Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李太楓(Typhoon Lee)
dc.contributor.authorHsin-Wei Chenen
dc.contributor.author陳心維zh_TW
dc.date.accessioned2021-06-14T17:03:16Z-
dc.date.available2012-10-01
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citationAlexander C.M.O’D. and Nittler L.R. (1999) The galactic evolution of Si, Ti, and O isotopic ratios. Astrophys. J. 519, 222-235.
Amari S., Nittler L.R., Zinner E., Gallino R., Lugaro M., and Lewis R.S. (2001a) Presolar SiC grains of type Y: origin from low-metalicity asymptotic giant branch stars. Astrophys. J. 546, 248-266.
Amari S., Nittler L.R., Zinner E., Lodders K., and Lewis R.S. (2001b) Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys. J. 559, 463-483.
Andreasen R. and Sharma M. (2006) Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314, 806-809.
Andreasen R. and Sharma M. (2007) Decoupling of barium and lanthanide r-process nuclide sources: constraint on the origin of terrestrial 142Nd anomalies. Lunar Planetary Science 38, 2242.
Besmehn A., and Hoppe P. (2003) A NanoSIMS study of Si- and Ca-Ti-isotopic compositions of presolar silicon carbide grains from supernovae. Geochimica et Cosmochimica Acta 67, 4693-4703.
Birck J.L. and Allegere C.J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophys. Res. Lett. 12, 745-748.
Chen J.H. and Tilton G.R. (1976) Isotopic lead investigations on the Allende carbonaceous chondrites. Geochimica et Cosmochimica Acta 40, 635-643.
Clayton R.N., Grossman L., and Mayeda T.K. (1973) A component of primitive nuclear composition in carbonaceous chondrites. Science 182, 485-488.
Fahey A., Goswami J.N., McKeegan K.D., and Zinner E. (1985) Evidence for extreme 50Ti enrichments in primitive meteorites. Astrophys. J. 296, L17-L20.
Fahey A.J., Goswami J.N., Mckeegan K.D., and Zinner E. (1987) 26Al, 244Pu, 50Ti, REE, and trace element abundances in hibonite grains from CM and CV meteorite. Geochimi. Cosmochim. Acta 51, 329-350.
Fahey A.J., Zinner E., Kurat G., and Kracher A. (1994) Hibonite-hercynite inclusion HH-1 from Lance (CO3) meteorite: the history of an ultrarefractory CAI. Geochimi. Cosmochim. Acta 58, 4779-4793.
Freedman (2002) Mass bias in ICP mass spectrometer. Geochimi. Cosmochim Acta, 66 (2002) supplement 1 A245.
Goresy A.E., Zinner E., Matsunami S., Palme H., Spettel B., Lin Y., and Nazarov M. (2002) Efremovka 101.1: A CAI with ultrarefractory REE patterns and enormous enrichments of Sc, Zr, and Y in fassaite and perovskite. Geochimi. Cosmochim. Acta 66, 1459-1491.
Gray C.M., Papanastassiou D.A., and Wasserburg G.J. (1973) The identification of early condensates from the solar nebula. Icarus 20, 213-239.
Grossman L. (1975) Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta 39, 433-454.
Halliday A.N., Lee D., Christensen J.N., Rehkamper M., Yi W., Luo X., Hall C.M., Ballentine C.J., Pettke T., and Stirling C. (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochimica et Cosmochimica Acta 62, 919-940.
Heydegger H.R., Foster J.J., and Compston W. (1979) Evidence of a new isotopic anomaly from titanium isotopic ratios in meteoritic materials. Nature 278, 704-707.
Heydegger H.R., Foster J.J., and Compston W. (1982) Terrestrial, meteoritic, and lunar titanium isotopic ratios revaluated: evidence for correlated variation. Earth planet. Sci. Lett. 58, 406-418.
Hinton R.W., Davis A.M., Scatena-Wachel D.E. (1987) Large negative 50Ti anomalies in refractory inclusions from the Murchison carbonaceous chondrite: evidence for incomplete mixing of neutron-rich supernova ejecta into the solar system. Astrophys. J. 313, 420-428.
Hoppe P., Amari S., Zinner E., Ireland T., Lewis R.S. (1994) Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite. Astrophys. J. 430, 870-890.
Hoppe P., Nittler L. R., Mostefaoui S., Alexander C. M. O'd., and Marhas, K. K. (2003) A NanoSIMS study of titanium isotopic compositions of presolar corundum grains. Lunar Planet Sci. 34, 1570.
Horn I. and Gunther D. (2003) The influence of ablation carrier gasses Ar, He, and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: implications for LA-ICP-MS. Appl. Surf. Sci. 207, 144-157.
Hutcheon I. D., Steele I. M., Wachel D. E. S., MacDougall J. D., and Phinney D. (1983) Extreme Mg fractionation and evidence of Ti isotopic variations in Murchison refractory inclusions. Lunar Planet Sci. 14, 339-340.
Ireland T.R. and Compston W. (1985) Titanium isotopic anomalies in hibonites from the Murchison carbonaceous chondrite. Geochimi. Cosmochim. Acta 49, 1989-1993.
Ireland T.R., Zinner E.K., Amari S. (1991) Isotopic anomalous Ti in presolar SiC from the Murchison meteorite. Astrophys. J. 376, L53-L56.
Kelly W.R. and Wasserburg G.J. (1978) Evidence for the existence of Pd-107 in the early solar system. Geophys. Res. Lett 5, 1079-1082.
Krot A.N., Keil K., Goodrich C.A., Scott E.R.D. and Weisbreg M.K. (2004) Classification of meteorites. In: Tretise of Geochemistry vol. 1: Meteorites, Comets, and Planets. p. 83-128.
Lee D-C and Halliday A. (1995) Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP magnetic sector multiple collector mass spectrometry. Intl. J. Mass Spectrom. Ion Proc. 146/147, 35-46.
Lee D-C and Halliday A.N. (1995) Hafnium–tungsten chronometry and the timing of terrestrial core formation. Nature 378, 771-774.
Lee T. (1988) Implications of isotopic anomalies for nucleosynthesis. Meteorites and the early solar system. Edited by J.F. Kerridge and M.S. Matthews, University of Arizona Press. p.1063-1089.
Lee T., Papanastassiou D.A., and Wasserburg G.J. (1976) Demonstration of 26Mg excess in Allende and evidence of 26Al. Geophys. Res. Lett. 1, 225-228.
Lee T., Shen J.J. (2001) An x-wind origin for FUN inclusions. 64th Annual Meteoritic Society Meeting #5399.
Lee T., Shu F.H., Shang H., Glassgold A.E., and Rehm K.E. (1998) Protostellar cosmic rays and extinct radioactivities in meteorites. Astrophys. J. 506, 898-912.
Leya I,. Halliday A.N., and Wieler R. (2003) The predictable collateral consequences of nucleosynthesis by spallation reactions in the early solar system. Astrophys. J. 594, 605-616.
Leya I., Schonbachler M., Wiechert U., Krahenbuhl U., and Halliday A.N. (2007) High precision titanium measurements on geological samples by high resolution MC-ICPMS. International Journal of Mass Spectrometry 262, 247–255.
Leya I., Schonbachler M., Wiechert U., Krahenbuhl U., and Halliday A.N. (2008) Titanium isotopes and the radial heterogeneity of the solar system. Earth Planet. Sci. Lett. 266, 467-481.
Liu M.C., Mckeegan K.D., and Young E.D. (2004) In situ investigation of Mg isotope distributions in an Allende CAI by combined LA-ICPMS and SIMS analyses. (2004) Workshop on Chondrites and Protoplanetary Disk #9099.
Lugmair G.W. and Galer S.J.G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimi. Cosmochim. Acta 56, 1673-1694.
Lugmair G.W. and Shukolyukov A. (1998) Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863-2886.
MacPherson (1988) Primitive material surviving in chondrites - Refractory inclusions. IN: Meteorites and the early solar system (A89-27476 10-91). Tucson, AZ, University of Arizona Press, 1988, p. 746-807.
MacPherson G.J., Huss G.R., and Davis A.M. (2003) Extinct 10Be in Type A Calcium-Aluminum-Rich inclusions from CV chondrites. Geochimi. Cosmochim. Acta 67, 3165-3179.
Mank A.J.G. and Mason P.R.D. (1999) A critical assessment of laser ablation ICP-MS as a tool for depth profiling in glass samples. J. Anal. At. Spectrom 14, 1143-1153.
Marhas K.K., Goswami J.N., Davis A.M. (2002) Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution. Science 298, 2182-2185.
McKeegan K.D., Chaussidon M., and Robert F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science 289, 1334-1337.
McKeegan K.D., Davis A.M., Taylor D.J., and MacPherson G.J. (2005) In-situ investigation of Mg isotope compositions in a FUN inclusion. Lunar Planetary Science 36, 2077.
Meeker G.P. (1995) Constraints on formation processes of two coarse-grained calcium- aluminum-rich inclusions: A study of mantles, islands and cores. Meteoritics 30, 71-84.
Meeker G.P., Wasserburg G.J., and Armstrong J.T. (1983) Replacement textures in CAI and implications regarding planetary metamorphism. Geochim. Cosmochim. Acta 47, 707-721.
Niederer F.R., Papanastassiou D.A., Wasserburg G.J. (1980) Endemic isotopic anomalies in titanium. Astrophys. J. 240, L73-L77.
Niederer F.R., Papanastassiou D.A., Wasserburg G.J. (1981) The isotopic composition of titanium in the Allende and Leoville meteorites. Geochimi. Cosmochim. Acta 45, 1017-1031.
Niederer F.R., Papanastassiou D.A., Wasserburg G.J. (1985) Absolute isotopic abundances of Ti in meteorites. Geochimi. Cosmochim. Acta 49, 835-851.
Niemeyer S. (1985) Systematics of Ti isotopes in carbonaceous chondrite whole-rock samples. Geophysical Research Letters 12, 733-736.
Niemeyer S. (1988a) Titanium isotopic anomalies in chondrules from carbonaceous chondrites. Geochimi. Cosmochim. Acta 52, 309-318.
Niemeyer S. (1988b) Isotopic diversity in nebular dust: The distribution of Ti isotopic anomalies in carbonaceous chondrites. Geochimi. Cosmochim. Acta 52, 2941-2954.
Niemeyer S. and Lugmair G.W. (1981) Ubiquitous isotopic anomalies in Ti from normal Allende inclusions. Earth planet. Sci. Lett. 53, 211-225.
Niemeyer S. and Lugmair G.W. (1984) Titanium isotopic anomalies in meteorites. Geochimi. Cosmochim. Acta 48, 1401-1416.
Nier A.O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789-793.
Papanastassiou D.A. (1986) Chromium isotopic anomalies in the Allende meteorite. Astrophys. J. 308, L27-L30.
Papanastassiou D.A. and Brigham C.A. (1989) The identification of meteorite inclusions with isotope anomalies. Astrophys. J. 338, L37-L40.
Richter F.M. (2004) Timescales determining the kinetic isotope fractionation by evaporation and condensation. Geochimi. Cosmochim. Acta 68, 4971-4992.
Richter F.M., Davis A.M., Ebel D.S., and Hashimoto A. (2002) Elemental and isotopic fractionation of type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochimi. Cosmochim. Acta 66, 521-540.
Rosman K.J.R. and Taylor P.D.P. (1998) Isotopic compositions of the elements 1997. Pure & Appl. Chem. 70, 217-235.
Russell W.A., Papanastassiou D.A., and Tombrello T.A. (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075-1090.
Shahar A. and Young E.D. (2007) Silicon isotope ratios analysis of a CAI by laser ablation MC-ICPMS and implications for the astrophysics of CAI formation. Lunar Planetary Science 38, 1445.
Shen J.J-S. and Lee T. (2003) 138La Anomaly in the early solar system. Astrophys. J. 596, L109-L112.
Shields W.R., Murphy T.J., Cantanzaro E.J., and Garner E.L. (1966) Absolute isotopic abundance ratios and the atomic weight of a reference sample of chromium. J. Res. Nat. Bur. Stand. 70A, 193-197.
Shu F.H., Shang H., Glassgold A.E., and Lee T. (1997) X-rays and fluctuating x-winds from protostars. Science 277, 1475-1479.
Shukolyukov A. and Lugmair G.W. (1993) Live Iron-60 in the early solar system. Science 259, 1138-1142.
Simon J.I., Tonui E., Russell S.S., and Young E.D. (2004) Mg isotopes zonation in CAIs-- new constraints on CAI evolution. Lunar Planetary Science 35, 1668.
Srinivasan G, Ulyanov A.A., and Goswami J.N. (1994) Ca-41 in the early solar system. Astrophys. J. 431, L67-L70.
Stadermann F. J., Croat T. K., Bernatowicz T. J., Amari S., Messenger S., Walker R. M., and Zinner E. (2005) Supernova graphite in the NanoSIMS: Carbon, oxygen and titanium isotopic compositions of a spherule and its TiC sub-components. Geochimica et Cosmochimica Acta 69, 177-188.
Suess H.E. and Urey H.C. (1956) Abundances of the elements. Reviews of Modern Physics 28, 53-74.
Weber D., Zinner E., and Bischoff A. (1995) Trace element abundances and magnesium, calcium, and titanium isotopic compositions of grossite-containing inclusions from the carbonaceous chondrite Acfer 182. Geochimi. Cosmochim. Acta 59, 803-823.
Woosley S.E. (1997) Neutron-rich nucleosynthesis in carbon deflagration supernovae. Astrophys. J. 476, 801-810.
Young E.D., Ash R.D., Galy A., and Belshaw N.S. (2002) Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes. Geochimica et Cosmochimica Acta 66, 683-698.
Zhu X.K., Makishima A., Guoa Y., Belshaw N.S., and O’Nions R.K. (2002) High precision measurement of titanium isotope ratios by plasma source mass spectrometry. International Journal of Mass Spectrometry 220, 21–29
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40848-
dc.description.abstract我們已成功建立以雷射電漿質譜儀進行隕石中鈣鋁包裹體的『原地』高精確度鈦同位素分析技術。這一技術的發展,使我們突破過去以離子探針進行『原地』鈦同位素分析技術的精確度僅能達到千分比的瓶頸,提升到萬分比的等級,等同於熱游離固離子質譜儀以化學純化後量測鈦同位素比的精度水準。這使得我們得以開啟新的探索方向:(1)碳質球粒隕石的鈣鋁包裹體中的鈦同位素比是否為均質的,(2)同位素質量分化作用和鈣鋁包裹體的形成機制,和(3)太陽系的混合均質作用。
我們利用這一新技術量測了2顆已用熱游離源固離子質譜儀量得鈦同位素比的鈣鋁包裹體(Egg-6和Egg-3),其中Egg-6我們量得2顆鈦輝石的同位素組成和固離子質譜儀一致,而Egg-3我們分析5顆鈦輝石的同位素組成和固離子量得的50Ti/49Ti是一致的,但46Ti/49Ti和48Ti/49Ti我們量得的結果顯示為等同於太陽系的正常值,並不存在鈦-46、48正異常這一端成份,這一結果支持Egg-3仍是屬於正常鈣鋁包裹體的一員。同顆鈣鋁包裹體的不同鈦輝石顆粒在我們所達到的分析精度內顯示是均質的,表示形成這類(B類)鈣鋁包裹體,其鈦同位素可能在形成前就已經在該區域達成均質,或者是藉由形成的機制來達成同位素組成的均質。
利用這一技術進行質量分化效應的研究必須有賴完整的了解分析過程中產生的基質效應。鈦輝石的化學組成會產生相對於鈦標準礦物(鈦金屬、金紅石、榍石)低千分之一的儀器質量分化效應(較偏好輕同位素)。目前我們量測所得到的質量分化效應變異是由於些微的組成差異造成,抑或真是源自鈣鋁包裹體的信號,仍有待深入的探討。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-14T17:03:16Z (GMT). No. of bitstreams: 1
ntu-97-D88224005-1.pdf: 5017627 bytes, checksum: 7c7ad0118729347cc543ff12462a6dfc (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents
Preface (自序) i
Abstract (中文摘要) iv
Abstract v
Table of Contents viii
List of Figures ix
List of Tables x
Chapter 1: Introduction 1
1.1. Background 1
1.2. Dissertation Approach 6
Chapter 2: Experiments and Results 8
2.1. Sample preparation 8
2.2. Mass Spectrometry 9
2.3. Ti isotopic composition of standards and analytical precision 13
2.4. Ti isotopic compositions of meteoritic CAIs 18
2.5. Matrix effects and natural mass dependent fractionation 22
Chapter 3: Discussion and Conclusions 31
3.1. Inter-laboratory inconsistent problem of Ti isotopic ratios 31
3.2. Endemic 50Ti anomalies and the homogeneity of the early solar system 32
3.3. Conclusions 37
Bibliography 38
Appendix 1 (附錄一):分析方法的建立 47
Appendix 2 (附錄二):隕石標本的原始分析結果 59
Appendix 3 (附錄三):作者簡介 69
dc.language.isoen
dc.subject電漿質譜儀zh_TW
dc.subject雷射zh_TW
dc.subject隕石zh_TW
dc.subject鈦同位素zh_TW
dc.subject鈣鋁包裹體zh_TW
dc.subjecttitanium isotopesen
dc.subjectCAIen
dc.subjectICPMSen
dc.subjectlaser ablationen
dc.subjectin situen
dc.title利用雷射電漿質譜儀分析隕石鈣鋁包裹體的鈦同位素zh_TW
dc.titleIn situ Titanium Isotopic Composition Analysis of the Refractory Inclusions in the Allende Meteorite by Laser Ablation Inductive Couple Plasma Mass Spectrometry (LA-ICPMS)en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee沈君山(Jason J. Shen),陳于高(Yu-Gao Chen),李德春(Der-Chue Lee),王珮玲(Pei-Ling Wang)
dc.subject.keyword雷射,電漿質譜儀,鈦同位素,隕石,鈣鋁包裹體,zh_TW
dc.subject.keywordtitanium isotopes,in situ,laser ablation,ICPMS,CAI,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved