請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40771
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王根樹 | |
dc.contributor.author | Hui-Chuan Lin | en |
dc.contributor.author | 林慧娟 | zh_TW |
dc.date.accessioned | 2021-06-14T16:59:37Z | - |
dc.date.available | 2009-08-14 | |
dc.date.copyright | 2008-08-14 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | Aiken, G. R., McKnight, D. M., Thorn, K. A. and Thurman, E. M. (1992). Isolation of hydrophilic organic acids from water using nonionic macroporous. Org. Geochem. 18 (44). 567-573.
Bolto, B., Abbt-Braun, G., Dixon, D., Eldridge, R., Frimmel, F. H., Hesse, S., King, S. and Toifl, M. (1999). Experimental Evaluation of Cationic Polyelectrolytes for Removing Natural Organic Matter from Water. Wat. Sci. Tech. 40 (9). 71-79. Brinkmann, T., Sartorius, D. and Frimmel, F. H. (2003). Photobleaching of humic rich dissolved organic matter. Aquat.Sci. 65 (4). 415-424. Buchanan, W., Roddick, F. and Porter, N. (2006). Formation of hazardous by-products resulting from the irradiation of natural organic matter: Comparison between UV and VUV irradiation. Chemosphere 63 (7). 1130-1141. Buchanan, W., Roddick, F., Porter, N. and Drikas, M. (2005). Fractionation of UV and VUV Pretreated Natural Organic Matter from Drinking Water. Environ. Sci. Technol 39 (12). 4647-4654. Chen, H. W. (1999). Decomposition of organic matters in aqueous solution by UV/H2O2 process. Thesis Decomposition of organic matters in aqueous solution by UV/H2O2 process. Thesis (Ms.).National Taiwan University Institute of Environment Health, College of Public Health Chiu, C. A. (2006). Effect of pre-chlorination on algae as precursors for disinfection by-products. Thesis Effect of pre-chlorination on algae as precursors for disinfection by-products. Thesis (Ms.).National Taiwan University Institute of Environment Health, College of Public Health Chow, C. W. K., Fabris, R. and Drikas, M. (2004). rapid fractionation technique to characterise natural organic matter for the optimisation of water treatment process. J. Water SRT-Aqua 53 (2). 85-92. Croue, J. P., Violleau, D., Labouyrie-Rouillier, L., Leenheer, J. L. and Aiken, G. (1999). DBP formation potentials of hydrophobic and hydrophilic NOM fractions: A comparison between a low and a high-humic water. . Division of Environmental Chemistry Preprints of Extended Abstracts 39: 218-219. Douglas, M. O., Gray, L. A., Zaid, K. C., Rajendra, P., George, M. and Kathy, V. (1995). NOM characterization and treatability. AWWA 87 (1). 46-63. Edzwald, J. K. and Tobiason, J. E. (1999). Enhanced Coagulation: USA Requirements and a Broader View. Wat. Sci. Tech. 40 (9). 63-70. Emma, H. G. (2003). Natural Organic Matter Character and Reactivity: Assessing Seasonal Variation in a Moorland Water. Thesis Natural Organic Matter Character and Reactivity: Assessing Seasonal Variation in a Moorland Water. Thesis (Eng.D.).Cranfield University School Water Sciences EPA, R.O.C. (Taiwan), Executive Yuan. [online]. Available from: http://wqshow.epa.gov.tw/ Galapate, R. P., Baes, A. U. and Okada, M. (2001). Transformation of dissolved organic matter during ozonation: Effects on trihalomethane formation potential. Wat. Res. 35 (9). 2001-2006. Hua, G. and Reckhow, D. A. (2007). Characterization of disinfection byproduct precursors based on hydrophobicity and molecular. Environ. Sci. Technol. 41 (9). 3309-3315. Jolley, R. L. (1987). Concentration Techniques for Isolating Organic Constituents in Environmental Water Samples In: Suffet, I. H. and Murugan, M.,ed. Organic Pollutants in Water: Sampling, Analysis, and Toxicity Testing. Advances in Chemistry No.214 Washington, D.C.: American Chemical Society, 3-14 Kim, H. C. and Yu, M. H. (2005). Characterization of natural organic matter in conventional water treatment process for selection of treatment process focused on DBPs control. Water Res. 39 (19). 4779-4789. Kleiser, G. and Frimmel, F. H. (2000). Removal of precursors for disinfection by-products DBPs differences between ozone- and OH-radical-induced oxidation. Sci. Total Environ. 256 (1). 1-9. Krasner, S. W., Croue, J. P., Buffle, J. and Perdue, E. M. (1996). Three Approaches for Characterizing NOM. AWWA 88 (6). 66-79. Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D. and Thruston, J. A. D. (2006). Occurrence of a New Generation of Disinfection Byproducts. Environ. Sci. Technol. 40 (23). 7175-7185. Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol, 15: 578-587. Leenheer, J. A. and Croue, J. P. (2003). Characterizing dissolved Aquatic organic matter. Environ. Sci. Technol. 37 (1). 18A-26A. Leenheer, J. A., Croue, J. P., Benjamin, M., Korahin, G. V., Hwang, C. J., Bruchet, A. and Aiken, G. R. (2000). Comprehensive isolation of natural organic matter from water for spectral characterizations and reactivity testing.In: Society, A. C.,ed. Natural Organic Matter and Disinfection By-Products Washington, D.C: American Chemical Society, 68-83 Lim, S. M., Chiang, K., Amal, R., Fabris, R., Chow, C. and Drikas, M. (2007). A study on the removal of humic acid using advanced oxidation processes. Sep. Sci. Technol. 42 (7). 1391-1404. Malcolm, R. L. and MacCarthy, P. (1992). Quantitative Evaluation of XAD-8 and XAD-4 Resins used in Tandem for Removing Organic Solutes from Water. Environ. Intern. 18 (6). 597-607. Muellner, M. G., E.D., W., McCalla, K., Richardson, S. D., Woo, Y. T. and Plewa, M. J. (2007). Haloacetonitriles vs. Regulated Haloacetic Acids: Are Nitrogen-Containing DBPs More Toxic? Environ. Sci. Technol. 41 (2). 645-651. Peurovuori, J., Pihlaja, K. and Valimaki, N. (1997). Isolation and characterization of natural organic matter from lake water: two different adsorption chromatographic methods. Environ. Int. 23 (4). 453-464. Richardson, S. D. (2003). Disinfection by-products and other emerging contaminants in drinking water. Trends Anal. Chem. 22 (19). 666-684. Rook, J. J. (1974). Formation of haloforms during chlorination of nature waters. Wat. Treat. Exam. 23 (2). 234-243. Singer, P. C. (1999). Humic substances as precursors for potentially harmful disinfection by-products. Wat. Sci. Tech. 40 (9). 25-30. Sohn, J., Amy, G. and Yoon, Y. (2007). Process-train profiles of NOM through a drinking water treatment plant. AWWA 99 (6). Song, R., Minear, R. A., Amy, G., Westerhoff, P. and Siddiqui, M. (1993). Comparison of bromide-ozone reactions with NOM separated by XAD-8 resin and UF/RO membrane methods Division of Environmental Chemistry Conference Proceedings, Chicago, I.L. Swietlik, J., Dabrowska, A., Raczyk-Stanisławiak, U. and Nawrocki, J. (2004). Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res. 38 (3). 547-558. Thomson, J., Roddick, F. A. and Drikas, M. (2004). Vacuum ultraviolet irradiation for natural organic matter removal J. Water SRT-Aqua 53: 193-206. Thurman, E. M. and Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 15: 463-466. Toor, R. and Mohseni, M. (2007). UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere 66 (11). 2087-2095. USEPA-IRIS. [online]. Available from: http://cfpub.epa.gov/ncea/iris/index.cfm. USEPA (1999). Alternative Disinfectants and Oxidants Guidance Manual, U.S.A: EPA Office of Water, (EPA 815-R-99-014) USEPA (2003). Summary of the Proposed Stage 2 Disinfectants and Disinfection Byproducts Rule Public Meeting Web Conferences. USEPA (2005). Fact Sheet: Stage 2 disinfectants and disinfection byproducts rule, U.S.A: EPA Office of water, (EPA 815-F-05-003) Wang, G. S., Hsieh, S. T. and Hong, C. S. (2000). Destruction of humic acid in water by UV light - catalyzed oxidation with hydrogen peroxide Wat. Res. 34 (15). 3882-3887. Wang, G. S., Liao, C. H., Chen, H. W. and Yang, H. C. (2006). Characteristics of natural organic matter degradation in water by UV/H2O2 treatment. Environ. Technol. 27 (33). 277-287. Wang, G. S., Liao, C. H. and Wu, F. J. (2001). Photodegradation of humic acids in the presence of hydrogen peroxide. Chemosphere 42 (4). 379-387. Wei, Q., Wang, D., Wei, Q., Qiao, C., Shi, B. and Tang, H. (2007). Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China. Environ. Monit. Assess. 141: 347-357. Wu, F. C., Evans, R. D. and Dillon, P. J. (2003). Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection. Environ. Sci. Technol. 37: 3687-3693 Zhou, H. and Smith, D. W. (2001). Advances technologies in water and wasterwater treatment. Can. J. Civ. Eng 28: 49-58. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40771 | - |
dc.description.abstract | 天然有機物是一種複雜且不均質的混合物,也是生成消毒副產物主要的前驅物質。為了減少消毒副產物的生成,可藉由高級氧化方式將水中的天然有機物去除。本研究選擇UV-H2O2 光催化程序以及臭氧氧化程序兩種不同的高級氧化方式來去除水中的有機物,並進一步比較其與傳統處理流程對有機物之去除效率。由於天然有機物是由多種不同性質的物質所組成,而每種物質生成消毒副產物的能力以及對氧化劑的反應性皆有所差異。欲進一步了解天然有機物之特性,本研究利用樹脂將其分離成四個主要的成分:非常疏水性酸性物質 (very hydrophobic acid; VHoA)、稍微疏水性酸性物質 (slightly hydrophobic acid; SHoA)、親水性帶電物質 (hydrophilic charged; HiC)、親水性中性物質 (hydrophilic neutral ; HiN),希望能觀察不同有機成分在經氧化反應後之變化情形和其生成消毒副產物潛能之關係。
天然有機物各成分之組成比例,依照水源的不同而有所差異。來自金門太湖之水體中溶解性有機碳濃度高達13.6 mg/l,其中親水性的部份佔了50%,顯示人為汙染嚴重且存在優養化問題。在經由UV-H2O2光催化程序或臭氧氧化後,疏水性的物質 (VHoA, SHoA)隨著反應時間逐漸降解為親水性的物質 (HiC, HiN),而最主要被去除的部份為非常疏水性酸性物質。這兩種氧化方法皆能有效的破壞大分子物質之化學鍵結,但相較於臭氧氧化,UV-H2O2光催化程序能礦化較多存在水中的天然有機物。由於金門原水中所含親水性中性物質含量相當的高且組成較為複雜,能被降解的量大都於來自疏水性酸的貢獻,故隨著氧化時間的增加,此部份溶解性有機碳濃度下降。此結果和其他的水體有不同的趨勢。 相較於其他的傳統處理流程,混凝和慢濾程序對於有機物有較高的去除率,而所去除的大多為非常疏水性酸性物質。在經前加氯處理後水中溶解性有機碳濃度有上升的情形,主要來自於一些在水中不易溶解的物質及藻類被氯氧化之結果,而這類物質大多屬於非常疏水性酸性物質和親水性帶電物質。 由本研究中可推論光催化程序臭氧氧化及傳統處理流程主要去除的皆為水中非常疏水性的酸性物質,而這些物質也是形成三鹵甲烷最重要的前驅物質。 | zh_TW |
dc.description.abstract | Natural organic matter (NOM) is a complex/heterogeneous mixture and is a major precursor of disinfection by-products (DBPs). Pre-oxidation with various advanced oxidation process (AOP) has been shown to be a good treatment technology to reduce NOM in water and to reduce DBPs. In this study, UV-H2O2 process and ozone treatment were chosen to remove NOM in water and the results were compared with the conventional water treatment processes. Since different NOM fractions had various potential to form DBPs and had different reactivity with oxidants, fractionation of NOM would be helpful to understand the properties of NOM further. The NOM was separated into four components: very hydrophobic acid (VHoA), slightly hydrophobic acid (SHoA), hydrophilic charged (HiC), and hydrophilic neutral (HiN) by a rapid fractionation method. The purpose of this study was to identify the portion of NOM that was more susceptible to certain oxidation process, and to find out the relationship between the NOM fraction and the DBP formation potential.
The results showed that composition of NOM fraction were very different between various water sources, and the raw water quality in Kinmen was very special when compared to other source waters. Raw water taken from Kinmen generally had high DOC concentration and 50% of the NOM in Tai-lake raw water was hydrophilic because of severe pollution and eutrophication status. The hydrophobic fractions (VHoA, SHoA) were transformed into hydrophilic ones (HiC, HiN) after UV-H2O2 process or ozonation treatment. Both oxidation methods could effectively break the chemical bonding of NOM, but the UV-H2O2 process had better ability to mineralize NOM. After longer contact time with the oxidants, the DOC concentration of HiN portion increased in all water samples except in Kinmen raw water due to the extremely high DOC value in Kinmen’s raw water. In conventional treatment processes, coagulation and slow filtration had better effectiveness to reduce NOM in water especially for VHoA portion. Pre-chlorination increased the DOC concentration due to the degradation of some insoluble organic matters and the lysis of algae cells. The fractionation analysis showed that most of the organic compounds released are belong to VHoA and HiC fraction. The results of this study concluded that VHoA fraction was the most sensitive portion of NOM to UV-H2O2 process, ozone oxidation and conventional treatment processes. It was also the main contributor to THM formation after chlorination process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:59:37Z (GMT). No. of bitstreams: 1 ntu-97-R95844005-1.pdf: 1111325 bytes, checksum: 5bedf4b9e9c6c55ccfb6020a11c793bd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Abstract i
摘要 ii Table of contents iii List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Scope of the study 3 Chapter 2 Literature review 4 2.1 DBPs 4 2.1.1 Development 4 2.1.2 Formation 6 2.1.3 Health effects and control criteria 9 2.1.4 The factors affect DBPs formation 11 2.2 NOM in water 11 2.2.1 Composition of NOM 11 2.2.2 Fractionation 14 2.2.3 Analytical methods 19 2.3 NOM Removal 20 2.3.1 AOPs 21 2.3.2 UV-H2O2 process 22 2.4 The relationship between water treatments and NOM 24 2.5 The characteristic of raw water in Kinmen 27 Chapter 3 Materials and Methods 28 3.1 Process schema 28 3.1.1 Design of NOM fractionation of different water sources 28 3.1.2 The effect on NOM fraction after UV-H2O2 and ozone oxidation 35 3.1.3 Changes on NOM fractionation after conventional water treatment process 37 3.2 UV-H2O2 process 39 3.3 Ozone oxidation 40 3.4 NOM fractionation 42 3.5 THMFP 46 3.6 THMs analysis 47 3.7 Analytical methods of water parameters 50 3.7.1 Non-purgeable dissolved organic carbon (NPDOC) 50 3.7.2 Ultraviolet absorbance 50 3.7.3 Bromide 51 Chapter 4 Results and Discussion 53 4.1 NOM fractionation 53 4.2 The effect of UV-H2O2 process on NOM fractionation 55 4.2.1 DOC 55 4.2.2 UV254 absorbance 60 4.3 Conventional water treatment process 63 4.3.1 DOC and UV254 absorbance 63 4.3.2 Fractionation 65 4.3.3 THMFP 67 4.4 Ozone oxidation 68 4.4.1 DOC and UV254 absorbance 68 4.4.2 Fractionation 70 Chapter 5 Conclusions and suggestions 71 References 74 Appendixes I A.1 Effects of UV-H2O2 process on NOM from difference water sources I A.1.1 DOC I A.1.2 UV254 absorbance II A.1.3 THMFP III A.2 THM of each conventional water treatment process IV A.3 Chromatogram IV A.4 Calibration VII | |
dc.language.iso | en | |
dc.title | 前氧化處理程序對天然有機物組成及消毒副產物生成之影響 | zh_TW |
dc.title | The Effect of Pre-Oxidation on Fractionation of NOM and DBPs Formation | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林財富,童心欣,陳家揚 | |
dc.subject.keyword | 天然有機物,UV-H2O2光催化程序,消毒副產物,樹脂分離,前氧化, | zh_TW |
dc.subject.keyword | Nature organic matter,Disinfection by-product,UV-H2O2 process,Fractionation,Pre-oxidation, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
顯示於系所單位: | 環境衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。