the user's search, the search engine intervention is necessary. However, PubMed provides the default search strategy is not an effective way to return relevant results, inexperienced users need to constantly try and error to find the related article, and the lack of good sorting mechanism. This study tried to implement a system, the user can according keywords to queries, also you can type a sentence and even articles do search through the user interaction with the system interface to find the related articles, and provides sort of mechanism by relevance to help user find the articles quickly. Also in the system for real-time classification of medical literature using PICO classifier for the classification of sentences to help users read faster when user got the target sentence. Finally, in the experimental results and discussion we collection the clearly described Patients, Intervention, Outcome-related sentences as the experimental materials, experimental materials are divided into training data and test data, the training data through the NLTK Bayesian classifier to construct three classification model and through the PICO classification algorithms to classify the test data by 10-fold cross validation for assessing the performance of PICO. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:05:08Z (GMT). No. of bitstreams: 1 ntu-100-R98548056-1.pdf: 3541321 bytes, checksum: 9cc803719986b5e704989fcac0e6f925 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
致謝 I 中文摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 3 1.3論文架構 3 第二章 相關研究 5 2.1醫學文獻的搜尋策略 5 2.1.1 搜尋過濾器(Search Filter) 5 2.1.2 醫學主題詞表(MeSH) 8 2.1.3 PICO 9 2.2資訊檢索(Information Retrieval) 11 2.2.1 資訊檢索的相關應用 12 2.2.2 全文檢索的技術 13 2.2.3 關鍵字擷取 14 2.3 資料探勘(Data Mining) 16 2.3.1 資料探勘定義 16 2.3.2 資料探勘過程 16 2.3.3 資料探勘的技術 19 2.4推薦系統(Recommender Systems) 20 2.4.1 推薦系統分類 20 第三章 材料與方法 24 3.1材料 24 3.1.1 PubMed 24 3.1.2 JCR(Journal Citation Reports) 27 3.2系統架構 27 3.3資料庫全文檢索系統 29 3.3.1 全文檢索流程圖 29 3.3.2 資料庫前處理 30 3.3.3 相關性排序 32 3.4文章推薦系統 34 3.4.1 特徵選取 34 3.4.2 排序方式 36 3.5 PICO分類 39 3.5.1 資料蒐集與資料前處理 40 3.5.2 利用貝氏分類器建構分類模型 42 3.5.3 PICO分類演算法 44 3.6文獻蒐集平台 46 3.6.1 Wordpress 46 3.6.2 自訂分類與搜尋平台的整合 46 第四章 實驗結果與討論 49 4.1系統流程與實驗材料 49 4.2評估方法 52 4.3實驗結果 53 第五章 結論與未來展望 60 5.1結論 60 5.2未來展望 60 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | PICO | zh_TW |
| dc.subject | 搜尋引擎 | zh_TW |
| dc.subject | 資訊檢索 | zh_TW |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | Data Mining | en |
| dc.subject | Search Engine | en |
| dc.subject | PICO | en |
| dc.subject | Information Retrieval | en |
| dc.title | 醫學文獻優化查詢 | zh_TW |
| dc.title | Medical Literatures Query-Tuning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔣以仁(I-Jen Chiang) | |
| dc.contributor.oralexamcommittee | 陳中明 | |
| dc.subject.keyword | 搜尋引擎,資訊檢索,資料探勘,PICO, | zh_TW |
| dc.subject.keyword | Search Engine,Information Retrieval,Data Mining,PICO, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
