Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40863
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor閔明源(Ming-Yuan Min)
dc.contributor.authorHock-Ling Chiengen
dc.contributor.author錢學霖zh_TW
dc.date.accessioned2021-06-14T17:04:01Z-
dc.date.available2010-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citationReferences
Abrahamsson, P. A., 1999. Neuroendocrine differentiation in prostatic carcinoma. Prostate. 39, 135-48.
Allen, D. L., et al., 2001. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol. 90, 1900-8.
Andersen, J. B., et al., 2005. Physiology: postprandial cardiac hypertrophy in pythons. Nature. 434, 37-8.
Anderson, M. P., et al., 2005. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci U S A. 102, 1743-8.
Berenji, K., et al., 2005. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol. 289, H8-H16.
Bourinet, E., et al., 2005. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 24, 315-24.
Chen, C. C., et al., 2003. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science. 302, 1416-8.
Colao, A., et al., 2001. Growth hormone and the heart. Clin Endocrinol (Oxf). 54, 137-54.
DeChiara, T. M., et al., 1990. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 345, 78-80.
Di Paolo, F. M., Pelliccia, A., 2007. The 'Athlete's Heart': relation to gender and race. Cardiol Clin. 25, 383-9, v.
Diffee, G. M., et al., 2003. Microarray expression analysis of effects of exercise training: increase in atrial MLC-1 in rat ventricles. Am J Physiol Heart Circ Physiol. 284, H830-7.
Dorn, G. W., 2nd, 2007. The fuzzy logic of physiological cardiac hypertrophy. Hypertension. 49, 962-70.
Dorn, G. W., 2nd, Brown, J. H., 1999. Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc Med. 9, 26-34.
Dorn, G. W., 2nd, Force, T., 2005. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 115, 527-37.
Dorn, G. W., 2nd, et al., 2003. Phenotyping hypertrophy: eschew obfuscation. Circ Res. 92, 1171-5.
Eghbali, M., et al., 2005. Molecular and functional signature of heart hypertrophy during pregnancy. Circ Res. 96, 1208-16.
Fagard, R., 2003. Athlete's heart. Heart. 89, 1455-61.
Gray, L. S., et al., 2004. The role of voltage gated T-type Ca2+ channel isoforms in mediating 'capacitative' Ca2+ entry in cancer cells. Cell Calcium. 36, 489-97.
Haunstetter, A., Izumo, S., 2000. Toward antiapoptosis as a new treatment modality. Circ Res. 86, 371-6.
Konhilas, J. P., et al., 2004. Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol. 287, H2768-76.
Koziris, L. P., et al., 1999. Serum levels of total and free IGF-I and IGFBP-3 are increased and maintained in long-term training. J Appl Physiol. 86, 1436-42.
Lai, K. M., et al., 2004. Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol. 24, 9295-304.
Lee, J., et al., 2004. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci U S A. 101, 18195-9.
Lorell, B. H., Carabello, B. A., 2000. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 102, 470-9.
Lupu, F., et al., 2001. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol. 229, 141-62.
Mahdavi, V., et al., 1987. Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ Res. 60, 804-14.
McMullen, J. R., et al., 2004. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 279, 4782-93.
McMullen, J. R., et al., 2003. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A. 100, 12355-60.
Mesa, A., et al., 1999. Left ventricular diastolic function in normal human pregnancy. Circulation. 99, 511-7.
Milliken, M. C., et al., 1988. Left ventricular mass as determined by magnetic resonance imaging in male endurance athletes. Am J Cardiol. 62, 301-5.
Miyata, S., et al., 2000. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res. 86, 386-90.
Nuss, H. B., Houser, S. R., 1993. T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res. 73, 777-82.
Panner, A., Wurster, R. D., 2006. T-type calcium channels and tumor proliferation. Cell Calcium. 40, 253-9.
Pelliccia, A., et al., 2002a. The athlete's heart: remodeling, electrocardiogram and preparticipation screening. Cardiol Rev. 10, 85-90.
Pelliccia, A., et al., 2002b. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 105, 944-9.
Perez-Reyes, E., 2003. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 83, 117-61.
Perrino, C., et al., 2006. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest. 116, 1547-60.
Piedras-Renteria, E. S., et al., 1997. Antisense oligonucleotides against rat brain alpha1E DNA and its atrial homologue decrease T-type calcium current in atrial myocytes. Proc Natl Acad Sci U S A. 94, 14936-41.
Porcello, D. M., et al., 2003. Actions of U-92032, a T-type Ca2+ channel antagonist, support a functional linkage between I(T) and slow intrathalamic rhythms. J Neurophysiol. 89, 177-85.
Schaible, T. F., Scheuer, J., 1979. Effects of physical training by running or swimming on ventricular performance of rat hearts. J Appl Physiol. 46, 854-60.
Scheinowitz, M., et al., 2003. Short- and long-term swimming exercise training increases myocardial insulin-like growth factor-I gene expression. Growth Horm IGF Res. 13, 19-25.
Spirito, P., et al., 1994. Morphology of the 'athlete's heart' assessed by echocardiography in 947 elite athletes representing 27 sports. Am J Cardiol. 74, 802-6.
Weber, K. T., 1997. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 96, 4065-82.
Wibom, R., et al., 1992. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol. 73, 2004-10.
Xu, X., Best, P. M., 1992. Postnatal changes in T-type calcium current density in rat atrial myocytes. J Physiol. 454, 657-72.
Yeh, J. K., et al., 1994. Effect of growth hormone administration and treadmill exercise on serum and skeletal IGF-I in rats. Am J Physiol. 266, E129-35.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40863-
dc.description.abstractT-型鈣離子通道(T-通道)只短暫表現在胚胎及幼體時期(Leuranguer et al., 2000; Niwa et al., 2004),並跟生長速率有緊密的關係(Xu and Best, 1992)。生長激素(Growth hormone)已知可透過IGF-1(Insulin-like growth hormone)的作用影響動物的體重和心臟的生長(Boguszewski et al., 1997; Ong et al., 2002; Xu and Best, 1991)。另外,IGF-1已被證實可以提高T-通道的電流強度(Piedras-Renteria et al., 1997)。目前發現在運動家生理性肥大心臟中有較多的IGF-1,故推測T-通道可能參與生理性心臟肥大的生成。為探討T-通道在運動引起的心臟肥大所扮演的角色,我們將野生型和CaV3.2型T-通道剔除的老鼠進行長達三週的游泳訓練,同時利用超音波觀察老鼠心臟的變化。在游泳前,野生型和CaV3.2-/-的左心室重量沒有明顯的差異。游泳三週後發現野生型老鼠的左心室明顯變重(0.11 ± 0.0028 (non-swim, n=7) 和0.13 ± 0.0029 (swim, n=7, p<0.001)。但是在CaV3.2-/-的左心室並沒有看到相同的變化(0.1099 ± 0.005 (non-swim, n=5) 和0.1036 ± 0.0028 (swim, n=5), p=0.3)。這個結果指出T-通道在生理性心臟肥大的形成是不可或缺的。zh_TW
dc.description.abstractVoltage-gated T-type Ca2+ current (T-current) is temporarily recorded in cardiac myocytes during embryonic and postnatal period in some rodents (Leuranguer et al., 2000; Niwa et al., 2004) and was found linearly correlated with growth rate in rat of both sexes (Xu and Best, 1992). The growth of body weight and heart size has been well studied to be affected by chronically elevated growth hormone (GH) through the action of Insulin-like growth factor-1 (IGF-1) (Boguszewski et al., 1997; Ong et al., 2002; Xu and Best, 1991). Moreover, through the approach of patch-clamp, IGF-1 was found to be able to increase the current density of T-channels (Piedras-Renteria et al., 1997). Collectively, physiological cardiac hypertrophy in athletes is associated with increased cardiac IGF-1 formation, implying that T-channel might play a role in the physiological cardiac hypertrophy formation. To test the hypothesis that T-channels are involved in that cardiac remodeling during physiological cardiac hypertrophy, CaV3.2 T-type calcium channel deficient mice (CaV3.2-/-) were subjected to swimming training for 3 weeks and the development of cardiac hypertrophy was examined with echocardiography. At the basal level, there is no significant difference between wild type (WT) and CaV3.2-/- left ventricular mass (LVM) but after 3 weeks of swimming, WT showed a significant increase of LVM (0.11 ±0.0028 g (WT non-swim, n=7) and 0.13 ± 0.0029 g (WT swim, n=7, p<0.001). In contrast, swimming-induced physiological cardiac hypertrophy was blunted in CaV3.2-/-, the LVM were 0.1099 ± 0.005 (CaV3.2-/- non-swim, n=5) and 0.1036 ± 0.0028 (CaV3.2-/- swim 21ds, n=5, p=0.3). These findings suggest that CaV3.2 is necessary for triggering swimming-induced physiological cardiac hypertrophy.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:04:01Z (GMT). No. of bitstreams: 1
ntu-97-R95b41010-1.pdf: 699545 bytes, checksum: 9141c5f60ca4e12aa547a1d8647acdde (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTABLE OF CONTENTS
Page No.
Acknowledgements................................I
Abstract........................................III
Table of Contents...............................VI
List of Figures.................................VIII
Chapter 1: Introduction
1.1 T-type calcium channel..............1
1.2 Cardiac hypertrophy.................3
1.3 Aim of study........................10
Chapter 2: Materials and Methods
2.1 Animals.............................11
2.2 Swimming exercise protocol..........11
2.3 Pregnancy animal setup..............12
2.4 Echocardiography measurement........12
2.5 Histology...........................13
2.6 Citrate synthase activity assay.....14
2.7 Western analysis....................15
2.8 Neonatal cardiomyocyte isolation
and IGF-1 treatment.................17
2.9 Immunofluorescence..................20
2.10 RNA isolation ..................... 21
2.11 Quantitative PCR...................22
2.12 Mouse Insulin-like growth factor I
(IGF-1) Immunoassay................23
Chapter 3: Results
3.1 Exercise performance of wild type
(WT) and CaV3.2-/- (KO) mice........25
3.2 Responses of WT and KO mice heart
to swimming exercise training.......27
3.3 Echocardiography analysis of heart
structure in physiological induced
cardiac hypertrophy.................28
3.4 IGF-1/PI3K/Akt signaling pathway
in swimming mice....................29
3.5 IGF-1 response in neonatal
cardiomyocytes......................31
3.6 IGF-1 levels decrease in both WT
and KO mice after swimming exercise.32
Chapter 4 : Discussion...........................34
References.......................................38
Figures..........................................41
LIST OF FIGURES
Figure 1 Hypertrophic responses following
different stimulus......................41
Figure 2 Distinct signaling pathways induced
by physiological and pathological
hypertrophy.............................42
Figure 3 Evolutionary tree of voltage gated
Ca2+ channels...........................43
Figure 4 Swimming apparatus for establishing
exercise-induced physiological
cardiac hypertrophy.....................44
Figure 5 Swimming-exercise performance in
wild type (WT) and CaV3.2-/- (KO) mice..45
Figure 6 Morphometric data from control and
swimming WT and CaV3.2-/- (KO) mice.....47
Figure 7 Differential responses of
swimming-induced cardiac hypertrophy
in WT and CaV3.2-/- (KO) mice...........48
Figure 8 Physiological cardiac hypertrophy
responses in late pregnancy WT
and CaV3.2-/- (KO) mice.................50
Figure 9 IGF-1/PI3K/AKT signaling protein
expression pattern of swimming WT
and CaV3.2-/- (KO) mice.................51
Figure 10 IGF-1 levels in non-swim control
and 21days swimming trained WT and
CaV3.2-/- (KO) mice.....................52
Figure 11 Induction of hypertrophic response
of primary cardiomyocytes by IGF-1
and Isoproterenol.......................53
dc.language.isoen
dc.titleCav3.2 T型鈣離子通道參與調控生理性心臟肥大zh_TW
dc.titleCav3.2 T-type Calcium Channel Participates in Swimming-induced Physiological Cardiac Hypertrophyen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor陳建璋(Chien-Chang Chen)
dc.contributor.oralexamcommittee朱柏如(Po-Ju Chu),林恆(Heng Lin)
dc.subject.keyword運動,游泳,心臟肥大,T型鈣離子通道,Cav3.2,zh_TW
dc.subject.keywordt-type calcium channel,cardiac hypertrophy,exercise,swimming,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
Appears in Collections:動物學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
683.15 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved