請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40824完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳英黛(Ying-Tai Wu) | |
| dc.contributor.author | Meng-Yueh Chien | en |
| dc.contributor.author | 簡盟月 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:02:05Z | - |
| dc.date.available | 2010-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | 1. Aguillard RN, Riedel BW, Lichstein KL, et al. Daytime functioning in obstructive sleep apnea patients: exercise tolerance, subjective fatigue, and sleepiness. Appl Psychophysiol Biofeedback 1998;23:207-17.
2. Alisauskiene M, Magistris MR, Vaiciene N, et al. Electrophysiological evaluation of motor pathways to proximal lower limb muscles: a combined method and reference values. Clin Neurophysiol 2007;118:513-24. 3. Allaire J, Maltais F, Doyon JF, et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax 2004;59:673-78. 4. Alonso-Fernandez A, Garcia-Rio F, Arias MA, et al. Obstructive sleep apnoea-hypoapnoea syndrome versibly depresses cardiac response to exercise. Eur Heart J 2006;27:207-15. 5. American Academy of Sleep Medicine. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999;22:667-89. 6. American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 2002;166:518-628. 7. Arens R, McDonough JM, Corbin AM, et al. Upper airway size analysis by magnetic resonance imaging of children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 2003;167:65-70. 8. Arzt M, Young T, Finn L, et al. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med 2005;172:1447-51. 9. Babu AR, Herdegen J, Fogelfeld L, et al. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch Intern Med 2005;165:447-52. 10. Barker AT. An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 1991;8:26-37. 11. Barnes M, Houston D, Worsnop CJ, et al. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am J Respir Crit Care Med 2002;165:773-80. 12. Bearpark H, Elliott L, Grunstein R, et al. Snoring and sleep apnea: a population study in Australian men. Am J Respir Crit Care Med 1995;151:1459-65. 13. Bixler EO, Vgontzas AN, Ten Have T, et al. Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med 1998;157:144-8. 14. Boesch C, Slotboom J, Hoppeler H, et al. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 1997;37:484-93. 15. Boesch C, Machann J, Vermathen P, et al. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 2006;19:968-88. 16. Bonanni E, Pasquali L, Manca ML, et al. Lactate production and catecholamine profile during aerobic exercise in normotensive OSAS patients. Sleep Med 2004;5:137-45. 17. Bradford A. Effects of chronic intermittent asphyxia on haematocrit, pulmonary arterial pressure and skeletal muscle structure in rats. Exp Physiol 2004;89:44-52. 18. Brehm A, Krssak M, Schmid AI, et al. Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 2006;55:136-40. 19. Brouillette RT, Thach BT. A neuromuscular mechanism maintaining extrathoracic airway patency. J Appl Physiol 1979;46:772-9. 20. Buck M, Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 1996;15:1753-65. 21. Chien MY, Wu YT, Chang YJ. Assessment of diaphragm and external intercostals fatigue from surface EMG using cervical magnetic stimulation. Sensors 2008;8:2174-87. 22. Cole CR, Blackstone EH, Pashkow F, et al. Heart rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 1999;341:1351-7. 23. Colucci WS, Ribeiro JP, Rocco MB, et al. Impaired chronotropic response to exercise in patients with congestive heart failure. Role of postsynaptic beta-adrenergic desensitization Circulation 1989;80:314-23. 24. Deegan PC, McNicholas WT. Pathophysiology of obstructive sleep apnoea. Eur Respir J 1995;8:1161-78. 25. Demoule A, Verin E, Locher C, et al. Validation of surface recordings of the diaphragm response to transcranial magnetic stimulation in humans. J Appl Physiol 2003;94:453-61. 26. Doherty LS, Nolan P, McNicholas WT. Effects of topical anesthesia on upper airway resistance during wake-sleep transitions. J Appl Physiol 2005;99:549-55. 27. Dowell AR, Buckley CE, Cohen R, et al. Cheyne-Stokes respiration: a review of clinical manifestations and critique of physiological mechanisms. Arch Intern Med 1971;127:712-26. 28. Dubé J, Goodpaster BH. Assessment of intramuscular triglycerides: contribution to metabolic abnormalities. Curr Opin Clin Nutr Metab Care 2006;9:553-9. 29. Edward Shifflett D, Walker EW, Gregg JM, et al. Effects of short-term PAP treatment on endurance exercise performance in obstructive sleep apnea patients. Sleep Med 2001;2:145–51. 30. Faccenda JF, Mackay TW, Boon NA, et al. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med 2001;163:344-8. 31. Fenik P, Veasey SC. Pharmacological characterization of serotonergic receptor activity in the hypoglossal nucleus. Am J Respir Crit Care Med 2003;167:563-9. 32. Fletcher EC, Lesske J, Qian W, et al. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 1992;19:555-61. 33. Fletcher EC. Invited review: physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 2001;90:1600-5. 34. Forouhi NG, Jenkinson G, Thomas EL, et al. Relation of triglyceride stores in skeletal muscle cells to central obesity and insulin sensitivity in European and South Asian men. Diabetologia 1999;42:932-5. 35. Garland S. Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol 1991;435:547-58. 36. Gastaut H, Tassinari CA, Duron B. Polygraphic study of the episodic diurnal and nocturnal (hyponic and respiratory) manifestations of the Pickwickian syndrome. Brain Res 1965;2:167-86. 37. Gislason T, Johannsson JH, Haraldsson A, et al. Familial predisposition and cosegregation analysis of adult obstructive sleep apnea and the sudden infant death syndrome. Am J Respir Crit Care Med 2002;166:833-8. 38. Gosselin N, Matecki S, Poulain M, et al. Electromyographic change during exercise testing in patients with chronic obstructive pulmonary disease. Muscle Nerve 2003;27:170-9. 39. Gosselink R, Troosters T, DeCramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 1996;153:976-80. 40. Griggs GA, Findley LJ, Suratt PM, et al. Prolonged relaxation rate of inspiratory muscles in patients with sleep apnea. Am Rev respire Dis 1989;140:706-10. 41. Grote L, Kraiczi H, Hender J. Reduced alpha- and beta-adrenergic vascular response in patients with obstructive sleep apnea. Am J Crit Care Med 2000;1624:1480-7. 42. Hamm TM, Reinking RM, Stuart DG. Electromyographic responses of mammalian motor unit to a fatigue test. Electroencephalogr Clin Neurophysiol 1989;29:485-94. 43. Harsch IA, Schahin SP, Radespiel-Troger M, et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 2004;169:156-62. 44. Hers V, Liistro G, Dury M, et al. Residual effect of nCPAP applied for part of the night in patients with obstructive sleep apnoea. Eur Resp J 1997;10:973-6. 45. Heunks LMA, Dekhuijzen PNR. Respiratory muscle function and free radicals: from cell to COPD. Thorax 2000;55:704-16. 46. Hong S, Dimsdale JE. Physical activity and perception of energy and fatigue in obstructive sleep apnea. Med Sci Sports Exerc 2003;35:1088-92. 47. Hwang JH, Pan JW, Heydari S, et al. Regional differences in intramyocellular lipids in human observed by in vivo 1H-MRS spectroscopic imaging. J Appl Physiol 2001;90:1267-74. 48. Ip MS, Lam B, Ng MM, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 2002;165:670-6. 49. Jacob S, Machann J, Rett K, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 1999;48:1113-9. 50. Janssen I, Heymsfield SB, Wang Z, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol 2000;89:81-8. 51. Ji LL. Exercise, oxidative stress, and antioxidants. Am J Sports Med 1996;24:520-4. 52. John MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991:14:540-5. 53. Juel C. The effect of p2-adrenoceptor activation on ion-shifts and fatigue in mouse soleus muscle stimulated in vitro. Acta Physiol Scand 1988;134:209-16. 54. Kalethy AS, Chittenden TW, Hawkins BJ, et al. Unique cardiopulmonary exercise test responses in overweight middle-aged adults with obstructive sleep apnea. Sleep Med 2007;8:160-8. 55. Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest 2005;115:1699-702. 56. Kreis R, Boesch C. Spartially localized, one- and two-dimensional NMR spectroscopy and in vivo application to human muscle. J Mag Reson Ser B 1996;113:103-18. 57. Kryger M, Quesney LF, Holder D, et al. The sleep deprivation syndrome of the obese patient: a problem of periodic nocturnal upper airway obstruction. Am J Med 1974;56:531-9. 58. Laghi F, Tobin MJ. Relationship between transdiaphragmatic and mouth twitch pressures at functional residual capacity. Eur Respir J 1997;10:530-6. 59. Larson-Meyer DE, Smith SR, Heilbronn LK, et al. Muscle-associated triglyceride measured by computed tomography and magnetic resonance spectroscopy. Obes Res 2006;14:73-87. 60. Lauer MS, Francis GS, Okin PM, et al. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA 1999;281:524-9. 61. Lavie L. Obstructive sleep apnea syndrome: an oxidative stress disorder. Sleep Med Rev 2003;7:35-51. 62. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;282:C227-41. 63. Lin CC, Hsieh WY, Chou CS, et al. Cardiopulmonary exercise testing in obstructive sleep apnea syndrome. Respir Phsyiol Neurobiol 2006;150:27-34. 64. Machann J, Haring H, Schick F, et al. Intramyocellular lipids and insulin resistance. Diabet Obes Metab 2004;6:239-48. 65. Machann J, Stefan N, Schick F. 1H MR spectroscopy of skeletal muscle, liver and bone marrow. Eur J Radiol 2008, doi:10.1016/j.ejurad.2008.02.032. 66. MacIntyre NR. Muscle dysfunction associated with obstructive pulmonary disease. Respir Care 2006;51:840-8. 67. Mador MJ, Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res 2001;2:216-24. 68. Mador MJ, Bozkanat E, Kufel TJ. Quadriceps fatigue after cycle exercise in patients with COPD compared with healthy control subjects. Chest 2003;123:1104-11. 69. Madeder MT, Münzer T, Rickli H, et al. Association between heart rate recovery and severity of obstructive sleep apnea syndrome. Sleep Med 2007, doi:10.1016/j.s;eep.2007.08.16. 70. Malenfant P, Joanisse DR, Theriault R, et al. Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord 2001;25:1316-21. 71. Maltais F, Simard AA, Simard C, et al. Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med 1996;153:288-93. 72. Maltais F, Jobin J, Sullivan MJ, et al. Metabolic and hemodynamic responses of lower limb during exercise in patients with COPD. J Appl Physiol 1998;84:1573-80. 73. Man WD, Luo YM, Mustfa N, et al. Postprandial effects on twitch transdiaphragmatic pressure. Eur Respir J 2002;20:577-80. 74. Man WD, Moxham J, Polkey MI. Magnetic stimulation for the measurement of respiratory and skeletal muscle function. Eur Respir J 2004;24:846-60. 75. Marcus CL, Moreira GA, Bamford O, et al. Response to inspiratory resistive loading during sleep in normal children and children with obstructive apnea. J Appl Physiol 1999;87:1448-54. 76. Martin B, Heintzelman M, Chen HI. Exercise performance after ventilatory work. J Appl Physiol 1982;52:1581-5. 77. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9. 78. McGuire M, MacDermott M, Bradfold A. Effects of chronic episodic hypoxia on rat upper airway muscle contractile properties and fiber-type distribution. Chest 2002;122:1012-7. (a) 79. McGuire M, MacDermott M, Bradfold A. The effects of chronic episodic hypercapnic hypoxia on rat upper airway muscle contractile properties and fiber-type distribution. Chest 2002;122:1400-6. (b) 80. McGuire M, MacDermott M, Bradfold A. Effects of chronic intermittent asphyxia on rat diaphragm and limb muscle contractility. Chest 2003;123:875-81. 81. McKenzie DK, Gandevia SC. Phrenic nerve conduction times and twitch pressures of the human diaphragm. J Appl Physiol 1985;58:1496-504. 82. McNicholas WT. Compliance with nasal CPAP therapy for obstructive sleep apnea: how much is enough? Eur Respir J 1997;10:969-70. 83. McNicholas WT, Ryan S. Obstructive sleep apnea syndrome: translating science to clinical practice. Respirology 2006;11:136-44. 84. Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 2008;103:411-9. 85. Mezzanotte WS, Tangel DJ, White DP. Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Invest 1992;89:1571-9. 86. Mills GH, Kyroussis D, Hamnegard CH, et al. Unilateral magnetic stimulation of the phrenic nerve. Thorax 1995;50:1162-72. 87. Minoguchi K, Yokoe T, Tazaki T, et al. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med 2005;172:625-30. 88. Misra A, Sinha S, Kumar M, et al. Proton magnetic resonance spectroscopy study of soleus muscle in non-obese healthy and type 2 diabetic Asian Northern Indian males: high intramyocellular lipid content correlates with excess body fat and abdominal obesity. Diabetic Med 2003;20:361-7. 89. Mitch WE, Goldberg AL. Mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. N Engl J Med 1996;335:1897-905. 90. Montserrat JM, Kosmas EN, Cosio MG, et al. Lack of evidence for diaphragmatic fatigue over the course of the night in obstructive sleep apnea. Eur Respir J 1997;10:133-8. 91. Naeije R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005;2:20-2. 92. Neumann-Haefelin C, Kuhlmann J, Belz U, et al. Determinants of intramyocellular lipid concentrations in rat hindleg muscle. Magn Reson Med 2003;50:242-8. 93. Nieto FJ, Young TB, Lind BK, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 2000;283:1829-36. 94. O’Halloran KD, McGuire M, O’Hare T, et al. Chronic intermittent asphyxia impairs rat upper airway muscle responses to acute hypoxia and asphyxia. Chest 2002;122:269-75. 95. Ozkaplan A, Rhodes EC, Sheel AW, et al. A comparison of inspiratory muscle fatigue following maximal exercise in moderately trained males and females. Eur J Appl Physiol 2005;95:52-6. 96. Pack AI. Advances in sleep-disordered breathing. Am J Respire Crit Care Med 2006;173:7-15. 97. Pae EK, Wu H, Nguyen D, et al. Geniohyoid muscle properties and myosin heavy chain composition are altered after short-term intermittent hypoxia exposure. J Appl Physiol 2005;98:889-94. 98. Pastoris O, Dossena M, Foppa P, et al. Modification by chronic intermittent hypoxia and drug treatment on skeletal muscle metabolism. Neurochem Res 1995;20:143-50. 99. Patel SR, White DP, Malhotra A, et al. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch Intern Med 2003;163:565-71. 100. Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000;284:3015-21. 101. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet 2002;359:204-10. 102. Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999;48:1600-6. 103. Petersen KF, Dufour S, Befroy D, et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 2005;54:603-8. 104. Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 2002;90:G11-8. 105. Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin resistant offspring of patients with type 2 diabetes. N Engl J Med 2004;350:664-71. 106. Petrof BJ, Pack AI, Kelly AM, et al. Pharyngeal myopathy of loaded upper airway in dogs with sleep apnoea. J Appl Physiol 1994;76:1746-52. 107. Plankeel JF. McMullen B. MacIntyre NR. Exercise outcomes after pulmonary rehabilitation depend on the initial mechanism of exercise limitation among non-oxygen-dependent COPD patients. Chest 2005;127:110-6. 108. Polkey MI, Kyroussis D, Hamnegard CH, et al. Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996;154:1310-7. 109. Przybylowski T, Vielicki P, Kumor M, et al. Exercise capacity in patients with obstructive sleep apnea syndrome. J Physiol Pharmacol 2007;58 (suppl 5):563-574. 110. Punjabi NM, Shahar E, Redline S, et al. Sleep Heart Health Study I. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 2004;160:521-30. 111. Reid MB, Khwali FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigue muscle. J Appl Physiol 1993;75:1081-1087. 112. Remmers JE, deGroot WJ, Sauerland EK, et al. Pathogenesis of upper airway occlusion during sleep. J Appl Physiol 1978;44:931-8. 113. Ridker PM, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000;101:2149-53. 114. Romer LM, Lovering AT, Haverkamp HC, et al. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J Physiol 2005;571:425-39. 115. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 2005;112:2660-7. 116. Saarelainen S, Lahtela J, Kallonen E. Effect of nasal CPAP treatment on insulin sensitivity and plasma leptin. J Sleep Res 1997;6:146-7. 117. Saey D, Côté CH, Mador MJ, et al. Assessment of muscle fatigue during exercise in chronic obstructive pulmonary disease. Muscle Nerve 2006;34:62-71. 118. Sallis JF, Haskell WL, Wood PD, et al. Physical activity assessment methodology in Five-City Project. Am J Epidemiol 1985;121:91-106. 119. Sassani A, Findley LJ, Kryger M, et al. Reducing motor-vehicle collisions. Sleep 2004;27:453-8. 120. Schick F, Eismann B, Jung WI, et al. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 1993;29:158-67. 121. Schols AMWJ, Soeters PB, Dingemans AMC, et al. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis 1993;147:1151-6. 122. Series F, Simoneau JA, St. Pierre S, et al. Characteristics of the genioglossus and musculus uvulae in sleep apnea hypopnea syndrome and in snorers. Am J Respir Crit Care Med 1996;153:1870-4. 123. Serres I, Gautier V, Varray A, et al. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest 1998;113:900-5. 124. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001;163:19-25. 125. Shamsuzzaman AS, Winnicki M, Lanfranchi P, et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 2002;105:2462-4. 126. Sheel AW, Derchak PA, Morgan BJ, et al. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol 2001;15:277-89. 127. Sheel AW. Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med 2002;32:567-81. 128. Shepherd KL, Jensen CM, Maddison KJ, et al. Relationship between upper airway and inspiratory pump muscle force in obstructive sleep apnea. Chest 2006;130:1757-64. 129. Similowski T, Fleury B, Launois S, et al. Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans. J Appl Physiol 1989;67:1311-8. 130. Similowski T, Straus C, Attali V, et al. Assessment of the motor pathway to the diaphragm using cortical and cervical magnetic stimulation in the decision-making process of phrenic pacing. Chest 1996;110:1551-7. 131. Sinha R, Dufour S, Petersen HF, et al. Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents. Diabetes 2002;51:1022-7. 132. Sinha R, Rathi M, Misra A, et al. Subclinical inflammation and soleus muscle intramyocellular lipids in healthy Asian Indian males. Clin Endocrinol 2005;63:350-5. 133. Smith-Blair N. Mechanisms of diaphragm fatigue. AACN Clin Issues 2002;13:307-19. 134. Smurra M, Philip P, Taillard J, et al. CPAP treatment does not affect glucose-insulin metabolism in sleep apneic patients. Sleep Med 2001;2:207-13. 135. Spengler CM, Boutellier U. Breathless legs? Consider training your respiration. News Physiol Sci 2000;15:101-5. 136. Staron RS, Hagerman FC, Hikida RS, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 2000;46:623-9. 137. Stauffer JL, Buick MK, Bixler EO, et al. Morphology of the uvula in obstructive sleep apnea. Am Rev Respir Dis 1999;140:724-8. 138. Strassburg S, Springer J, Anker SD. Muscle wasting in cardiac cachexia. Int J Biochem Cell Biol 2005;37:1938-47. 139. Stulen FB, DeLuca CJ. Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans Biomed Eng 1981;28:515-23. 140. Sullivan CE, Issa FG, Berthon-Jones M, et al. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981;1:862-5. 141. Tamura Y, Tanaka Y, Sato F, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2005;90:3191-6. 142. Taylor BJ, How SC, Romer LM. Exercise-induced abdominal muscle fatigue in healthy humans. J Appl Physiol 2006;100:1554-62. 143. Tiao G, Fagan JM, Samuels N, et al. Sepsis stimulates nonlyosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J Clin Invest 1994;94:2255-64. 144. Trenell MI, Ward JA, Yee BJ, et al. Influence of constant positive airway pressure therapy on lipid storage, muscles metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome. Diabet Obes Metab 2007;9:679-87. 145. Unger RH. Weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003;144:5159-65. 146. Van Loon LJ, Koopman R, Stegen JH, et al. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 2003;553:611-25. 147. Vanuxem DBM, Guillot C, Delpierre S, et al. Impairment of muscle energy metabolism in patients with sleep apnea syndrome. Respir Med 1997;91:551-7. 148. Veasey SC, Davis CW, Fenik P, et al. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep 2004;27:194-201. 149. Verin E, Straus C, Demoule A, et al. Validation of improved recording site to measure phrenic conduction from surface electrodes in humans. J Appl Physiol 2002;92:967-74. 150. Vermathen P, Kreis R, Boesch C. Distribution of intramyocellular lipids in human calf muscles as determinate by MR spectroscopic imaging. Magn Reson Med 2004;51:253-262. 151. Virkamaski A, Korsheninnikova E, Seppala-Lindroos A, et al. Intramyocellular lipid associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 2001;50:2337-43. 152. Wen A. Marlyn M, Woo S, et al. How many maneuvers are required to measure maximal inspiratory pressure accurately? Chest 1997;111:807. 153. Yokoe T, Minoguchi K, Matsuo H, et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 2003;107:1129-34. 154. Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993;328:1230-5. 155. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med 1997;157:1746-52. 156. Young T, Shahar E, Nieto FJ, et al. Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med 2002;162:893-900. 157. Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. JAMA 2004;291:2013-6. 158. Zehnder M, Ith M, Kreis R, et al. Gender-specific usage of intramyocellular lipids and glycogen during exercise. Med Sci Sports Exercs 2005;37:1517-24. 159. Ziegler MG, Mills PJ, Loredo JS, et al. Effect of continuous positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep apnea. Chest 2001;120:887-93. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40824 | - |
| dc.description.abstract | 臨床證據顯示阻塞型睡眠呼吸中止症患者呈現較高發炎指標,而且與心血管疾病的罹病率和致死率有顯著相關。過去許多文獻探討發炎性疾病患者的骨骼肌功能異常,例如慢性阻塞型肺疾病和慢性心衰竭等,然而卻少有探討阻塞型睡眠呼吸中止症患者之骨骼肌功能。本論文分為三部份探討阻塞型睡眠呼吸中止症之骨骼肌失能、神經傳導延遲與代謝異常。所有患者均從台大醫院睡眠中心檢查名單中徵求,邀請年齡在40-65歲之間且肺功能檢查正常的男性參與所有實驗。
第一部分探討不同嚴重程度阻塞型睡眠呼吸中止症患者之呼吸肌功能。首先共有88位患者自願參與本研究,所有患者均接受睡眠檢查、嗜睡量表評估、呼吸肌肌力與耐力檢查、以及疲乏測試。所有呼吸肌測試項目均同步收集表皮肌電圖訊號,分析之參數包括均方根(root mean square)及中位頻譜分析(median power frequency)。此外,在疲乏測試前後以經頸磁場刺激器分別進行5次膈神經刺激,並以表皮肌電圖同步收集橫膈複合肌肉動作電位幅度與傳導時間(compound muscle action potential amplitude and latency)。受測者中有13位診斷為輕度患者、21位中度患者、34位重度患者、另外有20位無阻塞型睡眠呼吸中止症(對照組)。結果顯示重度患者之肌力和肌耐力較對照組顯著下降,而疲乏度顯著增高。輕度和中度患者之肌力與肌耐力則與對照組無顯著差異。此外,重度患者之最大自主收縮或磁場刺激器誘發的疲乏指標均較其他三組顯著;重度患者的橫膈複合肌肉動作電位幅度顯著較另三組低,神經傳導時間則顯著增長。此部分結果顯示重度患者呈現骨骼肌功能顯著異常。再於自願者中徵求15對年齡、身高、體重配對之重度患者與對照組,比較其呼吸肌與下肢肌肉功能的差異。受試者另接受右側膝伸肌肌力、肌耐力與疲乏度測試,並同步收集表皮肌電圖訊號。疲乏測試前後分別進行5次股神經刺激,亦以肌電圖同步收集股外側肌複合肌肉動作電位幅度與傳導時間。結果顯示重度患者之膝伸肌肌力和肌耐力顯著較對照組下降,但最大自主收縮或磁場刺激器誘發的疲乏度則未較對照組增加,神經傳導時間亦未顯著增長。此部分結果顯示重度患者的橫膈疲乏度較膝伸肌顯著。似乎不同部位肌肉因應不同負荷而產生不同適應是導致這些患者骨骼肌功能減退的重要因素之ㄧ。 第二部份探討下肢骨骼肌的代謝功能變化。共有20對年齡、身高、體重配對之重度患者與對照組參與此部份。所有受試者進行核磁共振氫譜掃描檢查股外側肌肌細胞內脂質、肌細胞外脂質、及兩者之比值,以比較兩組受試者的骨骼肌代謝功能是否有差異。另外分析血液中發炎指標、血脂肪參數(lipid profiles)和胰島素阻抗。結果顯示重度患者其肌細胞內脂質和肌細胞外脂質均較對照組顯著為低,其血液發炎指標、血脂肪參數及胰島素阻抗則較對照組高。然而肌細胞內脂質與各項血液參數均無顯著相關,但發炎指標為胰島素阻抗的獨立預測因子。結果顯示重度患者的骨骼肌和系統性代謝功能均受到影響,然而由於兩者之間並無顯著相關,其機制仍有待進一步探討。 第三部份繼續測試前述20對年齡、身高、體重配對之重度患者與對照組之運動耐力,並分析運動耐力受限之原因。所有受試者進行腳踏車最大運動耐力測試,收集氣體進行分析,並在運動過程中同步紀錄橫膈和股外側肌的表皮肌電圖訊號,以了解運動時橫膈和股外側肌的肌電變化。結果顯示重度患者之最大攝氧量較對照組顯著降低,運動耐力受限的主要原因與心跳增加不足及周邊骨骼肌功能不良有關。橫膈和股外側肌隨運動強度增加產生疲乏現象,低限運動時患者股外側肌徵召(recruitment)較橫膈顯著,然而中重度運動強度時患者的橫膈徵召較對照組顯著為高。顯示骨骼肌的確影響整體運動功能表現,但阻塞型睡眠呼吸中止症患者之肌肉參與模式與對照組不同。 最後綜合分析骨骼肌功能表現、神經傳導延遲及代謝異常等參數與阻塞型睡眠呼吸中止症嚴重度之間的相關性。結果顯示在控制年齡與身體質量指數之後,僅膈神經傳導延遲與疾病嚴重度(缺氧次數)呈顯著相關;骨骼肌功能表現和代謝異常參數則與最大運動耐力呈顯著相關。 本研究結論為阻塞型睡眠呼吸中止症患者之骨骼肌功能,包括功能表現、肌電反應、代謝功能,以及神經傳導時間,均與年齡和體型配對之對照組有顯著差異。其骨骼肌功能變化主要與各部位肌肉因使用不同而產生不同適應有關。雖然全身性發炎反應的影響無法排除,但以本研究的結果來看,局部適應的影響較為顯著。未來應以不同之介入研究深入探討其相關變化及可能機轉,以防止或改善患者之失能。 | zh_TW |
| dc.description.abstract | Obstructive sleep apnea (OSA) is associated with higher inflammatory markers. It has been reported that skeletal muscle dysfunction is common in systemic inflammatory diseases. However, whether skeletal muscle dysfunction developed in OSA is still unknown. The present study was designed to investigate the skeletal muscle dysfunction, nerve conduction delay, and metabolic abnormalities in patients with OSA. The men whose ages ranged 40-65 years and with normal pulmonary function were recruited.
The purpose of the first part was to investigate the inspiratory muscle function in patients with different severity of OSA. Eighty-eight participants firstly underwent polysomnography assessments were recruited. The measurements included Epworth sleepiness scale, strength and endurance of inspiratory muscles, and fatigue test during either maximal voluntary efforts or in response to cervical magnetic stimulation (CMS) with simultaneously sEMG recordings. The parameters of sEMG included root mean square, median power frequency, compound muscle action potential (CMAP) amplitude and latency, which represented phrenic nerve conduction time (PNCT). The results showed there were 20 subjects without OSA, 13 mild OSA, 21 moderate OSA, and 34 severe OSA. Patients with severe OSA had significantly lower levels of muscle strength and endurance, and higher fatigability than the subjects in the other three groups. Furthermore, the performance and sEMG parameters of inspiratory muscles and knee extensors were compared in a subgroup consisted of 15 pairs of patients with severe OSA and without OSA matched for age-, and body mass index (BMI). The participants received performance tests for vastus lateralis (VL) with simultaneous sEMG recording. It was shown that patients in OSA group had significantly lower strength and endurance of knee extensors, but no significant difference in fatigability than those of the controls. CMAP amplitude and latency for VL in OSA group were not significantly different from those in the control group. It indicated that different adaptations might play an important role on skeletal muscle dysfunction in severe OSA. The second part was designed to examine the metabolic characteristics of lower extremity in patients with OSA. Twenty pairs of patients with severe OSA and non-OSA controls matched with age and BMI volunteered to this part of study. Blood samples were drawn and proton magnetic resonance spectroscopy was used to detect intramyocellular and extramyocellular lipid contents (IMCL and EMCL). It was shown significantly lower values of IMCL and EMCL, higher inflammatory markers and insulin resistance, and worse lipid profiles in severe OSA group than the control group after controlling for age and BMI. There was no significant correlation between the biochemistrical variables and IMCL or EMCL. It seemed that metabolic properties changed in OSA patients; however, the mechanisms were needed to be further studied. The third part determined the exercise capacity with simultaneous sEMG recordings for diaphragm and VL during the exercise testing. Twenty patients with severe OSA and 20 matched controls participated in this study. The results showed that significantly lower values of oxygen consumption at peak exercise and at anaerobic threshold in OSA group. The major limiting factors were abnormal heart rate response to exercise and peripheral muscle fatigue. The sEMG results showed that knee extensors fatigued at the relatively lower exercise intensity in patients with OSA, but their inspiratory muscles fatigued only at the peak phase of exercise. Interrelationships among skeletal muscle dysfunction, nerve conduction delay, and metabolic properties in OSA showed that only PNCT correlated significantly with apnea-hypopnea index. Skeletal muscles performance, electromyographic properties, and metabolic properties were correlated significantly with exercise capacity. In summary, skeletal muscle dysfunction, nerve conduction delay, and metabolic abnormalities were observed in patients with severe OSA than their age-, and BMI-matched controls. Muscle adaptation to chronic increased activation might play an obvious role than the systemic oxidative stress in the effect of OSA on skeletal muscles. Future studies are needed to investigate the effect of intervention on skeletal muscle function in OSA populations, and to explore the possible mechanisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:02:05Z (GMT). No. of bitstreams: 1 ntu-97-D93428002-1.pdf: 4663664 bytes, checksum: af62a8b9b2ad5f05073f3de6d70aa771 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | CONTENTS
Approval………………………………………………………………i Acknowldegements ii Abstract (Chinese) iii Abstract (English) vi Abbreviation table ix CHAPTER xiii. Introduction 1 1.1. Background 1 1.2. Purposes 4 1.3. Hypotheses 5 1.4. Relevance 7 1.5. Limitation 8 CHAPTER 2. Literature Review 9 2.1. Review of obstructive sleep apnea 9 2.2. Skeletal muscle dysfunction in inflammatory diseases 21 2.3. Obstructive sleep apnea and skeletal muscle function 25 2.4. Cervical magnetic stimulation for respiratory muscle assessment 27 2.5. Assessment of intramyocellular lipid 31 CHAPTER 3. Impaired Skeletal Muscle Function: Performance and Electromyographic Properties 35 3.1. Background 35 3.2. Statement of the research problem 36 3.3. Method 37 3.4. Results 46 3.5. Disucssion 50 CHAPTER 4. Impaired Skeletal Muscle Function: Metabolic Characteristics 67 4.1. Background 67 4.2. Statement of the research problem 69 4.3. Method 69 4.4. Results 73 4.5. Dicussion 76 CHAPTER 5. Impaired Exercise Capacity: the Role of Skeletal Muscles in the Exercise Intolerance 84 5.1. Background 84 5.2. Statement of the research problem 86 5.3. Method 87 5.4. Results 90 5.5. Discussion 92 CHAPTER 6. Interrelationships among Skeletal Muscle Dysfunction, Nerve Conduction Delay, and Metabolic Properties in Obstructive Sleep Apnea 104 6.1. Relationships among skeletal muscle performance, physical activity, exercise capacity, and severity of obstructive sleep apnea 104 6.2. Relationships among diaphragmatic electromyographic properties, diaphragmatic performance, and severity of obstructive sleep apnea 105 6.3. Relationships among electromyographic properties of vastus lateralis, knee extensors performance, and severity of obstructive sleep apnea 106 6.4. Relationships among skeletal muscles metabolic properties, biochemistrical results, exercise capacity, and severity of obstructive sleep apnea 107 CHAPTER 7. Conclusion 117 REFERENCES 120 APPENDIX …………. 131 LIST of TABLE Table 1. Baseline characteristics of the subjects 58 Table 2. Inspiratory muscle strength and surface electromyographic parameters of diaphragm at before and after maximal voluntary ventilation maneuvers among the four groups. 59 Table 3. Partial correlation coefficients of apnea-hypopnea index and different parameters of inspiratory muscles function after controlling for age and body height 60 Table 4. Multiple regression analysis of apnea-hypopnea index and surface electromyographic parameters 61 Table 5. Baseline characteristics of subgroup subjects 62 Table 6. Strength, endurance, and surface electromyographic parameters of inspiratory muscles and knee extensors before and after fatigue protocol 63 Table 7. Patient characteristics and baseline measurements 80 Table 8. Results of proton magnetic resonance spectroscopy 81 Table 9. Biochemistrical results 82 Table 10. Partial correlation coefficients between biochemistrical data and proton magnetic resonance spectroscopy results after controlling for age and body mass index 83 Table 11. Cardiopulmonary exercise test results 99 Table 12. Basic characteristics of participants in section of 6.1 109 Table 13. Partial correlation coefficients among skeletal muscle performance, physical activity, exercise capacity, and severity of obstructive sleep apnea after controlling for age and body mass index 110 Table 14. Basic characteristics of participants in section of 6.2. 111 Table 15. Partial correlation coefficients among diaphragmatic electromyographic properties, diaphragmatic performance, and severity of obstructive sleep apnea after controlling for age and body mass index 112 Table 16. Basic characteristics of participants in section of 6.3. 113 Table 17. Partial correlation coefficients among electromyographic properties of vastus lateralis, knee extensors performance, and severity of obstructive sleep apnea after controlling for age and body mass index 114 Table 18. Basic characteristics of participants in section of 6.4. 115 Table 19. Partial correlation coefficients among skeletal muscles metabolic properties, biochemistrical results, exercise capacity, and severity of obstructive sleep apnea after controlling for age and body mass index 116 LIST of FIGURE Figure 1. Illustration of the protocol of fatigue test 64 Figure 2. Example of right diaphragmatic surface electromyographic recordings for motor response with cervical magnetic stimulation is presented. 65 Figure 3. Compound muscle action potential latency and amplitude of diaphragm before and after endurance test among the four groups. 66 Figure 4. Example of signals for chest wall motion, and raw electromyography of diaphragm and vastus lateralis during exercise test 100 Figure 5. Normalized root mean square of diaphragm and vastus lateralis during exercise test. 101 Figure 6. Median power frequency of diaphragm and vastus lateralis during exercise test. 102 Figure 7. Comparisons of normalized root mean square of diaphragm and vastus lateralis during exercise test. 103 Figure 8. Hypothesis of skeletal muscle dysfunction in obstructive sleep apnea. 119 | |
| dc.language.iso | en | |
| dc.subject | 核磁共振氫譜掃描 | zh_TW |
| dc.subject | 阻塞型睡眠呼吸中止症 | zh_TW |
| dc.subject | 骨骼肌 | zh_TW |
| dc.subject | 呼吸肌 | zh_TW |
| dc.subject | 磁場刺激 | zh_TW |
| dc.subject | 肌電圖 | zh_TW |
| dc.subject | Skeletal muscle | en |
| dc.subject | Inspiratory muscle | en |
| dc.subject | Magnetic stimulation | en |
| dc.subject | Obstructive sleep apnea | en |
| dc.subject | 1H magnetic resonance spectroscopy | en |
| dc.subject | Electromyography | en |
| dc.title | 阻塞型睡眠呼吸中止症之骨骼肌失能、神經傳導延遲與代謝異常 | zh_TW |
| dc.title | Skeletal Muscle Dysfunction, Nerve Conduction Delay, and Metabolic Abnormalities in Obstructive Sleep Apnea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊泮池,蔡元奮,施庭芳,王淑芬,張雅如 | |
| dc.subject.keyword | 阻塞型睡眠呼吸中止症,骨骼肌,呼吸肌,磁場刺激,肌電圖,核磁共振氫譜掃描, | zh_TW |
| dc.subject.keyword | Obstructive sleep apnea,Skeletal muscle,Inspiratory muscle,Magnetic stimulation,Electromyography,1H magnetic resonance spectroscopy, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
