請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40881完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范光照(Kuang-Chao Fan) | |
| dc.contributor.author | Yi-Cheng Liu | en |
| dc.contributor.author | 劉一正 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:04:52Z | - |
| dc.date.available | 2013-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-27 | |
| dc.identifier.citation | [1] J. Kramar, J. Jun, W. Penzes, F. Scire, C. Teague, J. Villarrubia, E. Amatucci, D. Gilsinn, “THE MOLECULAR MEASURING MACHINE”, Proceedings of the 1998 International Conference on Mechatronic Technology, Nov. 30-Dec.2, Hsinchu, Taiwan,(ICMT’98), pp. 477-487, 1998.
[2] J. Kramar, E. Amatucci, G. Toward, “Nanometer Accuracy Measurements”, National Institute of Standards and Technology, Part of the SPIE Conference on Metrology, Inspection, and Process Control for Microlithography XIII, Santa Clara, California, March 1999. [3] K. C. Fan, S. H. Chang and T. T. Chung, “Development of a Micro-CMM for Nanometrology”, Keynote Paper, Proc. of the Korean Precision Engineering Symposium, May, 2001. [4] G. Jäger, E.Manske, et.al., “ Nanopositioning and measuring technique”, Proc. of the 7th International Symposium on Laser Metrology, Russia, 1997. [5] 朱志良,“奈米級三次元量測儀的研製”, 國立台灣大學機械工程研究所博士論文,2002。 [6] E. E. Ungar, D. H. Sturz and C. H. Amick, ”Vibration control deign of high technology facilities”, Sound and Vibration, July, pp20-27, 1990. [7] C. Gordon, “Generic criteria for vibration sensitive equipment”, Vibration Control in Microelectronics, Optics and Metrology, SPIE Proceedings Vol.1619, 1991. [8] A. B. Feeney, P. F. Brown, “Use of Solid Modeling in the Design of M3 Components”, Factory Automation Systems Division, National Institute of Standards and Technology, 1991. [9] http://www.nist.gov/ [10] http://pem.kaist.ac.kr/bupe/ [11] K. Takamasu, M. Fujiwara, H. Naoi and S. Ozono, “FRICTION DRIVE SYSTEM FOR NANO-CMM”, Proc. Mechatronics 2000, pp.21-23, Sep. 2000, Warsaw, Poland. [12] http://www.nano.pe.u-tokyo.ac.jp/ [13] http://www.ptb.de/ [14] S. P. Singh, H. S. Pruthi, and V. P. Agarwal, “Efficient modal control strategies for active control of vibrations”, Journal of Sound and Vibration, Vol. 262, pp.563–575. 2003. [15] J. Y. Yen, K. J. Lan, J. Kramar ”Active vibration isolation of a large stroke scanning probe microscope by using discrete sliding mode control”. Sens Actuator A-Phys Vol. 121, pp.243-250, 2005. [16] 孫彥碩,”應用於奈米設備之主動隔振系統開發實例”,機械工業雜誌,243,pp.190-201,2004。 [17] 孫彥碩、鍾裕亮、張乃加,”奈米機械設備隔振平台技術分析”,機械工業雜誌,255期pp.186-194。 [18] S. B. Choi, H. K. Lee and E. G. Chang, “Field test results of a semi-active ER suspension system associated with skyhook controller”, Mechatronics, Vol. 11, pp. 345-353, 2001. [19] G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, S. H. Yeo, “MR damper and its application for semi-active control of vehicle suspension system”, Mechatronics, Vol.12, pp. 963–973, 2002. [20] K. G. Ahn, H. J. Pahk, M. Y. Jung and D. W. Cho, “A Hybrid-Type Active Vibration Isolation System Using Neural Networks”, Journal of Sound and Vibration, Vol. 192, No. 4, pp. 793-805, 1996. [21] P. C. Chen, M. C. Shih, “Active Control Of A Pneumatic Vibration Isolator Using H∞ Controller”, The Eighth International Conference on Automation Technology Conference, 2005. (in Taipei) [22] T.Y. Chung, S.J. Moon, S.M. Jang, “Active control on the structural vibration under base excitations using a linear oscillatory actuator”, Int. J. of Applied Electromagnetics and Mechanics, Vol. 10, pp. 203–214, 1999. [23] Y. D. Chen, C. C. Fuh, and P. C. Tung, “Application of Voice Coil Motors in Active Dynamic Vibration Absorbers”, IEEE Transactions on Magnetics, Vol. 41, No. 3, pp. 1149 – 1154, March 2005. [24] 陳益德,”音圈馬達在主動式避震平台上之應用”,國立海洋大學機械與輪機工程學系碩士論文,2002。 [25] 劉雲輝、蔣安清、周志豪、黃宇中、陳朝榮,”運用音圈致動器於隔振平台之三自由度振動主動控制”,第13屆中華民國振動與噪音工程學術研討會,2005。 [26] 蔣安清,”被動式隔振系統自然頻率共振抑制之主動控制研究”,南台科技大學機械工程學系碩士論文,機械工程所,2005。 [27] L. Meirovitch, H. Baruh, “Optimal Control of Damped Flexible Gyroscopic Systems”, Journal of Guidance and Control, Vol. 4, No. 2 pp. 157-163, 1981. [28] S. K. Yalla, A. Kareem and J. C. Kantor, “Semi-active tuned liquid column dampers for vibration control of structures”, Engineering Structures, Vol. 23, pp. 1469 – 1479, 2001. [29] C. L. Zhang, D. Q. Mei, Z. C. Chen, “Active vibration isolation of a micro-manufacturing platform based on a neural network”, Journal of Materials Processing Technology, Vol. 129, pp. 634-639, 2002. [30] Y. H. Lin, C. L. Chu, “A New Design for Independent Modal Space Control of General Dynamic Systems,” Journal of Sound and Vibration, Vol. 180, pp. 351 – 361, 1995. [31] Singiresu S. Rao, “Mechanical Vibrations,”2nd edition (Addison-Wesley publishing company), 1990. [32] E. O. Doeblin, “Measurement system: application and design”, 4th edition. New York: McGraw-Hill, 1990. [33] T. Meydan, “ Recent trends in linear and angular accelerometers”, Sensors and Actuators, A59, pp. 43-50, 1997. [34] M. K. Lim , H. Du, C. Su and W. L. Jin, “A micromachined piezoresistive accelerometer with high sensitivity: design and modeling,”Microelectronic Engineering, Vol. 49, pp. 263-272, 1999. [35] P. A. Wlodkowski, K. Deng and M. Kahn, “The development of high-sensitivity, Low-noise accelerometers utilizing single crystal piezoelectric materials,”Sensors and Actuators, Vol. A 90, pp. 125-131, 2001. [36] A. Bertolini, N. Beverini, G. Cella, R. Desalvo, F. Fidecaro, M. Francesconi and D. Simonetti, “Geometric anti-spring vertical accelerometers for seismic monitoring,” Nuclear Instruments and Methods in Physics Research, Vol. A 518, pp.233-235, 2004. [37] J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer”, Sensors and Actuators, A68,pp. 350-355, 1998. [38] O. M. Abushagur, M. A. G. Abushagur, K. Narayanan, “Novel three-axes fiber bragg grating accelerometer”, Proceedings of SPIE - The International Society for Optical Engineering, v 5877, Optomechanics 2005, pp. 1-4, 2005. [39] S. J. Lee and D. W. Cho, “Development of a Micro-Opto-Mechanical Accelerometer based on Intensity Modulation”, Microsyst. Technol. Vol. 10, pp. 147-154, 2004. [40] A. Llobera, V. Seidemann, J. A. Plaza, V. J Cadarso. and S. Büttgenbach, “Integrated Polymer Optical Accelerometer”, IEEE Photonics Technology Letters 17, pp. 1262-1264, 2005. [41] A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso and S. Büttgenbach, “SU-8 Optical Accelerometers”, J. Microelectromech. Syst. Vol. 16, pp.111-121, 2007. [42] C. L. Chu and C. H. Lin, “Development of an Optical Accelerometer with a DVD Pick-up Head”, Meas. Sci. Technol. Vol.16, pp. 2495-2502, 2005.. [43] C. L. Chu, C. H. Lin and K. C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head”, Meas. Sci. Technol.vol. 18, pp. 265-274, 2007. [44] 林家豪,”光學式加速度計之研製”,南台科技大學機械工程所碩士論文,2005。 [45] http://www.tande.com.tw/index.htm [46] 饒達仁,”鑲嵌式熱電致冷器之設計與效能分析”中國機械工程學會第二十一屆全國學術研討會論文集。 [47] 秦志仁,”熱電冷凍機之系統設計與應用” 國立台灣大學機械工程研究所碩士論文,1994。 [48] 段昌倫,”熱電冷凍機控制器設計” 國立台灣大學機械工程研究所碩士論文,1993。 [49] 吳昌宏,”熱電致冷低溫顯微鏡改良與其應用於斑馬魚胚胎冷凍實驗” 國立台灣大學生物產業機電工程學研究所碩士論文,2005。 [50] http://unit.xjtu.edu.cn/epes/webteaching/refrigeration/zlff/rdzl/rdzlyljfx.htm [51] http://www.electronics-cooling.com [52] http://www.peltier-info.com [53] 黃秉鈞編著,系統識別,第256-263頁,民國九十五年二月。 [54] 葉裕源,”迴路熱管式溫控技術之研發” 國立台灣大學機械工程研究所碩士論文,2001。 [55] 廖永欽,” 恆濕恆溫箱控制器設計” 國立台灣大學機械工程研究所碩士論文,2001。 [56] 江銘偉,” 環控箱之新型恆溫控制硏究” 國立台灣大學機械工程研究所碩士論文,2006。 [57] 張宇,”高精度恆溫箱溫度控制理論研究與系統設計”,合肥工業大學碩士學位論文,2004。 [58] 李宜達, ”控制系統設計與模擬-使用MATLAB/DIMULINK”,全華科技圖書公司,1998。 [59] 張碩,”自動控制系統”,鼎茂圖書出版社,1991。 [60] C. C. Yu, “Autotuning of PID Controllers” 2nd Edition. [61] 俞克維, ” 控制系統分析與設計-使用MATLAB”,新文京開發出版社,2003。 [62] G. Neuer “Comparison of temperature measurement by noise thermometry and radiation thermometry”, G. Neuer Measurement Vol. 30, pp.211-221, 2001. [63] Manual on the Use of Thermocouples in Temperature Measurement, Fourth Edition, Revision of ASTM Special Publication 470B, Philadelphia, PA., 1993. [64] C. J. Yeager and S. S. Courts “A Review of Cryogenic Thermometry and CommonTemperature Sensors” IEEE SENSORS JOURNAL, Vol. 1, No. 4, Dec. 2001. [65] M. J. Walter, ”The effects of chromatic dispersion on temperature measurement in the laser-heated diamond anvil cell”, Physics of the Earth and Planetary Interiors 143–144, pp. 514-558, 2004. [66] 洪裕隆,” 三角積分調變器與CMOS溫度感測晶片之研製” 國立成功大學電機工程學系碩士論文,2004。 [67] 蔡明宏,” 紅外線輻射感測元之室溫補償方法” 國立交通大學光電工程研究所碩士論文,2000。 [68] http://www.lakeshore.com [69] http://www.picotech.com/applications/pt100.html [70] 實用的溫度量測指南 安捷倫應用手冊 290。 [71] 何憲龍,”微氣味蒸發與溫度感測器晶片之研發” 清華大學工程與系統科學系微機電組碩士論文,2002。 [72] Optical Pickup for DVD-Rom Drive, Model:SONY KHM-310AAA, Specifications. [73] 鄭克勇,半導體雷射及應用,光電科技資料叢書之二十四,1993。 [74] 蔡夢倫,”DVD用650 nm磷化鋁鎵銦雷射二極體的設計與分析”,國立彰化師範大學光電科技研究所碩士論文,2004。 [75] 朱朝居,光電讀寫頭之光學系統模擬與測試(上下),光電資訊,第9期,1991。 [76] D. G. Kocher, “Automated Foucault test for focus sensing”, Journal of Applied Optics, Vol. 22, No. 12, pp.1887-1892, 1983. [77] C. M. Harris and A. G. Pierso., “shock and vibration handbook”, 5th editon, McGraw-Hill, 2002. [78] 吳南陽,”音圈馬達簡介—設計、控制與應用(上、下)”,光電資訊,第6期,1989年6月。 [79] 鄭昇芳,”音圈馬達設計(上)”,光電資訊,第 7 期,1990 年 9 月。 [80] 鄭昇芳,”音圈馬達設計(下)”,光電資訊,第 8 期,1990 年 12 月。 [81] 林育川,”音圈(Voice Coil)馬達簡介”,機械工業雜誌,1999 年 5 月。 [82] 馮榮豐,”音圈馬達之原理與應用”,Morot Express,第28期,2003,3月。 [83] 陳仁智,”音圈馬達 Voice Coil Motor簡介”,Morot Express,第41期,2003,8月。 [84] 張昫揚,” 長行程奈米定位系統研究”,國立中興大學機械工程學系碩士論文,2002。 [85] 王俊超,”音圈馬達在精密定位平台上的應用與研究”,國立高雄第一科技大學工程科技研究所博士論文,2005。 [86] http://www.baldor.com/ [87] http://www.harmonytaiwan.com.tw/ [88] B. D. O. Anderson and J. B. Moore, “Linear Optimal Control”, Englewood Cliffs, New Jersey: Prentice-Hall, 1971. [89] 吳秉松,”固定於彈性基底之撓性樑的主動振動控制與實驗”,南台科技大學機械工程所碩士論文,2004。 [90] 王祥名,”高穩定度恆溫環境之研製”, 國立台灣大學機械工程研究所碩士論文,2007。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40881 | - |
| dc.description.abstract | 有鑑於微奈米技術的發展,無論是量測或加工過程都需要一個穩定的環境,來提高精度與良率,環境之控制包含了溫度與振動控制這兩個重要的關鍵。因此,本研究研製一套小型之恆溫、抗震的環境箱,提供微奈米量測或加工之用。
本研究成功的研製出一分離式小型環境箱,搭配半導體製冷晶片作為製冷元件,能夠有效降低製冷元件所造成之振動,也能有效的控制溫度。主動式振動隔振系統,包含了自行研發之光學式加速度計與VCM致動器。利用市售之DVD光學讀取頭作為感測元件,搭配感震質量結構,完成光學式加速度計;利用市售喇叭單體改制成所需之VCM致動器,以並聯方式將彈簧元件與VCM致動器結合成隔振致動器,整合光學式加速度計與隔振致動器,研製出主動式振動隔振模組。本研究所提出恆溫、抗震之小型環境箱皆自行開發,不僅能有效降低成本,也能提供微奈米研究領域之使用。 | zh_TW |
| dc.description.abstract | With the progress of Hi-Tech industry, the products have already reached the level of micro/nano-meter. During the processing or measuring course of micro/nanotechnology, we must consider the environmental effect that have a fundamental influence on the temperature and vibration control. The aim of this thesis is to develop a mini-environment chamber with high precision active vibration isolation and constant temperature control.
The environment chamber is designed as the separation type that can separate the operational vibration from the cooling chamber. The temperature of the chamber is controlled by the thermoelectric cooling units. The temperature control method employs the PI control. This design can not only reduce the vibration from the cooling elements but also obtain the good constant temperature control of chamber. The active vibration isolation system consists of the active vibration isolation unit, spring and platform. The main components of the active vibration isolation unit are the self-developed optical accelerometer, and VCM actuator. In this system, the commercial DVD pickup head is used as the sensor which combines the special designed seismic structure to form an optical accelerometer. The voice coil motor (VCM) is taken from the loudspeaker as the actuator that paralleled with the spring to form an anti-vibration actuator. The optical accelerometer and anti-vibration actuator are integrated into an active vibration isolation unit. Moreover, the vibration control algorithm employs the optimal independent modal space control (Optimal IMSC) to obtain optimal feedback force command. The mini environment chamber with the high precision active vibration isolation and constant temperature control is developed in this work. This innovation not only reduces the cost but also benefits further researches in the field of micr/nano-meter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:04:52Z (GMT). No. of bitstreams: 1 ntu-97-D92522006-1.pdf: 2615736 bytes, checksum: a2b55229b9b66f2649055829011e0e91 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-2-1溫度控制箱研究之相關文獻 3 1-2-2 振動控制之相關文獻 8 1-2-3振動感測器之相關文獻 11 1-3 研究目的與內容概要 14 第二章 分離式恆溫環境箱之研製 16 2-1製冷晶片之原理與驅動 16 2-1-1熱電致冷晶片簡介 16 2-1-2西伯克效應 18 2-1-3湯姆遜效應 18 2-1-4帕爾貼效應 18 2-2 分離式恆溫環境箱之機械結構設計 20 2-3 恆溫環境箱系統數學模型之建立 22 2-3-1恆溫環境箱動態系統識別 22 2-3-2系統識別實驗 25 2-3-3 PID控制及參數調整 28 2-4恆溫環境腔之實驗架設與量測結果 32 2-4-1 實驗架設 32 2-4-2 量測結果 33 第三章 光學式加速度計之研製 48 3-1 光學讀取頭之介紹與感測原理 48 3-1-1光學讀取頭內部元件之簡介 50 3-1-2光學讀取頭之光學原理 57 3-2 加速度計之基礎原理 64 3-3 加速度計之設計、分析與製作 69 3-3-1 懸臂樑形式之感震結構的設計 70 3-3-2 音圈馬達形式之感震結構的設計 73 3-4 光學式加速度計之實驗架設與量測結果 76 3-4-1 實驗架設 77 3-4-2 實驗結果 78 第四章 主動式振動隔振系統之研製 85 4-1音圈馬達的簡介與原理 85 4-1-1音圈馬達之簡介 85 4-1-2音圈馬達之作動原理及相關參數 86 4-1-3 音圈馬達之磁路形式 94 4-1-4 音圈馬達之驅動電路設計 98 4-2 主動式振動隔振系統之設計與製作 99 4-2-1 主動式隔振模組之研製 100 4-2-2 主動式振動隔振系統之相關參數 104 4-3 最佳化獨立模態控制法 106 4-3-1 運動方程式 106 4-3-2 狀態方程式 107 4-3-3 獨立模態控制 108 4-3-4 最佳化控制 110 4-4 實驗結果 112 4-4-1 實驗架設 112 4-4-1 音圈致動器之量測 113 4-4-2 數值模擬之結果 114 4-4-3 系統之性能測試 117 第五章 結論與未來展望 121 5-1 結論 121 5-2 未來展望 123 參考文獻 125 論文著作 133 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最佳化獨立模態控制法 | zh_TW |
| dc.subject | 分離式小型環境箱 | zh_TW |
| dc.subject | 半導體製冷晶片 | zh_TW |
| dc.subject | 主動式振動隔振系統 | zh_TW |
| dc.subject | DVD光學讀取頭 | zh_TW |
| dc.subject | 音圈馬達 | zh_TW |
| dc.subject | voice coil motor (VCM) | en |
| dc.subject | optimal independent modal space control | en |
| dc.subject | separation type mini-environment chamber | en |
| dc.subject | thermoelectric cooling chip | en |
| dc.subject | active vibration isolation system | en |
| dc.subject | DVD pickup head | en |
| dc.title | 高精度主動式抗震及恆溫控制之小型環境箱研製 | zh_TW |
| dc.title | Development of a Mini-Environment Chamber with High Precision Active Vibration Isolation and Constant Temperature Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 廖運炫(Yunn-Shiuan Liao),鍾添東(Tien-Tung Chung),修芳仲(Fang-Jung Shiou),朱志良(Chih-Liang Chu) | |
| dc.subject.keyword | 分離式小型環境箱,半導體製冷晶片,主動式振動隔振系統,DVD光學讀取頭,音圈馬達,最佳化獨立模態控制法, | zh_TW |
| dc.subject.keyword | separation type mini-environment chamber,thermoelectric cooling chip,active vibration isolation system,DVD pickup head,voice coil motor (VCM),optimal independent modal space control, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
