請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40876
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧述諄(Shu-Chun) | |
dc.contributor.author | Yi-Hsuan Lin | en |
dc.contributor.author | 林伊旋 | zh_TW |
dc.date.accessioned | 2021-06-14T17:04:38Z | - |
dc.date.available | 2013-08-08 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | Abraham, R. T. (2004) PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. DNA Repair (Amst). 3, 883-887
Artandi, S. E. DePinho, R. A. (2000) Mice without telomerase: what can they teach us about human cancer? Nat Med. 6, 852-855 Ben-Porath, I., and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13 Bertuch, A. A., and Lundblad, V. (2004) EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166, 1651-1659 Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A., and Reddel, R. R. (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271-1274 Buchhop, S., Gibson, M. K., Wang, X. W., Wagner, P., Stürzbecher, H. W., Harris, C. C. (1997) Interaction of p53 with the human Rad51 protein. Nucleic. Acids. Res. 25, 3868-3874 Chan, C. S., and Tye, B. K. (1983) Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563-573 Chin, L., Artandi, S.E., Shen, Q., Tam, A., Lee, S.L., Gottlieb, G. J., Greider, C.W., and DePinho, R. A. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527-538 Cohen, H., and Sinclair, D. A.( 2001) Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc. Natl. Acad. Sci. U. S. A. 98, 3174-3179 de Lange, T. (2002) Protection of mammalian telomeres. Oncogene. 21, 532-40 Van Steensel, B., and De Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385, 740-743 Dunham, M. A., Neumann, A. A., Fasching, C. L., and Reddel R. R. (2000) Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447-450 Enomoto, S., Glowczewski, L., and Berman, J. (2002) MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol. Biol. Cell. 13, 2626-2638 Evans SK, and Lundblad V. (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286, 117-120 Garvik, B., Carson, M., and Hartwell, L.(1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128-38 Gorbunova, V., Seluanov, A., Mao, Z., Hine, C. (2007) Changes in DNA repair during aging. Nucleic. Acids. Res. 35, 7466-7474 Hayflick, L. (1974) The longevity of cultured human cells. J. Am. Geriatr. Soc. 22, 1-12 Goytisolo, F. A., Samper, E., Martín-Caballero, J., Finnon, P., Herrera, E., Flores, J. M., Bouffler, S. D., and Blasco, M. A. (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J. Exp. Med. 192, 1625-1636 Grandin, N., Damon, C., and Charbonneau, M. (2001) Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. EMBO J. 20, 6127-6139 Grandin N, Reed SI, Charbonneau M. (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512-527. Greider, C. W., and Blackburn, E. H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 24, 887-898 Haber, J.E. (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat. Res. 451, 53-69 Harley, C. B., Futcher A. B., Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460 Hastie, N. D., Dempster, M., Dunlop, M.G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866-868 Hemann, M. T., Rudolph, K. L., Strong, M. A., DePinho, R. A., Chin, L., and Greider, C.W. (2001) Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol. Bio.l Cell 12, 2023-2030 Hughes, T. R., Weilbaecher, R. G., Walterscheid, M., and Lundblad, V. (2000) Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc. Natl. Acad. Sci. U. S. A. 97, 6457-6462 IJpma, A. S., and Greider, C. W. (2003) Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol. Biol. Cell. 14, 987-1001 Johnson, F. B., Marciniak, R. A., McVey, M., Stewart, S. A., Hahn, W. C., and Guarente, L. (2001) The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 20, 905-913 Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., and de Lange, T. (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321-1325 Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific Association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015 Krogh, B. O., and Symington, L. S. (2004) Recombination proteins in yeast. Annu. Rev. Genet. 38, 233-271 Lendvay, T. S., Morris, D. K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412 Lin, J. J., and Zakian, V. A. (1996) The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. U. S. A. 93, 13760-13765 Liti, G., and Louis, E. J. (2003) NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell. 11, 1373-1378 Loayza, D., and De Lange, T. (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013-1018 Lundblad, V., and Blackburn, E. H. (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347-360 Lundblad, V., and Szostak, J. W. (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643 Marcand, S., Gilson E., and Shore, D. (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986-990 Marciniak, R. A., Cavazos, D., Montellano, R., Chen, Q., Guarente, L., Johnson, F. B. (2005) A novel telomere structure in a human alternative lengthening of telomeres cell line. Cancer Res. 65, 2730-2737 McEachern, M. J., Krauskopf, A., and Blackburn, E. H. (2000) Telomeres and their control. Annu. Rev. Genet. 34, 331-358 Morrison, A., Bell, J. B., Kunkel, T. A., and Sugino, A. Eukaryotic DNA polymerase amino acid sequence required for 3'----5' exonuclease activity. (1991) Pro.c Natl. Acad. Sci. U. S. A. 88, 9473-9477. Nakamura, T. M., Morin, G.. B., and Chapman, K. B., Weinrich, S. L., Andrews, W. H., Lingner, J., and Harley, C. B., Cech, T. R. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955-959 Nautiyal, S., DeRisi, J. L., and Blackburn, E. H. (2002) The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 99, 9316-9321 Niida, H., Shinkai, Y., Hande, M. P., Matsumoto, T., Takehara, S., Tachibana, M., Oshimura, M., Lansdorp, P. M., and Furuichi, Y. (2000) Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol. Cell. Biol. 20, 4115-4127 Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V. (1996) Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252 Nugent, C. I., and Lundblad, V. (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073-1085 Pennock, E., Buckley, K., and Lundblad, V. (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387-396 Pike, B. L., and Heierhorst, J. (2007) Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol. Cell. Biol. 27, 6532-6545 Qi, H., and Zakian, V. A. (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev. 14, 1777-1788 Qi, L., Strong, M. A., Karim, B. O., Armanios, M., Huso, D. L., and Greider, C. W. (2003) Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res. 63, 8188-8196 Reddel, R. R., Bryan, T. M., Colgin, L. M., Perrem, K. T., and Yeager, T. R. (2001) Alternative lengthening of telomeres in human cells. Radiat. Res. 155, 194-200 Sandell, L. L., and Zakian, V. A. (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729-739 Shay, J. W., Zou, Y., Hiyama, E., and Wright, W. E. (2001) Telomerase and cancer. Hum. Mol. Genet. 10, 677-685 Singer, M. S., Gottschling, D. E. (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409 Teixeira, M. T., Arneric, M., Sperisen, P., and Lingner, J. (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323-335 Teng, S. C., Chang, J., McCowan, B., and Zakian, V. A. (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell. 6, 947-952 Teng, S. C, Epstein, C., Tsai, Y. L., Cheng, H. W., Chen, H. L., and Lin, J. J. (2002) Induction of global stress response in Saccharomyces cerevisiae cells lacking telomerase. Biochem. Biophys. Res. Commun. 291, 714-721 Teng, S. C., and Zakian V. A. (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083-9803 Tsai, Y. L., Tseng, S. F., Chang, S. H., Lin, C. C., Teng, S. C.(2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol. Cel.l Biol. 22, 5679-5687 van Steensel, B., Smogorzewska, A., and de Lange, T. (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401-413 Weilbaecher, R. G., and Lundblad, V. (1999) Assembly and regulation of telomerase. Curr. Opin. Chem. Biol. 3, 573-577 Wong, K.K., Maser, R. S,, Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., Alt, F. W., and DePinho, R. A. (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643-648 Wotton, D., and Shore, D. (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748-760 Wu, G., Lee, W. H., and Chen, P. L. (2000) NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J. Biol. Chem. 275, 30618-30622 Yeager, T. R., Neumann, A. A., Englezou, A., Huschtscha, L. I., Noble, J.R., and Reddel, R. R. (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175-4179 Zakian, V. A. (1995) Telomeres: Beginning to understand the end. Science 270, 1601-1607 Zierhut, C., and Diffley, J. F. (2008) Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875-1885 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40876 | - |
dc.description.abstract | 端粒(telomere)的存在能夠維持染色體的穩定性,而端粒的複製則仰賴端粒酵素的活性。缺乏端粒酵素活性的哺乳類癌細胞或酵母菌細胞可藉由ALT (Alternative Lengthening of Telomeres)的重組方式來維持端粒長度。本研究發現由缺乏端粒酵素的酵母菌細胞衍生而來的type I 存活者對於DNA的傷害有高度敏感性。藉由比較野生型和typeI存活者之突變率的實驗,我們認為此現象並不是由於基因的改變而發生。另一方面,利用端粒PCR及TRF (Telomere Restriction Fragment)分析法來追蹤缺乏端粒酵素的酵母菌從孢子形成到存活者出現的過程,我們發現端粒的長度和存活者的敏感度有密切的關係。此外本實驗也發現type I 對於雙股DNA斷裂的敏感性必須仰賴MEC1基因的存在,顯示此現象可能來自於檢查點持續地被啟動及其所造成的延滯的細胞週期。先前的研究指出在缺乏端粒酵素的酵母菌中,縮短且失去正常功能的端粒會引發相似於DNA損傷的反應。為了進一步釐清此現象是否因為縮短的端粒將細胞中的修復蛋白質凝聚至染色體末端而造成染色體其他位置的斷裂無法有效被修復,我們利用染色質免疫沉澱法來觀察同源性重組機制中的Rad51蛋白質在野生型和type I存活者中與單一DSB (double-strand break)結合的能力。結果顯示此能力在type I存活者相較於野生型,確實有下降的現象。 | zh_TW |
dc.description.abstract | Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomereas. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative (ALT) recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-minus cells were hypersensitive to DNA-damaging agents. Tests on mutation rates showed no difference between type I survivors and WT cells, indicating that no specific genetic alterations might be responsible for the sensitive phenotype. On the other hand, telomere PCR and spot assays which tracked the sensitivity of telomerase-minus cells from spore to survivors suggested a correlation between telomere length and bleomycin sensitivity. We further discovered that this sensitivity is MEC1 dependent and probably results from the persistent checkpoint activation and prolonged cell cycle arrest. Previous studies have reported that short dysfunctional telomeres can induce a DNA damage response in S. cerevisiae in the absence of telomerase. Our analyses of the HR protein (Rad51p) binding efficiency at DSB sites by quantitative chromatin IP suggest that the sensitive phenotype might correlate with less efficient recruitment of repair proteins to the bona-fide DSB induced by exogenoues DNA-damaging agents when eroded telomeres give signal of break sites as well. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:04:38Z (GMT). No. of bitstreams: 1 ntu-97-R95445102-1.pdf: 5826519 bytes, checksum: d6f1f4badd48eb9da6029005ace797a4 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審書………………………………………………….….......i
致謝………………………………………………………………………ii 中文摘要………………………………………………………………...iii Abstract…………………………………………………………………iv Abbreviations……………………………………………………………v Table of contents………………………………………………………..vi 1. Introduction…………………………………………………………..1 2. Aims………………………………………………...………………...12 3. Materials and Methods……………………………………………..13 4. Results………………………………………………………………..23 5. Discussion……………………………………………………………35 6. Figures……………………………………………………………….39 7. Tables………………………………………………………………52 Reference……………………………………………………………….54 Appendix………………………………………………………………..60 | |
dc.language.iso | en | |
dc.title | 縮短端粒的酵母菌修復雙股DNA斷裂之缺失 | zh_TW |
dc.title | Insufficiency of double-strand break repair in cells with short telomeres | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李財坤(Tsai-Kun Li),林敬哲(Jing-Jer Lin) | |
dc.subject.keyword | 端粒,雙股DNA斷裂,檢查點, | zh_TW |
dc.subject.keyword | telomere,double-strand break,checkpoint, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 5.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。