Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧述諄(Shu-Chun)
dc.contributor.authorYi-Hsuan Linen
dc.contributor.author林伊旋zh_TW
dc.date.accessioned2021-06-14T17:04:38Z-
dc.date.available2013-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-28
dc.identifier.citationAbraham, R. T. (2004) PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. DNA Repair (Amst). 3, 883-887
Artandi, S. E. DePinho, R. A. (2000) Mice without telomerase: what can they teach us about human cancer? Nat Med. 6, 852-855
Ben-Porath, I., and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13
Bertuch, A. A., and Lundblad, V. (2004) EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166, 1651-1659
Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A., and Reddel, R. R. (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271-1274
Buchhop, S., Gibson, M. K., Wang, X. W., Wagner, P., Stürzbecher, H. W., Harris, C. C. (1997) Interaction of p53 with the human Rad51 protein. Nucleic. Acids. Res. 25, 3868-3874
Chan, C. S., and Tye, B. K. (1983) Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563-573
Chin, L., Artandi, S.E., Shen, Q., Tam, A., Lee, S.L., Gottlieb, G. J., Greider, C.W., and DePinho, R. A. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527-538
Cohen, H., and Sinclair, D. A.( 2001) Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc. Natl. Acad. Sci. U. S. A. 98, 3174-3179
de Lange, T. (2002) Protection of mammalian telomeres. Oncogene. 21, 532-40
Van Steensel, B., and De Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385, 740-743
Dunham, M. A., Neumann, A. A., Fasching, C. L., and Reddel R. R. (2000) Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447-450
Enomoto, S., Glowczewski, L., and Berman, J. (2002) MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol. Biol. Cell. 13, 2626-2638
Evans SK, and Lundblad V. (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286, 117-120
Garvik, B., Carson, M., and Hartwell, L.(1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128-38
Gorbunova, V., Seluanov, A., Mao, Z., Hine, C. (2007) Changes in DNA repair during aging. Nucleic. Acids. Res. 35, 7466-7474
Hayflick, L. (1974) The longevity of cultured human cells. J. Am. Geriatr. Soc. 22, 1-12
Goytisolo, F. A., Samper, E., Martín-Caballero, J., Finnon, P., Herrera, E., Flores, J. M., Bouffler, S. D., and Blasco, M. A. (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J. Exp. Med. 192, 1625-1636
Grandin, N., Damon, C., and Charbonneau, M. (2001) Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. EMBO J. 20, 6127-6139
Grandin N, Reed SI, Charbonneau M. (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512-527.
Greider, C. W., and Blackburn, E. H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity.
Cell 24, 887-898
Haber, J.E. (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat. Res. 451, 53-69
Harley, C. B., Futcher A. B., Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460
Hastie, N. D., Dempster, M., Dunlop, M.G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866-868
Hemann, M. T., Rudolph, K. L., Strong, M. A., DePinho, R. A., Chin, L., and Greider, C.W. (2001) Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol. Bio.l Cell 12, 2023-2030
Hughes, T. R., Weilbaecher, R. G., Walterscheid, M., and Lundblad, V. (2000) Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc. Natl. Acad. Sci. U. S. A. 97, 6457-6462
IJpma, A. S., and Greider, C. W. (2003) Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol. Biol. Cell. 14, 987-1001
Johnson, F. B., Marciniak, R. A., McVey, M., Stewart, S. A., Hahn, W. C., and Guarente, L. (2001) The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 20, 905-913
Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., and de Lange, T. (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321-1325
Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific Association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015

Krogh, B. O., and Symington, L. S. (2004) Recombination proteins in yeast. Annu. Rev. Genet. 38, 233-271
Lendvay, T. S., Morris, D. K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412
Lin, J. J., and Zakian, V. A. (1996) The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. U. S. A. 93, 13760-13765
Liti, G., and Louis, E. J. (2003) NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell. 11, 1373-1378
Loayza, D., and De Lange, T. (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013-1018
Lundblad, V., and Blackburn, E. H. (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347-360
Lundblad, V., and Szostak, J. W. (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643
Marcand, S., Gilson E., and Shore, D. (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986-990
Marciniak, R. A., Cavazos, D., Montellano, R., Chen, Q., Guarente, L., Johnson, F. B. (2005) A novel telomere structure in a human alternative lengthening of telomeres cell line. Cancer Res. 65, 2730-2737
McEachern, M. J., Krauskopf, A., and Blackburn, E. H. (2000) Telomeres and their control. Annu. Rev. Genet. 34, 331-358
Morrison, A., Bell, J. B., Kunkel, T. A., and Sugino, A. Eukaryotic DNA polymerase amino acid sequence required for 3'----5' exonuclease activity. (1991) Pro.c Natl. Acad. Sci. U. S. A. 88, 9473-9477.
Nakamura, T. M., Morin, G.. B., and Chapman, K. B., Weinrich, S. L., Andrews, W. H., Lingner, J., and Harley, C. B., Cech, T. R. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955-959
Nautiyal, S., DeRisi, J. L., and Blackburn, E. H. (2002) The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 99, 9316-9321
Niida, H., Shinkai, Y., Hande, M. P., Matsumoto, T., Takehara, S., Tachibana, M., Oshimura, M., Lansdorp, P. M., and Furuichi, Y. (2000) Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol. Cell. Biol. 20, 4115-4127
Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V. (1996) Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252
Nugent, C. I., and Lundblad, V. (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073-1085
Pennock, E., Buckley, K., and Lundblad, V. (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387-396
Pike, B. L., and Heierhorst, J. (2007) Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol. Cell. Biol. 27, 6532-6545
Qi, H., and Zakian, V. A. (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev. 14, 1777-1788
Qi, L., Strong, M. A., Karim, B. O., Armanios, M., Huso, D. L., and Greider, C. W. (2003) Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res. 63, 8188-8196
Reddel, R. R., Bryan, T. M., Colgin, L. M., Perrem, K. T., and Yeager, T. R. (2001) Alternative lengthening of telomeres in human cells. Radiat. Res. 155, 194-200
Sandell, L. L., and Zakian, V. A. (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729-739
Shay, J. W., Zou, Y., Hiyama, E., and Wright, W. E. (2001) Telomerase and cancer. Hum. Mol. Genet. 10, 677-685
Singer, M. S., Gottschling, D. E. (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409
Teixeira, M. T., Arneric, M., Sperisen, P., and Lingner, J. (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323-335
Teng, S. C., Chang, J., McCowan, B., and Zakian, V. A. (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell. 6, 947-952
Teng, S. C, Epstein, C., Tsai, Y. L., Cheng, H. W., Chen, H. L., and Lin, J. J. (2002) Induction of global stress response in Saccharomyces cerevisiae cells lacking telomerase. Biochem. Biophys. Res. Commun. 291, 714-721
Teng, S. C., and Zakian V. A. (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083-9803
Tsai, Y. L., Tseng, S. F., Chang, S. H., Lin, C. C., Teng, S. C.(2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol. Cel.l Biol. 22, 5679-5687
van Steensel, B., Smogorzewska, A., and de Lange, T. (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401-413
Weilbaecher, R. G., and Lundblad, V. (1999) Assembly and regulation of telomerase.
Curr. Opin. Chem. Biol. 3, 573-577
Wong, K.K., Maser, R. S,, Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., Alt, F. W., and DePinho, R. A. (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643-648
Wotton, D., and Shore, D. (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748-760
Wu, G., Lee, W. H., and Chen, P. L. (2000) NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J. Biol. Chem. 275, 30618-30622
Yeager, T. R., Neumann, A. A., Englezou, A., Huschtscha, L. I., Noble, J.R., and Reddel, R. R. (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175-4179
Zakian, V. A. (1995) Telomeres: Beginning to understand the end. Science 270, 1601-1607
Zierhut, C., and Diffley, J. F. (2008) Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875-1885
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40876-
dc.description.abstract端粒(telomere)的存在能夠維持染色體的穩定性,而端粒的複製則仰賴端粒酵素的活性。缺乏端粒酵素活性的哺乳類癌細胞或酵母菌細胞可藉由ALT (Alternative Lengthening of Telomeres)的重組方式來維持端粒長度。本研究發現由缺乏端粒酵素的酵母菌細胞衍生而來的type I 存活者對於DNA的傷害有高度敏感性。藉由比較野生型和typeI存活者之突變率的實驗,我們認為此現象並不是由於基因的改變而發生。另一方面,利用端粒PCR及TRF (Telomere Restriction Fragment)分析法來追蹤缺乏端粒酵素的酵母菌從孢子形成到存活者出現的過程,我們發現端粒的長度和存活者的敏感度有密切的關係。此外本實驗也發現type I 對於雙股DNA斷裂的敏感性必須仰賴MEC1基因的存在,顯示此現象可能來自於檢查點持續地被啟動及其所造成的延滯的細胞週期。先前的研究指出在缺乏端粒酵素的酵母菌中,縮短且失去正常功能的端粒會引發相似於DNA損傷的反應。為了進一步釐清此現象是否因為縮短的端粒將細胞中的修復蛋白質凝聚至染色體末端而造成染色體其他位置的斷裂無法有效被修復,我們利用染色質免疫沉澱法來觀察同源性重組機制中的Rad51蛋白質在野生型和type I存活者中與單一DSB (double-strand break)結合的能力。結果顯示此能力在type I存活者相較於野生型,確實有下降的現象。zh_TW
dc.description.abstractTelomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomereas. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative (ALT) recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-minus cells were hypersensitive to DNA-damaging agents. Tests on mutation rates showed no difference between type I survivors and WT cells, indicating that no specific genetic alterations might be responsible for the sensitive phenotype. On the other hand, telomere PCR and spot assays which tracked the sensitivity of telomerase-minus cells from spore to survivors suggested a correlation between telomere length and bleomycin sensitivity. We further discovered that this sensitivity is MEC1 dependent and probably results from the persistent checkpoint activation and prolonged cell cycle arrest. Previous studies have reported that short dysfunctional telomeres can induce a DNA damage response in S. cerevisiae in the absence of telomerase. Our analyses of the HR protein (Rad51p) binding efficiency at DSB sites by quantitative chromatin IP suggest that the sensitive phenotype might correlate with less efficient recruitment of repair proteins to the bona-fide DSB induced by exogenoues DNA-damaging agents when eroded telomeres give signal of break sites as well.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:04:38Z (GMT). No. of bitstreams: 1
ntu-97-R95445102-1.pdf: 5826519 bytes, checksum: d6f1f4badd48eb9da6029005ace797a4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審書………………………………………………….….......i
致謝………………………………………………………………………ii
中文摘要………………………………………………………………...iii
Abstract…………………………………………………………………iv
Abbreviations……………………………………………………………v
Table of contents………………………………………………………..vi
1. Introduction…………………………………………………………..1
2. Aims………………………………………………...………………...12
3. Materials and Methods……………………………………………..13
4. Results………………………………………………………………..23
5. Discussion……………………………………………………………35
6. Figures……………………………………………………………….39
7. Tables………………………………………………………………52
Reference……………………………………………………………….54
Appendix………………………………………………………………..60
dc.language.isoen
dc.title縮短端粒的酵母菌修復雙股DNA斷裂之缺失zh_TW
dc.titleInsufficiency of double-strand break repair in cells with short telomeresen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李財坤(Tsai-Kun Li),林敬哲(Jing-Jer Lin)
dc.subject.keyword端粒,雙股DNA斷裂,檢查點,zh_TW
dc.subject.keywordtelomere,double-strand break,checkpoint,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved