Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40847
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張世宗
dc.contributor.authorChia-Pei Chenen
dc.contributor.author陳嘉珮zh_TW
dc.date.accessioned2021-06-14T17:03:13Z-
dc.date.available2013-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-28
dc.identifier.citationAdams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 Suppl 1: 3-9
Akaishi T, Yokosawa H, Sawada H (1995) Regulatory subunit complex dissociated from 26S proteasome: isolation and characterization. Biochim Biophys Acta 1245: 331-338
Altekar W, Kristjansson H, Ponnamperuma C, Hochstein L (1984) An archaebacterial ATPase from Halobacterium saccharovorum. Orig Life 14: 733-738
Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci U S A 94: 7156-7161
Arendt CS, Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18: 3575-3585
Arrigo AP, Tanaka K, Goldberg AL, Welch WJ (1988) Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331: 192-194
Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92: 367-380
Benaroudj N, Goldberg AL (2000) PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2: 833-839
Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11: 69-78
Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28: 295-317
Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen RJ, Levy F (2000) Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci U S A 97: 10348-10353
Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM (2007) Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell 26: 843-852
Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801-847
Dantuma NP, Masucci MG (2002) Stabilization signals: a novel regulatory mechanism in the ubiquitin/proteasome system. FEBS Lett 529: 22-26
DeMartino GN, Slaughter CA (1999) The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 274: 22123-22126
Dou QP, Li B (1999) Proteasome inhibitors as potential novel anticancer agents. Drug Resist Updat 2: 215-223
Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 267: 22369-22377
Easwaran V, Song V, Polakis P, Byers S (1999) The ubiquitin-proteasome pathway and serine kinase activity modulate adenomatous polyposis coli protein-mediated regulation of beta-catenin-lymphocyte enhancer-binding factor signaling. J Biol Chem 274: 16641-16645
Ferrell K, Wilkinson CR, Dubiel W, Gordon C (2000) Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 25: 83-88
Forster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18: 589-599
Forster A, Whitby FG, Hill CP (2003) The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J 22: 4356-4364
Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD (1998) Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149: 677-692
Fu H, Girod PA, Doelling JH, van Nocker S, Hochstrasser M, Finley D, Vierstra RD (1999) Structure and functional analysis of the 26S proteasome subunits from plants. Mol Biol Rep 26: 137-146
Furet P, Imbach P, Furst P, Lang M, Noorani M, Zimmermann J, Garcia-Echeverria C (2001) Modeling of the binding mode of a non-covalent inhibitor of the 20S proteasome. Application to structure-based analogue design. Bioorg Med Chem Lett 11: 1321-1324
Gerards WL, de Jong WW, Boelens W, Bloemendal H (1998) Structure and assembly of the 20S proteasome. Cell Mol Life Sci 54: 253-262
Glickman MH, Rubin DM, Fu H, Larsen CN, Coux O, Wefes I, Pfeifer G, Cjeka Z, Vierstra R, Baumeister W, Fried V, Finley D (1999) Functional analysis of the proteasome regulatory particle. Mol Biol Rep 26: 21-28
Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35: 12-17
Gonzalez F, Delahodde A, Kodadek T, Johnston SA (2002) Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296: 548-550
Gorbea C, Taillandier D, Rechsteiner M (1999) Assembly of the regulatory complex of the 26S proteasome. Mol Biol Rep 26: 15-19
Groll M, Brandstetter H, Bartunik H, Bourenkow G, Huber R (2003) Investigations on the maturation and regulation of archaebacterial proteasomes. J Mol Biol 327: 75-83
Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463-471
Groll M, Huber R (2003) Substrate access and processing by the 20S proteasome core particle. Int J Biochem Cell Biol 35: 606-616
Hanna J, Meides A, Zhang DP, Finley D (2007) A ubiquitin stress response induces altered proteasome composition. Cell 129: 747-759
Hirano Y, Hayashi H, Iemura S, Hendil KB, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006) Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 24: 977-984
Hirano Y, Murata S (2006) [Mechanism of the assembly of mammalian 20S proteasome]. Tanpakushitsu Kakusan Koso 51: 1230-1235
Hirsch T, Dallaporta B, Zamzami N, Susin SA, Ravagnan L, Marzo I, Brenner C, Kroemer G (1998) Proteasome activation occurs at an early, premitochondrial step of thymocyte apoptosis. J Immunol 161: 35-40
Horwitz AA, Navon A, Groll M, Smith DM, Reis C, Goldberg AL (2007) ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J Biol Chem 282: 22921-22929
Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18: 569-580
Kelly SM, Vanslyke JK, Musil LS (2007) Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress. Mol Biol Cell 18: 4279-4291
Kim D, Li GC (1999) Proteasome inhibitors lactacystin and MG132 inhibit the dephosphorylation of HSF1 after heat shock and suppress thermal induction of heat shock gene expression. Biochem Biophys Res Commun 264: 352-358
Kloetzel PM, Soza A, Stohwasser R (1999) The role of the proteasome system and the proteasome activator PA28 complex in the cellular immune response. Biol Chem 380: 293-297
Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, Rechsteiner M, Hill CP (1997) Structure of the proteasome activator REGalpha (PA28alpha). Nature 390: 639-643
Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7: 1143-1152
Konishi J, Denda K, Oshima T, Wakagi T, Uchida E, Ohsumi Y, Anraku Y, Matsumoto T, Wakabayashi T, Mukohata Y, et al. (1990) Archaebacterial ATPases: relationship to other ion-translocating ATPase families exa分鐘ed in terms of immunological cross-reactivity. J Biochem 108: 554-559
Kurepa J, Toh EA, Smalle JA (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53: 102-114
Le Tallec B, Barrault MB, Courbeyrette R, Guerois R, Marsolier-Kergoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27: 660-674
Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18: 30-38
Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24: 39-50
Loayza D, Michaelis S (1998) Role for the ubiquitin-proteasome system in the vacuolar degradation of Ste6p, the a-factor transporter in Saccharomyces cerevisiae. Mol Cell Biol 18: 779-789
Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: 533-539
Lubben M, Lunsdorf H, Schafer G (1988) Archaebacterial ATPase: studies on subunit composition and quaternary structure of the F1-analogous ATPase from Sulfolobus acidocaldarius. Biol Chem Hoppe Seyler 369: 1259-1266
Lupas A, Zwickl P, Wenzel T, Seemuller E, Baumeister W (1995) Structure and function of the 20S proteasome and of its regulatory complexes. Cold Spring Harb Symp Quant Biol 60: 515-524
Ma CP, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J Biol Chem 267: 10515-10523
Makino Y, Yoshida T, Yogosawa S, Tanaka K, Muramatsu M, Tamura TA (1999) Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes Cells 4: 529-539
Marambaud P, Ancolio K, Lopez-Perez E, Checler F (1998) Proteasome inhibitors prevent the degradation of familial Alzheimer's disease-linked presenilin 1 and potentiate A beta 42 recovery from human cells. Mol Med 4: 147-157
Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17: 3251-3257
Mtango NR, Latham KE (2007) Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential. Physiol Genomics 31: 1-14
Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316: 1349-1353
Nagy I, Tamura T, Vanderleyden J, Baumeister W, De Mot R (1998) The 20S proteasome of Streptomyces coelicolor. J Bacteriol 180: 5448-5453
Nandi D, Tahiliani P, Kumar A, Chandu D (2006) The ubiquitin-proteasome system. J Biosci 31: 137-155
Navon A, Goldberg AL (2001) Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8: 1339-1349
Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30: 360-368
Ravid T, Doolman R, Avner R, Harats D, Roitelman J (2000) The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 275: 35840-35847
Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA (1999) The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3: 687-695
Saeki Y, Tanaka K (2007) Unlocking the proteasome door. Mol Cell 27: 865-867
Sahni SK, Van Antwerp DJ, Eremeeva ME, Silverman DJ, Marder VJ, Sporn LA (1998) Proteasome-independent activation of nuclear factor kappaB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii. Infect Immun 66: 1827-1833
Schmidt M, Schmidtke G, Kloetzel PM (1997) Structure and structure formation of the 20S proteasome. Mol Biol Rep 24: 103-112
Schmidtke G, Schmidt M, Kloetzel PM (1997) Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol 268: 95-106
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, Eom SH, Chung CH (2002) The C-ter分鐘al tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J Biol Chem 277: 25976-25982
Sharon M, Taverner T, Ambroggio XI, Deshaies RJ, Robinson CV (2006) Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol 4: e267
Sitte N, Merker K, Grune T (1998) Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 440: 399-402
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases' carboxyl ter分鐘i in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27: 731-744
Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20: 687-698
Smith SE, Koegl M, Jentsch S (1996) Role of the ubiquitin/proteasome system in regulated protein degradation in Saccharomyces cerevisiae. Biol Chem 377: 437-446
Spataro V, Norbury C, Harris AL (1998) The ubiquitin-proteasome pathway in cancer. Br J Cancer 77: 448-455
Stock D, Nederlof PM, Seemuller E, Baumeister W, Huber R, Lowe J (1996) Proteasome: from structure to function. Curr Opin Biotechnol 7: 376-385
Tanahashi N, Kawahara H, Murakami Y, Tanaka K (1999) The proteasome-dependent proteolytic system. Mol Biol Rep 26: 3-9
Tanaka K (1991) [A new ATP-dependent protease complex in eukaryotes--degradation of ubiquitin-ligated proteins by association of a proteasome with its regulatory proteins]. Tanpakushitsu Kakusan Koso 36: 2494-2505
Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10: 609-618
Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015-1068
Voorhees PM, Orlowski RZ (2006) The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46: 189-213
Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W (1998) 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121: 19-29
Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408: 115-120
Xia L, Pan J, Yao L, McEver RP (1998) A proteasome inhibitor, an antioxidant, or a salicylate, but not a glucocorticoid, blocks constitutive and cytokine-inducible expression of P-selectin in human endothelial cells. Blood 91: 1625-1632
Yao Y, Huang L, Krutchinsky A, Wong ML, Standing KG, Burlingame AL, Wang CC (1999) Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J Biol Chem 274: 33921-33930
Zhang D, Zaugg K, Mak TW, Elledge SJ (2006) A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126: 529-542
Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE (2007) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282: 22460-22471
Zhang Z, Clawson A, Realini C, Jensen CC, Knowlton JR, Hill CP, Rechsteiner M (1998) Identification of an activation region in the proteasome activator REGalpha. Proc Natl Acad Sci U S A 95: 2807-2811
Zhang Z, Krutchinsky A, Endicott S, Realini C, Rechsteiner M, Standing KG (1999) Proteasome activator 11S REG or PA28: recombinant REG alpha/REG beta hetero-oligomers are heptamers. Biochemistry 38: 5651-5658
Zhang Z, Realini C, Clawson A, Endicott S, Rechsteiner M (1998) Proteasome activation by REG molecules lacking homolog-specific inserts. J Biol Chem 273: 9501-9509
Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274: 26008-26014
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40847-
dc.description.abstract在生物體內,泛素-蛋白解體路徑是最主要的蛋白質分解系統。短存活期的蛋白質以及不正常的蛋白質,會經由一連串的酵素反應,進一步被泛素鏈所標示,而多泛素化的蛋白質,隨即會被26S蛋白解體所辨認並且被分解掉。此代謝路徑的主要酵素,26S蛋白解體,是由兩個調節因子包夾一個20S蛋白解體的催化中心所組成。目前,不論在原核生物或真核生物中,都發現20S蛋白解體的存在。但是,20S蛋白解體與調節因子之間的反應機制,以及兩者之間的交互作用為何,到目前為止仍然不甚清楚。
本研究之實驗材料為 Thermoplasma acidophilum之 20S proteasome,其桶狀結
構的外環是由七個相同的 α 次單元所組成,而內環則由七個相同的 β 次單元所組
成。Proteasome activating nucleotidase (PAN) 可結合在 20S蛋白解體的一側或兩
側,形成更具活性之形式。由於PAN是由六個相同的次單元體所組成,不像真核
生物之 19S那麼複雜,因此,對於蛋白解體功能以及其孔道閉合機制之研究,提
供了一個非常有利的研究平台。

為了更進一步了解這兩個分子之間的反應機制究竟為何,本研究針對可能參與交互作用的胺基酸位置進行定位點突變之實驗。目前已成功製備出 Pro17、Lys66、Phe15、Phe22、Arg28、Ala30、Gly34、Lys52、Leu58、Gly80、Leu81、Va l82、Asp84、Arg93、Arg130、Pro131、Gly133、Ala154等突變株,並利用 HPLC分析在有無 PAN參與的情況下,各種帶有不同突變點的蛋白解體,其水解胜肽的反應速率變化情形。
我們發現 Phe15、Phe22 等位置突變之後會大幅提升蛋白解體水解基質的能力,推測可能與蛋白解體基質進出孔道之閉合有關;而 Ala154 則可能與 PAN 之間的交互作用有關。而 Pro17 經過突變之後其水解基質之能力會大幅提升,相反的是,Lys66 經過突變之後會喪失其水解能力,即使與 PAN結合之後也無法提升其活性。最特別的是A30Y突變株,其本身具有極高的基質水解活性,但是與PAN結合之後反而產生了抑制的現象。目前已將此突變株進行結晶,並利用 X-ray 繞射方法解析此 20S A30Y 突變株之結構。另外,我們也發現了一個新的 R130、P131、G133 (RPG) 區塊,推測這個區塊可能參與 α 及 β 次單元體的相互結合,並與調控 α 次單元體基質通道的開啟有關。
zh_TW
dc.description.abstractThe ubiquitin-proteasome system (UPS) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. Short-lived proteins as well as abnormal proteins are marked with ubiquitin chains. Polyubiquitinated proteins are subsequently recognized and degraded by the proteasome. The 26S proteasome, the central enzyme of this pathway, comprises the catalytic core particle (20S particle) sandwiched by two regulatory particles (RP or 19S caps). Proteasomes are found in prokaryotes and eukaryotes, but the mechanism and interaction of the 20S proteasome and its regulatory particles are not clear.
20S proteasomes are cylindrical structures with two outer rings each containing seven α subunits and two central rings each containing seven β subunits. In eukaryotes there are seven different α subunits and seven different β subunits, whereas the archaeal 20S proteasome from Thermoplasma acidophilum contains just one type of α
subunit and one type of β subunit. The active form of the proteasome in archaea is composed of an ATPase complex such as proteasome activating nucleotidase (PAN) that is bound to one or both ends of the 20S core , which is unlike the composition of eukaryotic proteasome. The simpler PAN-20S complex offers a major advantage to study proteasomal function and its gate opening mechanism.

To further understand the reaction mechanism between these two molecules, we use site-directed mutagenesis to study the sites of the possible amino acids involved.
We’ve successfully generated Pro17、Lys66、Phe15、Phe22、Arg28、Ala30、Gly34、Lys52、Leu58、Gly80、Leu81、Va l82、Asp84、Arg93、Arg130、Pro131、Gly133 and Ala154 mutants. Using HPLC, we can analyze the hydrolytic activities of
proteasomes with different mutation sites, and compare the difference either with or without the presence of PAN.

We found that after mutation on sites of Phe15 or Phe22, the hydrolytic abilities of proteasome will increase dramatically. This phenomenon might be due to the gate
opening for proteasome substrates. On the other hand, the Ala154 mutant might have interaction with PAN. The most special A30Y mutant has the ability to hydrolyze large
amounts of substrate, but after binding with PAN, this ability was inhibited. Now we’ve generated crystals of this A30Y mutant, and analyzed the structure of this
complex by X-ray diffractions. We also find that RPG domain is very important for the assembly of α and β subunits and for controlling the substrate entry on the α subunit .
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:03:13Z (GMT). No. of bitstreams: 1
ntu-97-R95b47208-1.pdf: 2970691 bytes, checksum: b49bf23467540c9c54b4334bf26830db (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 i
英文摘要 iii
縮寫表 v
第一章 緒論
1.1 泛素-蛋白解體系統 1
1.2 26S Proteasome 2
1.3 20S proteasome 6
1.4 Proteasome-activating nucleotidase 8
1.5 研究動機 10
1.6 研究方法 10
第二章 材料與方法
2.1 表現質體之建立 14
2.1.1 過夜菌液之培養 14
2.1.2 質體 DNA製備法 15
2.1.3 限制酶切割 16
2.1.4 洋菜膠體電泳 17
2.1.5 DNA 片段純化 18
2.1.6 接合反應 19
2.1.7 質體之轉形 20
2.1.8 聚合酶連鎖反應 21
2.1.9 定位點突變法 23
2.2 20S proteasome 蛋白質之重組與純化 24
2.2.1 20S proteasome蛋白質表現 24
2.2.2 蛋白質抽取法-細胞破碎機 25
2.2.3 蛋白質抽取法-超音波震盪法 26
2.2.4 20S之加熱純化法 27
2.2.5 色層分析法 28
2.2.6 膠體過濾法 30
2.2.7 離子交換法 31
2.2.8 親和層析法 33
2.3 蛋白質定量 35
2.4 20S proteasome之活性分析法 35
2.5 聚丙烯醯胺膠體電泳 36
2.6 膠片染色法 39
2.7 膠片乾燥及保存 41
2.8 蛋白質電泳轉印法 42
2.9 20S proteasome之胜肽水解速率分析 44
2.10 高壓液相層析儀分析法 45
2.11 蛋白質結晶法 47
第三章 20S proteasome 之表現與純化
3.1 20S proteasome α 次單元體突變株之基因選殖 49
3.2 20S proteasome 突變株之蛋白質表現與純化 51
3.2.1 親和性層析法 52
3.2.2 膠體過濾法 55
3.2.3 陰離子交換管柱 55
3.2.4 結論 55
第四章 Proteasome activating nucleotidase之表現與純化
4.1 加熱純化法 57
4.2 離子交換法 57
4.3 膠體過濾法 59
4.4 高效能液相層析儀 60
4.5 結論 61
第五章 20S proteasome 與 PAN之生化性質分析
5.1 20S proteasome 及其突變株之活性分析 62
5.2 20S proteasome 與 PAN 交互作用之分析 70
5.3 20S proteasome A30Y突變株結構之解析 86
5.3.1 20S proteasome 突變株 A30Y之純化 86
5.3.2 A30Y 蛋白質結晶之製備 88
第六章 總結 90
參考文獻 92
dc.language.isozh-TW
dc.title20S蛋白解體與PAN交互作用之分子作用機轉研究zh_TW
dc.titleStudy on the molecular mechanism of the interaction between 20S proteasome and proteasome activating nucleotidaseen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊榮輝,鄭貽生,陳威戎,黎煥耀
dc.subject.keyword蛋白解體,定位點突變,結晶,zh_TW
dc.subject.keywordproteasome,site-directed mutagenesis,crystals,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept微生物與生化學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
2.9 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved