Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40882
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高照村
dc.contributor.authorPei-Jhen Liaoen
dc.contributor.author廖珮真zh_TW
dc.date.accessioned2021-06-14T17:04:55Z-
dc.date.available2010-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation1. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996 Apr;3(2):213-9.
2. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med. 1993 Apr 22;328(16):1150-6.
3. Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther. 1996;70(2):101-35.
4. Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):472-84.
5. Hahn PF. Abolishment of Alimentary Lipemia Following Injection of Heparin. Science. 1943 Jul 2;98(2531):19-20.
6. Anfinsen CB, Boyle E, Brown RK. The Role of Heparin in Lipoprotein Metabolism. Science. 1952 May 30;115(2996):583-6.
7. Korn ED. Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem. 1955 Jul;215(1):1-14.
8. Krauss RM, Herbert PN, Levy RI, Fredrickson DS. Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ Res. 1973 Oct;33(4):403-11.
9. Havel RJ, Gordon RS, Jr. Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest. 1960 Dec;39:1777-90.
10. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS. Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res. 1973 May;14(3):286-95.
11. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med. 1978 Jun 8;298(23):1265-73.
12. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ. Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics. 1987 Oct;1(2):138-44.
13. Deeb SS, Peng RL. Structure of the human lipoprotein lipase gene. Biochemistry. 1989 May 16;28(10):4131-5.
14. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC. Lipoprotein lipase domain function. J Biol Chem. 1994 Apr 8;269(14):10319-23.
15. Staels B, Auwerx J. Perturbation of developmental gene expression in rat liver by fibric acid derivatives: lipoprotein lipase and alpha-fetoprotein as models. Development. 1992 Aug;115(4):1035-43.
16. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J. 1992 Oct 15;287 ( Pt 2):337-47.
17. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T. Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol. 1990 Apr;258(4 Pt 1):C673-81.
18. Bengtsson G, Olivecrona T. Interaction of lipoprotein lipase with heparin-Sepharose. Evaluation of conditions for affinity binding. Biochem J. 1977 Oct 1;167(1):109-19.
19. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989 Apr 20;320(16):1060-8.
20. Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta. 1996 May 20;1300(3):151-70.
21. Fielding PE FC. Dynamics of lipoprotein transport in the circulatory system. Biochemistry of lipids, lipoproteins and membranes. 1991:427-59.
22. Oliverona T BO. Lipoprotein lipase from milk: the model in lipoprotein lipase research. In Lipoprotein Lipase. 1987:15-58.
23. Kirchgessner TG, Svenson KL, Lusis AJ, Schotz MC. The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem. 1987 Jun 25;262(18):8463-6.
24. Wang CS, McConathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest. 1985 Feb;75(2):384-90.
25. Mead JR, Cryer A, Ramji DP. Lipoprotein lipase, a key role in atherosclerosis? FEBS Lett. 1999 Nov 26;462(1-2):1-6.
26. Mead JR, Ramji DP. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res. 2002 Aug 1;55(2):261-9.
27. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996 Apr;37(4):693-707.
28. Mamputu JC, Levesque L, Renier G. Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000 Oct;20(10):2212-9.
29. Renier G, Skamene E, DeSanctis JB, Radzioch D. Induction of tumor necrosis factor alpha gene expression by lipoprotein lipase. J Lipid Res. 1994 Feb;35(2):271-8.
30. Esenabhalu VE, Cerimagic M, Malli R, Osibow K, Levak-Frank S, Frieden M, Sattler W, Kostner GM, Zechner R, Graier WF. Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. Br J Pharmacol. 2002 Jan;135(1):143-54.
31. Lucas M, Iverius PH, Strickland DK, Mazzone T. Lipoprotein lipase reduces secretion of apolipoprotein E from macrophages. J Biol Chem. 1997 May 16;272(20):13000-5.
32. Fielding CJ, Shore VG, Fielding PE. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1493-8.
33. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984 Dec 1;25(12):1277-94.
34. Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol. 2001 Jun;12(3):297-304.
35. Cox DW, Breckenridge WC, Little JA. Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med. 1978 Dec 28;299(26):1421-4.
36. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468-71.
37. Duverger N, Tremp G, Caillaud JM, Emmanuel F, Castro G, Fruchart JC, Steinmetz A, Denefle P. Protection against atherogenesis in mice mediated by human apolipoprotein A-IV. Science. 1996 Aug 16;273(5277):966-8.
38. Bruns GA, Karathanasis SK, Breslow JL. Human apolipoprotein A-I--C-III gene complex is located on chromosome 11. Arteriosclerosis. 1984 Mar-Apr;4(2):97-102.
39. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 2001 Oct 5;294(5540):169-73.
40. Prieur X, Coste H, Rodriguez JC. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J Biol Chem. 2003 Jul 11;278(28):25468-80.
41. van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem. 2001 Nov 30;276(48):44512-20.
42. O'Brien PJ, Alborn WE, Sloan JH, Ulmer M, Boodhoo A, Knierman MD, Schultze AE, Konrad RJ. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem. 2005 Feb;51(2):351-9.
43. Ishihara M, Kujiraoka T, Iwasaki T, Nagano M, Takano M, Ishii J, Tsuji M, Ide H, Miller IP, Miller NE, Hattori H. A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration. J Lipid Res. 2005 Sep;46(9):2015-22.
44. Alborn WE, Johnson MG, Prince MJ, Konrad RJ. Definitive N-terminal protein sequence and further characterization of the novel apolipoprotein A5 in human serum. Clin Chem. 2006 Mar;52(3):514-7.
45. Weinberg RB, Cook VR, Beckstead JA, Martin DD, Gallagher JW, Shelness GS, Ryan RO. Structure and interfacial properties of human apolipoprotein A-V. J Biol Chem. 2003 Sep 5;278(36):34438-44.
46. Beckstead JA, Wong K, Gupta V, Wan CP, Cook VR, Weinberg RB, Weers PM, Ryan RO. The C terminus of apolipoprotein A-V modulates lipid-binding activity. J Biol Chem. 2007 May 25;282(21):15484-9.
47. Pennacchio LA, Rubin EM. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol. 2003 Apr 1;23(4):529-34.
48. Beckstead JA, Oda MN, Martin DD, Forte TM, Bielicki JK, Berger T, Luty R, Kay CM, Ryan RO. Structure-function studies of human apolipoprotein A-V: a regulator of plasma lipid homeostasis. Biochemistry. 2003 Aug 12;42(31):9416-23.
49. Sun G, Bi N, Li G, Zhu X, Zeng W, Wu G, Xue H, Chen B. Identification of lipid binding and lipoprotein lipase activation domains of human apoAV. Chem Phys Lipids. 2006 Sep;143(1-2):22-8.
50. Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet. 2002 Nov 15;11(24):3031-8.
51. Ribalta J, Figuera L, Fernandez-Ballart J, Vilella E, Castro Cabezas M, Masana L, Joven J. Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem. 2002 Sep;48(9):1597-600.
52. Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet. 2002 Nov 15;11(24):3039-46.
53. Endo K, Yanagi H, Araki J, Hirano C, Yamakawa-Kobayashi K, Tomura S. Association found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet. 2002 Dec;111(6):570-2.
54. Aouizerat BE, Kulkarni M, Heilbron D, Drown D, Raskin S, Pullinger CR, Malloy MJ, Kane JP. Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res. 2003 Jun;44(6):1167-73.
55. Talmud PJ, Palmen J, Putt W, Lins L, Humphries SE. Determination of the functionality of common APOA5 polymorphisms. J Biol Chem. 2005 Aug 5;280(31):28215-20.
56. Kao JT, Wen HC, Chien KL, Hsu HC, Lin SW. A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum Mol Genet. 2003 Oct 1;12(19):2533-9.
57. Priore Oliva C, Pisciotta L, Li Volti G, Sambataro MP, Cantafora A, Bellocchio A, Catapano A, Tarugi P, Bertolini S, Calandra S. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):411-7.
58. Marcais C, Verges B, Charriere S, Pruneta V, Merlin M, Billon S, Perrot L, Drai J, Sassolas A, Pennacchio LA, Fruchart-Najib J, Fruchart JC, Durlach V, Moulin P. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J Clin Invest. 2005 Oct;115(10):2862-9.
59. Schaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, Havekes LM, Groen AK, van Dijk KW. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem. 2004 Jul 2;279(27):27941-7.
60. Huang W, Bi N, Zhang X, Wang Y, Chen B, Liu G. Overexpression of apolipoprotein AV in the liver reduces plasma triglyceride and cholesterol but not HDL in ApoE deficient mice. Biochem Biophys Res Commun. 2006 Jul 21;346(1):14-8.
61. Schaap F VP, Rensen P, Van der Vliet H, Chamuleau R, Maeda N, Havekes L, Groen A, Willems van Dijk K. Apolipoprotein AV expression ameliorates type III hyperlipidemia in mouse models by stimulating lipoprotein lipase-mediated VLDL-triglyceride hydrolysis. circulation. 2003:108-257.
62. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun. 2004 Jun 25;319(2):397-404.
63. Grosskopf I, Baroukh N, Lee SJ, Kamari Y, Harats D, Rubin EM, Pennacchio LA, Cooper AD. Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol. 2005 Dec;25(12):2573-9.
64. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem. 2005 Jun 3;280(22):21553-60.
65. Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry. 2007 Mar 27;46(12):3896-904.
66. Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism. J Biol Chem. 2005 Jul 8;280(27):25383-7.
67. de Man FH dBF, van der Laarse A, Smelt AH, Havekes LM. Lipolysis of very low density lipoproteins by heparan sulfate proteoglycan-bound lipoprotein lipase. J Lipid Res. 1997.
68. Henneman P, Schaap FG, Havekes LM, Rensen PC, Frants RR, van Tol A, Hattori H, Smelt AH, van Dijk KW. Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA5 S19W polymorphism. Atherosclerosis. 2007 Jul;193(1):129-34.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40882-
dc.description.abstract心血管疾病是造成國人死亡常見的原因,而hypertriglyceridemia (HTG)為發生心血管疾病的獨立危險因子之一。三酸甘油脂是屬於脂質類分子,無法在血液中獨自運行,需要經由蛋白質攜帶,負責攜帶三酸甘油脂的蛋白質為脂蛋白,主要有chylomicron及VLDL。Chylomicron及VLDL在血液中運送至周邊組織後,經由血管壁上的lipoprotein lipase (LPL)分解成free fatty acid才能被周邊組織吸收利用。脂蛋白表面附著許多的脂蛋白元,不同的脂蛋白元對於這些脂蛋白攜帶的脂質代謝扮演不同的功能。大部分的脂蛋白元已經發現其對於脂質代謝的功能,而在2001年被發現的Apolipoprotein AV (APOAV)功能則尚不清楚。在2003年本實驗室發現一個single nucleotide polymorphism (SNP) ApoA5 c.553G>T,會使其轉譯出的第185個胺基酸從glycine變成cysteine,也發現這個SNP和造成hypertriglyceridemia有關係。
本論文的主要目的是以APOAV第185個amino acid的不同來探討APOAV對於調節TG的機制,我利用site directed mutagenesis製造三種不同的變異型 plasmid,其第185胺基酸位置分別可以轉譯出cysteine、arginine、aspartic acid。利用這幾個plasmid研究關於APOAV的功能。細胞株使用HEK293,分別挑出五株stable clone (SC),為SC-pCR3-uni (為建構其他表現APOAV質體的原始骨架,不含有APOA5 gene,當做實驗的control、SC-pCR3-a5WT、SC-pCR3-a5185C、SC-pCR3-a5185R、SC-pCR3-a5185D。這五株stable clones分別轉染LPL plasmid,以此研究不同APOAV是否能促進LPL的功能。研究結果發現,APOAV的確能促進LPL,但產生變異型脂蛋白的細胞株對於促進LPL的能力低於野生型脂蛋白。ELISA定量出APOAV185C的分泌量遠低於其他三株,推測可能為促進LPL能力不佳的原因。
除此之外,過去研究顯示,LPL經由一些肝外細胞分泌後在血液中運行,會結合上細胞表面的HSPG,而APOAV能促進HSPG bound LPL活性。實驗使用96孔盤,外加HSPG,使HSPG附著於孔盤內藉此模擬生理上HSPG在血管表皮細胞上,加入LPL使之結合上HSPG,最後外加APOAV-enriched VLDL,結果發現加入較高濃度的APOAV其促進HSPG bound LPL活性有較為顯著的差異。但實驗無法得到三次以上有意義的結果。未來若能以apoa5基因剔除小鼠為動物模式做更進一步的探討,對於脂蛋白元AV調節三酸甘油脂的機制將能給予更多的解答。
zh_TW
dc.description.abstractCardiovascular disease (CAD) is one of the major causes of mortality in Taiwan. Hypertriglyceridemia is an independent risk factor involved in CAD. Triglyceride (TG) is a kind of lipid and is associated with lipoprotein in the circulation. Different lipoproteins compose of different lipid. TG is the major composition of VLDL and chylomicron. When lipoproteins circulate to tissue, it would be hydrolyzed by lipoprotein lipase which is attached to vessel wall via heparan sulfate proteoglycan (HSPG) and converted to free fatty acid. Several researchers have discovered that different apolipoproteins may involve in this process. Recently, a novel apolipoprotein, Apolipoprotein AV, has been identified by gene comparison. TG level from human Apolipoprotein a5 transgenic mice and Apolipoprotein a5 knockout mice show that apolipoprotein AV (APOAV) plays a crucial role in triglyceride metabolism. In 2003, we have identified a novel single nucleotide polymorphism (SNP), APOA5 c.553G>T, resulting in the substitution of cysteine for glycine at residue 185. Subjects with this genetic variant have higher serum TG level. Thus, the aim of this study is to investigate the effect of different amino acid at this position on the metabolism of TG. Using site directed mutagenesis, we obtained APOAV185C, APOAV185D, APOAV185R mutant and established respective stable clones. We used HEK293 cell line and selected five stable clones separately, including SC-pCR3-A5WT, SC-pCR3-A5185C, SC-pCR3-A5185R, SC-pCR3-A5185D and SC-pCR3-uni which did not contain APOAV gene and was used as a negative control. Although APOAVWT and mutants could activate LPL activity, the extent of activation by APOA5185C, APOA5185R, APOA5185D were lower than that of wild type. According to ELISA data, the secretion of APOAV from SC-pCR3-A5185C was only 50% of that from SC-pCR3-A5WT. It is likely that reduced APOAV185C secretion resulted in lower LPL activation ability. In physical condition, when LPL released from parenchymal cells, it would circulate to the site of action and attach to vessel wall via HSPG. LPL was added to 96-well plate which had been coated with HSPG to mimic the physical condition, and APOAV enriched VLDL was used as substrate, APOAV-unenriched VLDL as control. In one independent triplicate data, we found that APOAVWT could activate HSPG bound LPL activity (p<0.05), other mutants could also activate LPL activity but there is no statistical significance. In the future, VLDL from apoa5 knockout mice should be useful to rule out the influence of endogenous APOAV, and obtain more significant data.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:04:55Z (GMT). No. of bitstreams: 1
ntu-97-R95424023-1.pdf: 966164 bytes, checksum: 3975d795cf84c05e0511abbcb7188f6d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents總目次
總目次.............................................................................................................................Ⅰ
圖目次.............................................................................................................................Ⅲ
表目次.............................................................................................................................Ⅳ
簡稱或縮寫對照表.........................................................................................................Ⅴ
摘要.................................................................................................................................Ⅶ
Abstract.....................................................................................…...................................Ⅷ
第一章 導論
第一節 前言…………………………………………………………………..…1
第二節 高三酸甘油脂血症……………………………….. …………...........…1
第三節 脂蛋白解脂酶……………………………………..……………………1
第四節 脂蛋白元…………………………………………..……………………3
第五節 脂蛋白元AV…………………………………………………................4
第六節 研究動機…………………………………………….. ………...………8
第二章 實驗材料與方法
第一節 儀器設備…………….............…………………………………………..9
第二節 試藥、試劑組與耗材...............................................................................9
第三節 實驗方法.................................................................................................12
第三章 實驗結果
第一節 變異型脂蛋白的選殖.....................................................................…16
第二節 大量表現APOAV的細胞株挑選......................................................16
第三節 極低密度脂蛋白的分離.....................................................................17
第四節 變異型脂蛋白元A5於轉染後培養液中表現量之時
效分析(time course)...............................................................…………17
第五節 野生型與變異型脂蛋白元AV對脂蛋白解脂酶活性
之影響.......................................................................……….................17
第六節 酵素連結免疫吸附定量法定量脂蛋白元AV濃度…………….....................................................................................18
第七節 96微滴孔盤內HSPG連結脂蛋白解脂酶活性分析…………................................................................. ………….......18
第八節 以酵素連結免疫吸附定量法確認一級抗體辨別變異型脂蛋白能力.........................................................................................................18
第四章 討論.................................................................................................................19
附圖.................................................................................................................................24
附表……………………………………………………………….................................38
附錄……………………………………………………………….................................41
附錄實驗流程…………………………………………………….................................42
參考文獻………………………………………………………….................................54
圖目次
圖1:定位點突變..................................................................................…………...........24
圖2:PCR結果...............................................................................................……..........25
圖3:MspІ切割確認...............................................................................................…….26
圖4:直接定序........................................................................................................…….27
圖5:large preparation..............................................................................................……28
圖6:定量pCR3-a5185R及pCR3-a5185D高表現量細胞株...............................…….29
圖7:變異型脂蛋白元A5於轉染後培養液中表現量之時效分析......................…….30
圖8:脂蛋白脂解酶細胞株探討野生型重組脂蛋白元AV對於脂蛋白解脂酶活性
之影響...................................................................................................................31
圖9:野生型與變異型重組脂蛋白元AV對脂蛋白解脂酶活性之影響......................32
圖10:ELISA定量各細胞株脂蛋白元AV......................................................................33
圖11:脂蛋白元AV specific activity................................................................................34
圖12:96微滴孔盤內HSPG連結脂蛋白解脂酶活性分析.........................................35
圖13:以酵素連結免疫吸附定量法確認一級抗體辨別變異型脂蛋白能力(medium)..........................................................................................................36
圖14:以酵素連結免疫吸附定量法確認一級抗體辨別變異型脂蛋白能力
(cell lysate).......................................................................................................37
表目次
表一:實驗過程中所需之寡核酸引子序列...............................................................…38
表二:人類全長脂蛋白元AV的基本特性分析.............................................................39
表三:人類成熟脂蛋白元AV的基本特性分析.............................................................40
dc.language.isozh-TW
dc.title以點突變作人類脂蛋白元A5功能之研究zh_TW
dc.titleFunctional Analysis of Mutant Apolipoprotein AVen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑華,江福田,張淑媛
dc.subject.keyword高三酸甘油脂血症,脂蛋白元A5,脂蛋白解脂&#37238,脂蛋白元A5c.553G&gt;T,zh_TW
dc.subject.keywordhypertriglyceridemia,apolipoprotein a5,lipoprotein lipase,apolipoprotein A5 c.553G &gt;T,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
943.52 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved