Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40864
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀(Hung-Yun Hsieh)
dc.contributor.authorChi-En Wuen
dc.contributor.author吳其恩zh_TW
dc.date.accessioned2021-06-14T17:04:04Z-
dc.date.available2012-08-15
dc.date.copyright2011-08-15
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citation[1] F. Li, Wei Q., H. Sun, H.W., J.Wang, Y. Xia, Z. Xu, and P. Zhang. Smart Transmission Grid: Vision and Framework. IEEE Transactions on Smart Grid, pages 168–177, Sepetember 2010.
[2] Office of Electric Transmission and U.S. DEPT. Distribution. Grid 2030: A national version for electricity’s second 100 years. July 2003.
[3] J. Dvorak. Simulator for Network Protocol Development and Adaptive Network Protocol for Narrowband Powerline Communication. Applied Electronics, pages 103–106, September 2009.
[4] S. Enrique, R. Gary, T. Le, and Xiaoming F. Getting Smart. IEEE Power and Energy Magazine, pages 41–48, March 2010.
[5] M. Khosrow and K. Ranjit. A Reliability Perspective of the Smart Grid. IEEE Transactions on Smart Grid, pages 57–64, June 2010.
[6] A. Ipakchi and F. Albuyeh. Grid of the Future. IEEE Power Energy Magazine, March 2009.
[7] M.R. Hossain, A. Maung Than Oo, and A.B.M. Shawkat Ali. Evolution of Smart Grid and Some Pertinent Issues. Universities Power Engineering Conference (AUPEC), pages 1–6, December 2010.
[8] M. Jose, M. Nelson, and R. Ilya. Demand Response and Distribution Grid Operation Opportunities and Challenges. IEEE Transactions on Smart Grid, pages 41–48, September 2010.
[9] F. Hassan. The Evolution of Tomorrow’s Technology. IEEE Power and Energy Magazine, pages 18–28, January 2010.
[10] S. Thilo and L. Maksim. End-to-end communication architecture for smart grids. IEEE Transactions on Industrial Electronics, pages 1218–1228, April 2011.
[13] P.Parikh Palak, G.Kanabar Mitalkumar, and S.Sidhu Tarlochan. Opportunities and Challenges of Wireless Communication Technologies for Smart Grid Application. 2010.
[14] L. Ralf, H. Halid, and H. Abdelfatteh. Broadband Powerline Communications-network design. 2004.
[15] P. Vamsi, D. Arjan, and Ramesh M. Securing Powerline Communications. 2008.
[16] B. Sivaneasan, E. Gunawan, and P.L. So. Modelling and Performance Analysis of Automatic Meter-Reading Systems Using PLC under Impulsive Noise Interference. IEEE Transactions on Power Delivery, pages 1465–1475, July 2010.
[17] L. Weilin, W. Hanspeter, and R. Philippe. Broadband PLC Access Systems and Field Deployment in European Power Line Network. IEEE Communication Magazine, pages 114–118, May 2003.
[18] M. Gebhardt, F. Weinmann, and K. Doster. Physical and Regulatory Constraints for Communication over the Power Supply Grid. IEEE Communication Magazine, May 2003.
[19] S. Galli, A. Scaglione, and Zhifang Wang. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid. Proceedings of the IEEE, pages 998–1027, June 2011.
[20] S. Galli, A. Scaglione, and Zhifang Wang. Power Line Communications and the Smart Grid. Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, pages 303–308, October 2010.
[21] Y. Sung-Guk and B. Saewoong. Adaptive Rate Control and Contention Window-Size Adjustment for Power-Line Communication. IEEE Transactions on Power Delivery, January 2011.
[22] M. Zimmermann and K Dostert. A Multipath Model for the Powerline Channel. IEEE Transactions on Communications, pages 553–559, April 2002.
[23] G. Matthias, R. Manuel, and Klaus D. Power Line Channel Characteristics and Their Effect on Communication System Design. IEEE Communication Magazine, pages 78–86, April 2004.
[24] A. Nikoleta and Fotini-Niovi P. Modelling the Noise on the OFDM Power-line Communications System. IEEE Transactions on Power Delivery, pages 150–157, January 2010.
[25] HomePlug Powerline Alliance. HomePlug 1.0 Technical Whitepaper. June 2001.
[26] J. Myoung-Hee, C. Min Young, and L. Tae-Jin. MAC Throughput Analysis of HomePlug 1.0. IEEE Communication letters, pages 184–186, Feburary 2005.
[27] HomePlug Powerline Alliance. HomePlug Av Technical Whitepaper. May 2007.
[28] IEEE P1901 working group. IEEE P1901 Draft Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specification. July 2009.
[29] S. Goldfisher and S. Tanabe. IEEE 1901 Access System: An Overview of its Uniqueness and Motivation. IEEE Communications Magazine, pages 150–157, October 2010.
[30] Electricite Reseau Distribution France. G3-PLC Physcial Layer Specification. August 2009.
[31] K. Razazian, M. Umari, A. Kamalizad, V. Loginov, and M. Navid. G3-PLC Specification for Powerline Communication: Overview, System Simulation and Field Trial Results. Power Line Communications and Its Applications (ISPLC), pages 313–318, March 2010.
[32] M. Hoch. Comparison of PLC G3 and PRIME. Power Line Communications and Its Applications (ISPLC), pages 165–169, April 2011.
[33] A. Aruzuaga, I. Berganza, A. Sendin, M. Sharma, and B. Varadarajan. PRIME Interoperability Tests and Results from Field. Smart Grid Communications (Smart GridComm), 2010 First IEEE International Conference on, pages 126–130, October 2010.
[34] A. Sendin, A. Llano, A. Arzuaga, and I. Berganza. Field Techniques to Overcome Aggressive Noise Situations in PLC Network. Power Line Communications and Its Applications (ISPLC), May 2011.
[35] PRIME Alliance Technical Working Group. Draft Standard for PoweRline Intelligent Metering Evolution.
[36] Il Han Kim, B. Varadarajan, and A. Dabak. Performance Analysis and Enhancements of Narrowband OFDM Powerline Communication Systems. Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, pages 362–367, October 2010.
[37] Q. Chen, S.E. Felix, J. Daniel, T.M. Marc, D. Luca, and Hannes H. Overhaul of IEEE 802.11 Modelling and Simulation in NS-2. pages 159–168, October 2007.
[38] M. Katayama, T. Yamazato, and H. Okada. A Mathematical Model of Noise in Narrowband Power Line Communication Systems.
[39] M. Zimmermann and K. Dostert. Analysis and Modeling of Impulsive Noise in Broad-band Powerline Communications. IEEE Transactions on Electromagnetic Compatibility, pages 249–258, Feburary 2002.
[40] G. Bumiller, L. Lampe, and H. Hrasnica. Power Line Communication Networks for Large-Scale Control and Automation Systems. IEEE Communication Magazine, pages 106–113, April 2010.
[41] Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std. 802.15.4, 2006.
[42] B. Chiara. Performance Analysis of IEEE 802.15.4 Beacon-Enabled Mode. IEEE Std. 802.15.4, pages 2031–2045, May 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40864-
dc.description.abstract近年來,由於電力系統的老舊與缺乏更新改善,漸漸的無法滿足現今社會需求,因此許多國家提出智慧型電網的概念來改善傳統電網的問題。智慧型電網整合了資訊、通訊技術與現有的電力系統,提供一個更完善可靠的供電系統;其中一項應用為住家電表與變電所之間的低壓電力通訊網路。在低壓電力通訊網路中,目前已有許多標準被提出,其中 PRIME 是一開放標準且目前在歐洲被廣泛使用。它提供了一套自動電表管理系統的通訊架構,主要針對在窄頻電力線通訊上實體層與媒體接取層的設計,不僅可應用於現階段的電表資訊網路上,未來也朝向智慧型電網應用發展。由於目前缺乏一套針對電力線在智慧型電網上應用的完善模擬平台,因此我們將 PRIME 所規範的實體層與媒體接取層實作於 NS-2 上,並依據我們所建立的模擬平台分析 PRIME 在電表通訊網路上的效能。根據模擬結果,我們發現了 PRIME 在通道競爭機制設計上的缺點;首先,由於複雜的網路建立流程造成網路建立所需時間過長,此外封包迴避碰撞機制無法有效避免控制封包於傳送過程中發生碰撞。其次,由於 PRIME 定義的競爭機制需花費較長時間,對於週期性的競爭機制較易發生封包碰撞且容易使得封包在競爭過程中被丟棄。在本篇論文中,我們首先提出「隨機偵測」來改善 PRIME 競爭機制的缺點,其方法主要是藉由隨機分散偵測時間來避免封包碰撞的機率。然而根據模擬結果顯示,此方法並未完全有效改善封包遺失的情形,因此我們利用電力線有線的特性使節點可以容忍偵測到通道忙碌,並藉由增加偵測通道的次數提高通道使用率,改善隨機偵測的方法。根據模擬結果顯示,改善後的方法可以有效減少一半的網路建立時間。此外在網路擁塞的情況下,相較於原來 PRIME 所設計的方法,此方法對於封包遺失率和延遲時間的改善可達 95%與 42%。zh_TW
dc.description.abstractIn recent years, the smart grid is proposed to address the traditional power grid problems. One of smart grid applications is the last-mile communication between utilities and customers in low-voltage distribution network. In last-mile communication systems, PRIME is an open standard that provides a telecommunication architecture for automatic metering management and it is supported by most of the European countries now. PRIME defines the physical layer and MAC layer of narrowband power line communication in low-voltage electricity grid. However, there is a lack of a full simulation platform for the power line communication in smart grid now. Therefore, we implement the power line physical layer and PRIME MAC layer in NS-2. Based on the simulation platform, we identify some problems in PRIME from the simulation result. One is the prolonged time for network formation due to the short backoff time and complex connection setup procedure. Another is the contention mechanism that causes the packets to be dropped during the transmission since the channel access mechanism wastes a lot of time. To address these problems, we propose a random sensing method to reduce the network formation time and packet loss rate by separating the sensing period to avoid collisions. However, initial simulation results show that this method is unable to solve all problems in PRIME. Therefore, we improve the random sensing method to further enhance the random sensing method performance by tolerating more occurrences of sensing a busy channel for enhancing the channel usage. Simulation results show that the improved random sensing method can reduce half of the network formation time, and it can improve the packet loss rate up to 95% and delay time up to 42% compared to original PRIME MAC
when network is saturated.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:04:04Z (GMT). No. of bitstreams: 1
ntu-100-R98942067-1.pdf: 2519702 bytes, checksum: e181147f3d5a8be7bb6bf32276a416df (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsABSTRACT - ii
LIST OF TABLES - vi
LIST OF FIGURES - vii
CHAPTER 1 INTRODUCTION - 1
CHAPTER 2 BACKGROUND - 4
2.1 Evolution of Power Supply Grid - 4
2.1.1 Traditional Grid - 4
2.1.2 Smart Grid - 6
2.2 Communication Support in Smart Grid - 9
2.2.1 Communication Requirement - 9
2.2.2 Related Communication Technology - 10
2.3 Power Line Communication System - 11
2.3.1 Outdoor Network and In-Home Network - 12
2.3.2 Broadband and Narrowband PLC Systems - 13
2.4 Power Line Channel Characteristics - 15
2.4.1 Attenuation - 15
2.4.2 Noise Interference - 16
2.5 PLC Standards - 17
2.5.1 Broadband PLC Standards - 18
2.5.2 Narrowband PLC Standards - 19
CHAPTER 3 OPERATIONS IN PRIME - 22
3.1 Physical Layer - 22
3.2 MAC Layer Overview - 25
3.3 Network Configuration - 27
3.3.1 Service Nodes Start up - 27
3.3.2 Beacon Allocation - 30
3.4 Switching and Connection Establishment - 32
3.4.1 Packet Routing - 32
3.4.2 Connection Procedure - 32
3.5 CSMA/CA Mechanism - 33
CHAPTER 4 NS-2 IMPLEMENTATION - 37
4.1 Physical Layer - 38
4.1.1 PHY state manager - 38
4.1.2 Noise and Attenuation - 38
4.1.3 PLC Topology - 39
4.2 MAC Layer - 42
4.2.1 Frame Schedule Module - 42
4.2.2 Backoff manager and Channel state manager - 45
4.2.3 Transmission and Coordination Module - 46
4.2.4 Reception and Coordination Module - 49
4.3 Other Modifications in NS-2 - 53
4.4 Verification of the Simulation Platform - 54
CHAPTER 5 EVALUATION OF CSMA/CA IN PRIME - 57
5.1 Evaluation Setup - 57
5.2 CSMA/CA Comparison and Analysis - 58
5.2.1 Fair Simulation Environment - 59
5.2.2 Network Formation Requirement Time - 59
5.2.3 Data Transmission Performance Evaluation - 60
5.2.4 CSMA/CA Problems Statement - 63
5.3 Random Sensing Method - 64
5.3.1 Method Description - 64
5.3.2 Network Formation Requirement Time Improvement - 66
5.3.3 Data Transmission Performance and Analysis - 67
5.4 Random Sensing Method Improved - 68
5.4.1 Method Description - 70
5.4.2 Performance and Tolerance Analysis - 73
CHAPTER 6 CONCLSION AND FUTURE WORK - 77
6.1 Conclusion - 77
6.2 Future Work - 78
APPENDIX A — POWER LINE NOISE MODEL - 79
REFERENCES - 81
dc.language.isoen
dc.titlePRIME 媒體接取協定於智慧型電網應用之效能評估與改善zh_TW
dc.titleEvaluation and Enhancement of the PRIME MAC Mechanisms for Smart Grid Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉丙成(Ping-Cheng Yeh),周俊廷(Chun-Ting Chou),高榮鴻(Rung-Hung Gau)
dc.subject.keyword智慧型電網,電力線通訊,自動電表管理系統,網路模擬平台,低壓電網,載波偵測多路存取/碰撞避免,電力線智慧電表進化標準,zh_TW
dc.subject.keywordSmart Grid,PLC,AMM,NS-2,Low-voltage supply network,CSMA/CA,PRIME,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved