請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40800
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭倫 | |
dc.contributor.author | Mei-Fang Lin | en |
dc.contributor.author | 林梅芳 | zh_TW |
dc.date.accessioned | 2021-06-14T17:00:52Z | - |
dc.date.available | 2009-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | Akaike H. 1974. New look at statistical-model identification. IEEE Transactions on Automatic Control 19: 716-723.
Beagley CT, Macfarlane JL, Pont-Kingdon GA, Okimoto R, Okada NA, Wolstenholme DR. 1995. Mitochondrial genomes of Anthozoa (Cnidaria). Progress in Cell Research 5: 149-153. Beagley CT, Okada NA, Wolstenholme DR. 1996. Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: One intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America 93: 5619-5623. Beagley CT, Okimoto R, Wolstenholme DR. 1998. The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics 148: 1091-1108. Beaton MJ, Roger AJ, Cavelier-Smith T. 1998. Sequence analysis of the mitochondrial genome of Sarcophyton glaucum: conserved gene order among octocorals. Journal of Molecular Evolution 47: 697-708. Beckenbach AT, Robson SKA, Crozier RH. 2005. Single nucleotide +1 frameshifts in an apparently functional mitochondrial cytochrome b gene in ants of the genus Polrhachis. Journal of Molecular Evolution 60: 141-152. Boore JL, Brown WM. 1998. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Genetics and Development 8: 668-674. Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Research 27: 1767-1780. Boore JL. 2000. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterosome animals. In comparative genome. Sankoff D, Nadeau J (eds) Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 133-147. Boore JL, Macey JR, Medina M. 2005. Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymology 395: 311-348. Boore JL, Medina M, Rosenberg LA. 2004. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the bivalve Mytilus edulis. Molecular Biology and Evolution 21: 1492-1503. Brugler MR, France SC. 2007. The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Molecular Phylogenetics and Evolution 42: 776-788. Cairns SD. 1989. A revision of the ahermatypic Scleractinia of the Philippine Islands and adjacent waters, Part 1: Fungiacyathidae, Micrabaciidae, Turbinolliinae, Guyniidae, and Flabellidae. Smithsonian Contributions to Zoology, Washington, DC, 486: 136 pp. 42 pls. 3 figs. Cairns SD. 1995. The marine fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa). New Zealand Oceanographic Institute Memoirs 103: 1-216. Cairns SD, Zibrowius H. 1997. Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions. In A. Crosnier and P. Bouchet (eds.), Résultas des Campagnes MUSORSTOM 16. Mémoires du Muséum National d’Histoire Naturelle, Paris, France, 172: 27-243, 29 plates. Cairns SD. 1999(a). Species richness of recent Scleractinia. Atoll Research Bulletin, National Museum of Natural History Smithsonian Institution Washington, DC, USA, 459: 1-46. Cairns SD. 1999(b). Cnidaria Anthozoa: deep-water azooxanthellate Scleractinia from Vanuatu, and Wallis and Futuna Islands. In A. Crosnier (ed.), Résultas des Campagnes MUSORSTOM 20. Mémoires du Muséum National d’Histoire Naturelle, Paris, France, 180: 31-167, 22 plates. Cairns SD. 2004. The azooxanthellate Scleractinia (Coelenterata: Anthozoa) of Australia. Records of the Australian Museum 56: 259-329. Chen CA, Odorico DM, Tenlohuis M, Veron JEN, Miller DJ. 1995. Systematic relationships within the Anthozoa (Cnidaria, Anthozoa) using the 5'-end of the 28S rDNA. Molecular Phylogenetics and Evolution 4: 175-183. Chen CA, Wallace CC, Wolstenholme J. 2002. Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Molecular Phylogenetics and Evolution 23: 137-149. Chen CA, Wallace GC, Yu JK, Wei NV. 2000. Strategies for amplification by polymerase chain reaction of the complete sequence of the gene encoding nuclear large subunit ribosomal RNA in corals. Marine Biotechnology 2: 558-570. Cheng S, Chang SY, Gravitt P, Respess R. 1994. Long PCR. Nature 369: 684-685. Chen C, Dai CF, Plathong S, Chiou CY, Chen CA. 2008. The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia : Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. Molecular Phylogenetics and Evolution 46: 19-33. Chen C. 2008. Mitochondrial genome of the Pocilloporid Scleractinian. Doctoral dissertation. Institute of Oceanography, National Taiwan University, Taipei, Taiwan. Chuang YY. 2006. Mitogenomics and molecular evolution of the group I intron in the cytochrome oxidase I gene of Siderastrea (Cnidaria; Scleractinia; Siderastrea). Master's thesis. Institute of Oceanography, National Taiwan University, Taipei, Taiwan. Freiwald A. 2002 In Ocean Margin Systems, Wefer G, et al. (eds.) Springer, Berlin. pp. 365-385. Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N. 2004. Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58: 324-337. Fukami H, Knowlton N. 2005. Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24: 410-417. Fukami H, Chen CA, Chiou CY, Knowlton N. 2007. Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of scleractinian corals. Journal of Molecular Evolution 64: 591-600. Fautin DG, Lowenstein JM. 1992. Phylogenetic relationship among scleractinians, actinians and corallimorpharians (Coelenterata: Anthozoa). Proceedings of the Seventh International Coral Reef Symposium 2: 665-670. Filkorn HF, Alor JP. 2004. A new early cretaceous coral (Anthozoa; Scleractinia; Dendrophylliina) and its evolutionary significance. Journal of Paleontology 78: 501-512. George D, Stanley Jr. 1981. Early history of scleractinian corals and its geological consequences. Geology 9: 507-511. Gish W, States DJ. 1993. Identification of protein coding regions by database similarity search. Nature Genetics 3: 266-272. Haen KM, Lang BF, Pomponi SA, Lavrov DV. 2007. Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution? Molecular Biology and Evolution 24: 1518-1527. Hoffmann RJ, Boore JL, Brown WM. 1992. A novel mitochondrial genome organization for the blue mussel Mytilus edulis. Genetics 131: 397-412. Hodgson G, Carpenter K. 1995. Scleractinian corals of Kuwait. Pacific Science 49: 227-246. Kaiser M, et al. 2005. Marine Ecology: Processes, Systems, and Impacts. Oxford, UK: Oxford University Press. pp. 340-365. Keane TM, Naughton TJ, McInerney JO. 2007. MultiPhyl: A high-throughput phylogenomics webserver using distributed computing. Nucleic Acids Research, 35:W33-W37. Keller NB, Shcherba IG. 2006. Features of the distribution of azooxanthellata scleractinia (Anthozoa) on mid-Pacific guyots. Oceanology 46: 238-241. Kumar S, Tamura K, Nei M. 1994. Mega - Molecular Evolutionary Genetics Analysis Software for Microcomputers. Computer Applications in the Biosciences 10: 189-191. Lavrov DV, Boore JL, Brown WM. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangement: duplication and non-random loss. Molecular Biology and Evolution 19: 163-169. Lavrov DV, Lang BF. 2005. Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Systematic Biology 54: 651-659. Le Goff-Vitry MC, Rogers AD, Baglow D. 2004. A deep-sea slant on the molecular phylogeny of the Scleractinia. Molecular Phylogenetics and Evolution 30: 167-177. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955-964. Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL. 2006. Naked corals: skeleton loss in Scleractinia. Proceedings of the National Academy of Sciences of the USA, 103: 9096-9100. Mindell DP, Sorenson MD, Dimcheff DE. 1998. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Molecular Biology and Evolution 15: 1568-1571. Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecological Economics 29: 215-233. Moritz C, Dowling TE, Brown WM. 1987. Evolution of animal mitochondrial DNA relevance for population biology and systematics. Annual Review of Ecology and Systematics 18: 269-292. Newell ND. 1955. Depositional fabric in Permian reef limestones. Journal of Geology 63: 301-309. Newell ND. l971. An outline history of tropical organic reefs. American Museum Novitates 2465. Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Okimoto R, Chamberlin HM, Macfarlane JL, Wolstenholme DR. 1991. Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne) nucleotide sequences, genome location and potential for host race identification. Nucleic Acids Research 19: 1619-1626. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR. 1992.The mitochondrial genomes of 2 nematodes Caenorhabditis elegans and Ascaris suum. Genetics 130: 471-498. Pearse VB, Muscatin L. 1971. Role of symbiotic algae (Zooxanthellae) in coral calcification. Biological Bulletin 141: 350-363. Pontkingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavaliersmith T, Clarkwalker GD. 1995. A coral mitochondrial muts gene. Nature 375: 109-111. Pont-Kingdon G, Okada NA, Macfarlane JL, Beagley CT, Watkins-Sims CD, Cavalier-Smith T, Clark-Walker GD, Wolstenholme DR. 1998. Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. Journal of Molecular Evolution 46: 419-431. Reed JK. 2002. Comparison of deep-water coral reefs and lithoherms off southeastern USA. Hydrobiologia 471: 57-69. Romano SL, Palumbi SR. 1997. Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. Journal of Molecular Evolution 45: 397-411. Romano SL, Cairns SD. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science 67: 1043-1068. Roberts JM, Long D, Wilson JB, Mortensen PB, Gage JD. 2003. The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: Are they related? Marine Pollution Bulletin 46: 7-20. Roberts JM, Wheeler AJ, Freiwald A. 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312: 543-547. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. Ronquist F, Huelsenbeck JP, Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. Romano SL, Palumbi SR. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science 271: 640-642. Riepsamen AH, Blok VC, Phillips M, Gibson T, Dowton M. 2007. Poly(T) variation within mitochondrial protein-coding genes in Globodera (Nematoda: Heteroderidae). Journal of Molecular Evolution 66: 197-209. Schuhmacher H, Zibrowius H. 1985. What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4: 1-9. Shirai K, Kusakabe M, Nakai S, Ishii T, Watanabe T, Hiyagon H, Sano Y. 2005. Deep-sea coral geochemistry: implication for the vital effect. Chemical Geology 224: 212-222. Stolarski J. 1995. Ontogenetic development of the thecal structures in Caryophylliine scleractinian corals. Acta Palaeontologica Polonica 40: 19-44. Stolarski J, Roniewicz E. 2001. Towards a new synthesis of evolutionary relationship and classification of Scleractinia. Journal of Paleontology 75: 1090-1108. Swofford DL. 1999. PAUP: Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland, MA. Tseng CC, Wallace CC, Chen CA. 2005. Mitogenomic analysis of Montipora cactus and Anacropora matthai (Cnidaria; Scleractinia; Acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24: 502-508. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599. Thompson JD, Higgins DG, Gibson TJ. 1994. ClustalW improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680. van Oppen MJH, Catmull J, McDonald BJ, Hislop NR, Hagerman PJ, Miller DJ. 2002. The mitochondrial genome of Acropora tenuis (Cnidaria: Scleractinia) contains a large group I intron and a candidate control region. Journal of Molecular Evolution 55: 1-13. van Oppen MJH, Hislop NR, Hagerman PJ, Miller DJ. 1999 (a).Gene content and organization in a segment of the mitochondrial genome of the scleractinian coral Acropora tenuis: major differences in gene order within the anthozoan subclass Zoantharia. Molecular Biology Evolution 16: 1812-1815. van Oppen MJH, Willis BL, Miller DJ. 1999 (b). Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proceedings of the Royal Society B: Biological Sciences 266: 179-183. Vaughan TW, Wells JW. 1943. Revision of the suborders families, and genera of the Scleractinia. Geological Society of America, New York, USA, pp. 69-99. Veron JEN. 1995. Corals in space and time: the biogeography and evolution of the scleractinian. University of New South Wales Press, Sydney, Australia. Veron JEN. 2000. Corals of the world. Australian Institute of Marine Science, Queensland, Australia. Verheij E, Best MB. 1987. Notes on the genus Polycyathus Duncan, 1876 and a description of three new scleractinian corals from the Indo-Pacific. Zoologische Mededelingen 61: 147-154. Wells JW. 1956. Scleractinia. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, KS, F328-444. Yamazaki N, Ueshima R, Terrett J, et al. (12 co-authors). 1997.Evolution of pulmonate gastropod mitochondrial genomes: comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures. Genetics 145: 749-758. Yonge CM. 1968. Review lecture: living corals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 169: 329-344. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40800 | - |
dc.description.abstract | 近年來利用分子親緣研究顯示無共生藻石珊瑚的演化關係仍需進一步探討。 本論文以Fungiacyathus stephanus和Madrepora oculata兩種無共生藻石珊瑚,以及Polycyathus sp.和Euphyllia ancora兩種有共生藻石珊瑚作為研究材料,比較無共生藻石珊瑚和有共生藻石珊瑚粒線體基因組中的差異,並和已知石珊瑚粒線體基因比較,加以分析其親緣關係。
研究結果發現,無共生藻石珊瑚粒線體基因組和有共生藻石珊瑚基因組相似,但個別支序中擁有許多獨立的特徵: (一)本研究首度發現珊瑚粒線體基因組內基因間的排列重組。在Madrepora粒線基因組中,細胞色素氧化酶第二次單元基因 (cytochrome oxidase subunit II, cox2) 和細胞色素氧化酶第三次單元基因 (cytochrome oxidases subunit III, cox3) 之間發生基因重新排列。另外,NADH脫氫酶第四次單元基因 (NADH dehydrogenase subunit 4, nad4) 的五撇端具有胸腺嘧啶的細胞間異質性現象 (heteroplasm) ; (二) Fungiacyathus具有較長的基因間區且在細胞色素氧化酶第一次單元基因 (cytochrome oxidase subunit I, cox1) 中發現第一型介入子 (group I intron) 插入,而造成其基因體結構較為鬆散 (> 19 kb);(三)相反的,因基因間區較短,使得Polycyathus則為目前已知珊瑚粒線體中基因排列最緊密的粒線體 (< 16 kb);(四)在Euphyllia中發現目前石珊瑚中已知最長的cox1基因。 以粒線體基因片段序列親緣關係分析也支持這四個粒線體基因組的特徵演化。Madrepora在石珊瑚中呈現獨立分支,對應了在其基因重組的特殊性;而具有第一型介入子的Fungiacyathus和一群也具有第一型介入子的複雜珊瑚群 (complex clade)有較相近的關係,顯示無共生藻石珊瑚和有共生藻石珊瑚可能具有相同的第一型介入子來源;而Polycyathus和Euphyllia的分據親緣樹上的強壯珊瑚系群 (robust clade) 和複雜珊瑚系群,則支持了葵珊瑚亞目 (suborder Caryophylliina) 為非單一起源。 | zh_TW |
dc.description.abstract | Because only a few studies of azooxanthellate scleractinians exist and results of 16S rDNA analyses of coral phylogeny are ambiguous, a mitochondrial genomics study can provide further understanding of scleractinian evolution. Both Euphyllia ancora and Polycyathus sp. which contain zooxanthellae belong to the suborder Caryophylliina and were previously separated into the robust subclade with family-level debates. The genera, Fungiacyathus and Madrepora, have also been the subject of taxonomic debate after radioimmunoassay and mitochondrial sequence analyses.
Four mitochondrial (mt) genomes, two from azooxanthallate corals, Fungiacyathus stephanus and Madrepora oculata, and two from zooxanthellate corals, Euphyllia ancora and Polycyathus sp., were sequenced in this study. Three major features were discovered in the azooxanthellate mt genomes. First, gene rearrangement of cytochrome oxidase subunit II (COII) and cytochrome oxidase subunit III (COIII) and a poly (T) variation in the nad4 protein-coding gene were found in the mt genome of M. oculata. These characters are discussed in the Scleractinia for the first time. Second, F. stephanus presented a loose genome (19,381 bp) with a group I intron in the cox1 gene. In contrast, the zooxanthellate coral, Polycyathus sp., had the most compact mt genome (15,356 bp) among all the scleractinians known to date. Euphyllia ancora presented an extremely long cox1 gene. Phylogenetic analyses also showed unique information of these four mt genomes in the evolutionary trees, and M. oculata formed a single lineage with robust clade corals, supporting the result of rearrangement of the COII and COIII genes. Fungiacyathus stephanus grouped with the Poritidae. The cox1 group I intron occurs in the Fungiacyathus-Poritidae lineage. The high sequence similarity of cox1 intron nucleotides between Fungicyathus and the Poritidae indicates that azooxanthellate and zooxanthellate corals have the same origin of cox1 group I intron. The two Caryophylliina corals, Polycyathus and Euphyllia, were respectively grouped with the robust and complex clades. This suggests that Caryophylliina corals are not monophyletic. In conclusion, based on a mitogenomic approach, this study provides some insights into the phylogenetic relationships and evolution of mitochondrial genomes among these taxonomically ambiguous taxa. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:00:52Z (GMT). No. of bitstreams: 1 ntu-97-R95241215-1.pdf: 1188100 bytes, checksum: 84832bd69db25e380eb23b70afa06f82 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………i
誌謝……………………………………………………………………………………ii 中文摘要………………………………………………………………………………………… …2 Abstract…………………………………………………………………………………………3 Introduction…………………………………………………………………………………………5 General biology of azooxanthellate scleractinian corals……………………………………………5 The evolutionary history of azooxanthellate corals……………………………………………………6 Molecular phylogenetics of scleractinians and the phylogenetic position of azooxanthellate corals……………………………………………………………………………………………………8 Mitogenomic approaches to azooxanthellate corals……………………………………………………9 Aims of this study………………………………………………………………………………………11 Materials and Methods………………………………………………………………………………13 Coral sample collection………………………………………………………………………………13 Coral species…………………………………………………………………………………………13 DNA extraction………………………………………………………………………………………16 Long-PCR and universal primer design………………………………………………………………17 Cloning and sequencing………………………………………………………………………………18 Genome annotation and sequence analysis……………………………………………………………19 Amplification of poly (T) variation within the nd4 gene in M oculata……………………………20 Molecular phylogeny…………………………………………………………………………………21 Result…………………………………………………………………………………………………22 Mitochondrial genome organization…………………………………………………………………22 Gene rearrangement and the variation of poly thymine of nad4 in M oculata………………………23 Intergenic spaces and gene density…………………………………………………………………24 Gene length……………………………………………………………………………………………25 Nucleotide composition………………………………………………………………………………25 tRNA structure………………………………………………………………………………………26 Codon usage…………………………………………………………………………………………26 Phylogeny………………………………………………………………………………………………28 Discussion……………………………………………………………………………………………30 Unique mitochondrial genome of M oculata………………………………………………………30 Fungiacyathus`s cox1 group I intron and its phylogenetic relationship with Corallimorparia………33 Compact genome of Polycyathus sp…………………………………………………………………35 Phylogenetic analysis of Polycyathus and Euphyllia support the suborder caryophylliina is not monophyletic……………………………………………………………………………………………36 Conclusion……………………………………………………………………………………………39 Reference………………………………………………………………………………………………40 | |
dc.language.iso | en | |
dc.title | 無共生藻石珊瑚和有共生藻石珊瑚粒線體基因組之演化比較研究 | zh_TW |
dc.title | Mitochondrial genomic comparison provides evolutionary insights into relationships between azooxanthellate and zooxanthellate scleractinians (Cnidaria; Anthozoa) | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 戴昌鳳,于宏燦,湯森林 | |
dc.subject.keyword | 石珊瑚,粒線體基因組, | zh_TW |
dc.subject.keyword | scleractinian corals,mitochondrial genome, | en |
dc.relation.page | 35 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。