Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40725
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝(Gen-Huey Chen)
dc.contributor.authorPing-Ying Tsaien
dc.contributor.author蔡秉穎zh_TW
dc.date.accessioned2021-06-14T16:57:35Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] S. B. Akers, D. Horel, and B. Krishnamurthy. The star graph: an attractive alternative to the n-cube. In Proceedings of the International Conference on Parallel Processing, pages 393–400, 1987.
[2] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection networks. IEEE Transactions on Computers, 38(4):555–566, 1989.
[3] S. G. Akl. Parallel Computation: Models and Methods. Prentice Hall, NJ, 1997.
[4] B. Alspach. Cayley graphs with optimal fault tolerance. IEEE Transactions on Computers, 41(10):1337–1339, 1992.
[5] T. Araki. Hyper hamiltonian laceability of Cayley graphs generated by transpositions. Networks, 48(3):121–124, 2006.
[6] N. Ascheuer. Hamiltonian path problems in the on-line optimization of flexible manufacturing systems. PhD thesis, University of Technology, Berlin, Germany, 1995.
[7] Y. A. Ashir and I. A. Stewart. Fault-tolerant embedding of hamiltonian circuits in k-ary n-cube. SIAM Journal on Discrete Mathematics, 15(3):317–328, 2002.
[8] N. Bagherzadeh, M. Dowd, and N.Nassif. Embedding an arbitrary tree into the star graph. IEEE Transactions on Computers, 45(4):475–481, 1996.
[9] N. Bagherzadeh, N. Nassif, and S. Latifi. A routing and broadcasting scheme on faulty star graphs. IEEE Transactions on Computers, 42(11):1398–1403, 1993.
[10] R. Bennes, S. Latifi, and N. Kimura. A comparative study of job allocation and migration in the pancake network. Information Sciences, 177:2327–2335, 2007.
[11] C. Berge. Principles of Combinatorics. Academic Press, New York, 1971.
[12] P. Berthome, A. Ferreira, and S. Perennes. Optimal information dissemination in star and pancake networks. IEEE Transactions on Parallel and Distributed Systems, 7(12):1292–1300, 1996.
[13] J. A. Bondy. Pancyclic graphs. Journal of Combinatorial Theory, Series B, 11:80–84, 1971.
[14] A. Bouabdallah, M. C. Heydemann, J. Opatrny, and D. Sotteau. Embedding complete binary trees into star and pancake graphs. Theory of Computing Systems, 31(3):279–305, 2004.
[15] F. Cao, D. Z. Du, D. F. Hsu, and S. H. Teng. Fault tolerance properties of pyramid networks. IEEE Transactions on Computers, 48(1):88–93, 1999.
[16] A. Cayley. On the theory of groups. Proceedings of the London Mathematical Society, 9:126–233, 1878.
[17] M. Y. Chan and S. J. Lee. Distributed fault-tolerant embeddings of rings in hypercubes. Journal of Parallel and Distributed Computing, 11:63–71, 1991.
[18] M. Y. Chan and S. J. Lee. On the existence of hamiltonian circuits in faulty hypercubes. SIAM Journal on Discrete Mathematics, 4(4):511–527, 1991.
[19] C. P. Chang, J. N. Wang, and L. H. Hsu. Topological properties of twisted cube. Information Sciences − Informatics and Computer Science, 113(1-2):147–167, 1999.
[20] J. M. Chang and J. S. Yang. Fault-tolerant cycle-embedding in alternating group graphs. Applied Mathematics and Computation, 197:760–767, 2008.
[21] J. M. Chang, J. S. Yang, Y. L. Wang, and Y. Cheng. Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs. Networks, 44(4):302–310, 2004.
[22] C. T. Chen, Y. C. Tseng, and S. Sheu. Balanced spanning trees in complete and incomplete star graphs. IEEE Transactions on Parallel and Distributed Systems, 7(7):717–723, 1996.
[23] W. K. Chiang and R. J. Chen. Topological properties of hierarchical cubic networks. Journal of Systems Architecture, 42(4):289–307, 1996.
[24] W. K. Chiang and R. J. Chen. On the arrangement graph. Information Processing Letters, 66:215–219, 1998.
[25] S. A. Choudum and V. Sunitha. Augmented cubes. Networks, 40(2):71–84, 2002.
[26] P. Corbett. Rotator graphs: an efficient topology for point-to-point multiprocessor networks. IEEE Transactions on Parallel and Distributed Systems, 3(5):622–626, 1992.
[27] K. Day. The conditional node connectivity of the k-ary n-cube. Journal of Interconnection Networks, 5(1):13–26, 2004.
[28] K. Day and A. E. Al-Ayyoub. Fault diameter of k-ary n-cube networks. IEEE Transactions on Parallel and Distributed Systems, 8(9):903–907, 1997.
[29] K. Day and A. Tripathi. Arrangement graphs: a class of generalized star graphs. Information Processing Letters, 42(5):235–241, 1992.
[30] K. Day and A. Tripathi. A comparative study of topological properties of hypercubes and star graphs. IEEE Transactions on Parallel and Distributed Systems, 5(1):31–38, 1994.
[31] K. Diks and A. Pele. Efficient gossiping by packets in networks with random faults. SIAM Journal on Discrete Mathematics, 9(1):7–18, 1996.
[32] D. R. Duh and G. H. Chen. Topological properties of wk-recursive networks. Journal of Parallel and Distributed Computing, 23(3):468–474, 1994.
[33] D. R. Duh, G. H. Chen, and D. F. Hsu. Combinatorial properties of generalized hypercube graphs. Information Processing Letters, 57(1):41–45, 1996.
[34] K. Efe. The crossed cube architecture for parallel computation. IEEE Transactions on Parallel and Distributed Systems, 3(5):513–524, 1992.
[35] A. El-amawy and S. Latifi. Properties and performance of folded hypercubes. IEEE Transactions on Parallel and Distributed Systems, 2(1):31–42, 1991.
[36] A. H. Esfahanian. Generalized measures of fault tolerance with application to N-cube networks. IEEE Transactions on Computers, 38(11):1586–1591, 1989.
[37] A. H. Esfahanian and S. L. Hakimi. Fault-tolerant routing in de bruijn communication networks. IEEE Transactions on Computers, C-34(9):777–788, 1985.
[38] A. H. Esfahanian, L. M. Ni, and B. E. Sagan. The twisted N-cube with application to multiprocessing. IEEE Transactions on Computers, 40(1):88–93, 1991.
[39] W. C. Fang and C. C. Hsu. On the fault-tolerant embedding of complete binary trees in the pancake graph interconnection network. Information Sciences, 126:191–204, 2000.
[40] P. Fragopoulou and S. G. Akl. A parallel algorithm for computing fourier transforms on the star graph. IEEE Transactions on Parallel and Distributed Systems, 5(5):525–531, 1994.
[41] P. Fragopoulou and S. G. Akl. Optimal communication algorithms on star graphs using spanning tree constructions. Journal of Parallel and Distributed Computing, 24(1):55–71, 1995.
[42] J. B. Fraleigh. A First Course in Abstract Algebra (6th Edition). Addison-Wesley, MA, 1999.
[43] J. S. Fu. Fault-tolerant cycle embedding in hierarchical cubic networks. Networks, 43(1):28–38, 2004.
[44] J. S. Fu. Conditional fault-tolerant hamiltonicity of star graphs. Parallel Computing, 33:488–496, 2007.
[45] S. Gao and B. Novick. Fault tolerance of Cayley graphs. Annals of Combinatorics, 11(2):161–171, 2007.
[46] L. Gardner, Z. Miller, D. Pritikin, and I. H. Sudborough. One-to-many embeddings of hypercubes into Cayley graphs generated by reversals. Theory of Computing Systems, 34:399–431, 2001.
[47] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.
[48] W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix reversal. Discrete Mathematics, 27:47–57, 1979.
[49] A. Germa, M. C. Heydemann, and D. Sotteau. Cycles in the cube-connected cycles graph. Discrete Applied Mathematics, 83(1):135–155, 1998.
[50] K. Ghose and K. R. Desai. Hierarchical cubic networks. IEEE Transactions on Parallel and Distributed systems, 6(4):427–435, 1995.
[51] F. Harary. Conditional connectivity. Networks, 13:347–357, 1983.
[52] M. H. Heydari and I. H. Sudborough. On the diameter of the pancake network. Journal of Algorithms, 25(1):67–94, 1997.
[53] W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.
[54] M. R. HoseinyFarahabady and H. Sarbazi-Azad. The grid-pyramid: a generalized pyramid network. The Journal of Supercomputing, 37:23–45, 2006.
[55] S. Y. Hsieh and N. W. Chang. Pancyclicity on the Mobius cube with both faulty nodes and faulty edges. IEEE Transactions on Computers, 55(7):854–863, 2006.
[56] S. Y. Hsieh and C. H. Chen. Pancyclicity on Mobius cubes with maximal edge faults. Parallel Computing, 30:407–421, 2004.
[57] S. Y. Hsieh, G. H. Chen, and C. W. Ho. Fault-free hamiltonian cycles in faulty arrangement graphs. IEEE Transactions on Parallel and Distributed Systems, 10(3):223–237, 1999.
[58] S. Y. Hsieh, G. H. Chen, and C. W. Ho. Hamiltonian-laceability of star graphs. Networks, 36(4):225–232, 2000.
[59] S. Y. Hsieh, G. H. Chen, and C. W. Ho. Longest fault-free paths in star graphs with edge faults. IEEE Transactions on Computers, 50(9):960–971, 2001.
[60] S. Y. Hsieh, G. H. Chen, and C. W. Ho. Longest fault-free paths in star graphs with vertex faults. Theoretical Computer Science, 262(1-2):215–227, 2001.
[61] S. Y. Hsieh and C. W. Lee. Hamiltonicity of matching composition networks with conditional edge faults. In Proceedings of the 5th Annual Conference on Theory and Applications of Models of Computation, Xian, China, 2008. to appear.
[62] S. Y. Hsieh, T. J. Lin, and H. L. Huang. Panconnectivity and edge-pancyclicity of 3-ary N-cubes. The Journal of Supercomputing, 42:225–233, 2007.
[63] S. Y. Hsieh and C. Y. Wu. Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults. submitted, 2008.
[64] H. C. Hsu, L. C. Chiang, J. J. M. Tan, and L. H. Hsu. Fault hamiltonicity of augmented cubes. Parallel Computing, 31:131–145, 2005.
[65] H. C. Hsu, T. K. Li, J. M. Tan, and L. H. Hsu. Fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs. IEEE Transactions on Computers, 53(1):39–53, 2004.
[66] W. J. Hsu. Fibonacci cubes - a new interconnection topology. IEEE Transactions on Parallel and Distributed Systems, 4(1):3–12, 1993.
[67] H. L. Huang and G. H. Chen. Combinatorial properties of two-level hypernet networks. IEEE Transactions on Parallel and Distributed Systems, 10(11):1192–1199, 1999.
[68] C. N. Hung, H. C. Hsu, K. Y. Liang, and L. H. Hsu. Ring embedding in faulty pancake graphs. Information Processing Letters, 86:271–275, 2003.
[69] H. S. Hung, J. S. Fu, and G. H. Chen. Fault-free hamiltonian cycles in crossed cubes with conditional link faults. Information Sciences, 177(24):5664–5674, 2007.
[70] K. Hwang and J. Ghosh. Hypernet: a communication-efficient architecture for constructing massively parallel computers. IEEE Transactions on Computers, 36(12):1450–1466, 1987.
[71] S. C. Hwang and G. H. Chen. Cycles in butterfly graphs. Networks, 35(2):161–171, 2000.
[72] J. S. Jwo, S. Lakshmivarahan, and S. K. Dhall. Embedding of cycles and grids in star graphs. Journal of Circuits, Systems, and Computers, 1(1):43–74, 1991.
[73] J. S. Jwo, S. Lakshmivarahan, and S. K. Dhall. A new class of interconnection networks based on the alternating group. Networks, 23:315–326, 1993.
[74] A. Kanevsky and C. Feng. On the embedding of cycles in pancake graphs. Parallel Computing, 21:923–936, 1995.
[75] M. S. Krishnamoorthy and b. Krishnamurthy. Fault diameter of interconnection networks. Computers and Mathematics with Applications, 13(5-6):577–582, 1987.
[76] S. Lakshmivarahan, J. S. Jwo, and S. K. Dhall. Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey. Parallel Computing, 19:1–47, 1993.
[77] S. M. Larson and P. Cull. The Mぴobius cubes. IEEE Transactions on Computers, 44(5):647–659, 1995.
[78] S. Latifi. Combinatorial analysis of the fault-diameter of the n-cube. IEEE Transactions on Computers, 42(1):27–33, 1993.
[79] S. Latifi. On the fault-diameter of the star graph. Information Processing Letters, 46:143–150, 1993.
[80] S. Latifi, M. Hegde, and M. Naraghi-Pour. Conditional connectivity measures for large multiprocessor systems. IEEE Transactions on Computers, 43(2):218–222, 1994.
[81] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, CA, 1991.
[82] Y. R. Leu and S. Y. Kuo. Distributed fault-tolerant ring embedding and reconfiguration in hypercubes. IEEE Transactions on Computers, 48(1):81–88, 1999.
[83] M. Lewinter and W. Widulski. Hyper-hamilton laceable and caterpillar-spannable product graphs. Computers & Mathematics with Applications, 34(11):99–104, 1997.
[84] Q. Li and Y. Zhang. Restricted connectivity and restricted fault diameter of some interconnection networks. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 21:267–273, 1995.
[85] T. K. Li. Cycle embedding in star graphs with edge faults. Applied Mathematics and Computation, 167(2):891–900, 2005.
[86] T. K. Li, J. M. Tan, and L. H. Hsu. Hyper hamiltonian laceability on the edge fault star graph. Information Sciences, 165:59–71, 2004.
[87] T. K. Li, J. M. Tan, L. H. Hsu, and T. Y. Sung. The shuffle-cubes and their generalization. Information Processing Letters, 77:35–41, 2001.
[88] T. K. Li, M. C. Yang, J. M. Tan, and L. H. Hsu. On embedding cycle in faulty twisted cubes. Information Sciences, 176:676–690, 2006.
[89] S. C. Liaw, G. J. Chang, F. Cao, and D. F. Hsu. Fault-tolerant routing in circulant networks and cycle prefix networks. Annals of Combinatorics, 2:165–172, 1998.
[90] C. K. Lin, H. M. Huang, and L. H. Hsu. The super connectivity of the pancake graphs and the super laceability of the star graphs. Theoretical Computer Science, 339:257–271, 2005.
[91] X. Lin and P. K. McKinley. Deadlock-free multicast wormhole routing in 2-D mesh multi-computers. IEEE Transactions on Parallel and Distributed Systems, 5:793–804, 1994.
[92] M. J. Ma, G. Z. Liu, and J. M. Xu. Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes. Parallel Computing, 33:36–42, 2007.
[93] A. Mann and A. Somani. An efficient sorting algorithm for the star graph interconnection network. In Proceedings of International Conference on Parallel Processing, volume 3, pages 1–8, 1990.
[94] V. E. Mendia and D. Sarkar. Optimal broadcasting on the star graph. IEEE Transactions on Parallel and Distributed Systems, 3(4):389–396, 1992.
[95] Z. Miller, D. Pritikin, and I. H. Sudborough. Near embeddings of hypercubes into Cayley graphs on the symmetric group. IEEE Transactions on Computers, 43(1):13–22, 1994.
[96] J. H. Park and H. C. Kim. Longest paths and cycles in faulty star graphs. Journal of Parallel and Distributed Computing, 64:1286–1296, 2004.
[97] J. H. Park, H. S. Lim, and H. C. Kim. Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements. Theoretical Computer Science, 377:170–180, 2007.
[98] F. Preparate and J. Vuillemin. The cube-connected cycles: a versatile network for parallel computation. Communications of the ACM, 24(5):300–309, 1981.
[99] K. Qiu, S. G. Akl, and H. Meijer. On some properties and algorithms for the star and pancake interconnection networks. Journal of Parallel and Distributed Computing, 22(1):16–25, 1994.
[100] K. Qiu, S. G. Akl, and I. Stojmenovic. Data communication and computational geometry on the star and pancake networks. In Proceedings of IEEE Symposium on Parallel and Distributed Processing, pages 415–422, 1991.
[101] S. Ranka, J. C. Wang, and N. Yeh. Embedding meshes on the star graph. Journal of Parallel and Distributed Computing, 19(2):131–135, 1993.
[102] A. L. Rosenberg. Issues in the study of graph embedding. Lecture Notes in Computer Science, 100:150–176, 1981.
[103] Y. Rouskov, S. Latifi, and P. K. Srimani. Conditional fault diameter of star graph networks. Journal of Parallel and Distributed Computing, 33(1):91–97, 1996.
[104] Y. Rouskov and P. K. Srimani. Fault diameter of star graphs. Information Processing Letters, 48:243–251, 1993.
[105] R. A. Rowley and B. Bose. Fault-tolerant ring embedding in de bruijn networks. IEEE Transactions on Computers, 42(12):1480–1486, 1993.
[106] R. A. Rowley and B. Bose. Distributed ring embedding in faulty de bruijn networks. IEEE Transactions on Computers, 46(2):187–190, 1997.
[107] Y. Saad and M. H. Schultz. Topological properties of hypercubes. IEEE Transactions on Computers, 37(7):867–872, 1988.
[108] D. K. Saikia and R. K. Sen. Two ranking schemes for efficient computation on the star interconnection network. IEEE Transactions on Parallel and Distributed Systems, 7(4):321–327, 1996.
[109] M. R. Samatham and D. K. Pradhan. The de bruijn multiprocessor network: a versatile parallel processing and sorting network for VLSI. IEEE Transactions on Computers, 38:567–581, 1989.
[110] S. T. Schibell and R. M. Stafford. Processor interconnection networks from Cayley graphs. Discrete Applied Mathematics, 40(3):333–357, 1992.
[111] A. Sengupta. On ring embedding in hypercubes with faulty nodes and links. Information Processing Letters, 68(4):207–214, 1998.
[112] J. J. Sheu, J. M. Tan, L. H. Hsu, and M. Y. Lin. On the cycle embedding of pancake graphs. In Proceedings of National Computer Symposium, pages C414–C419, 1999.
[113] J. P. Sheu, C. T. Wu, and T. S. Chen. An optimal broadcasting algorithm without message redundancy in star graphs. IEEE Transactions on Parallel and Distributed Systems, 6(6):653–658, 1995.
[114] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on Computers, 20(2):153–161, 1971.
[115] T. Y. Sung, C. Y. Lin, Y. C. Chuang, and L. H. Hsu. Fault tolerant token ring embedding in double loop networks. Information Processing Letters, 66(4):201–207, 1998.
[116] Y. H. Teng, J. M. Tan, and L. H. Hsu. Panpositionable hamiltonicity of the alternating group
graphs. Networks, 50:146–156, 2007.
[117] C. H. Tsai. Linear array and ring embeddings in conditional faulty hypercubes. Theoretical Computer Science, 314:431–443, 2004.
[118] C. H. Tsai and Y. C. Lai. Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes. Information Sciences, 177(24):5590–5597, 2007.
[119] C. H. Tsai, T. Liang, L. H. Hsu, and M. Y. Lin. Cycle embedding in faulty wrapped butterfly graphs. Networks, 42(2):85–96, 2003.
[120] Y. C. Tseng, S. H. Chang, and J. P. Sheu. Fault-tolerant ring embedding in a star graph with both link and node failures. IEEE Transactions on Parallel and Distributed Systems, 8(12):1185–1195, 1997.
[121] Y. C. Tseng, M. H. Yang, and T. Y. Juang. Achieving fault-tolerant multicast in injured wormhole-routed tori and meshes based on Euler path construction. IEEE Transactions on Computers, 48:1282–1296, 1999.
[122] P. Vadapalli and P. K. Srimani. Trivalent Cayley graphs for interconnection networks. Information Processing Letters, 54:329–335, 1995.
[123] P. Vadapalli and P. K. Srimani. Shortest routing in trivalent Cayley graph network. Information Processing Letters, 57:183–188, 1996.
[124] G. D. Vecchia and C. Sanges. A recursively scalable network VLSI implementation. Future Generation Computer Systems, 4(3):235–243, 1988.
[125] M. D. Wagh and J. Mo. Hamilton cycles in trivalent Cayley graphs. Information Processing Letters, 60:177–181, 1996.
[126] D. B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall, NJ, 2001.
[127] S. A. Wong. Hamiltonian cycles and paths in butterfly graphs. Networks, 26:145–150, 1995.
[128] J.Wu. Safety levels - an efficient mechanism for achieving reliable broadcasting in hypercubes. IEEE Transactions on Computers, 44(5):702–706, 1995.
[129] J. Wu. Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets. IEEE Transactions on Computers, 47(8):888–893, 1998.
[130] J. M. Xu and M. J. Ma. Cycles in folded hypercubes. Applied Mathematics Letters, 19(2):140–145, 2006.
[131] M. C. Yang, T. K. Li, J. M. Tan, and L. H. Hsu. Fault-tolerant cycle-embedding of crossed cubes. Information Processing Letters, 88(4):149–154, 2003.
[132] P. J. Yang, S. B. Tien, and C. S. Raghavendra. Embedding of rings and meshes onto faulty hypercubes using free dimensions. IEEE Transactions on Computers, 43(5):608–613, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40725-
dc.description.abstract當前VLSI技術的進步,使得建造數千甚至數萬顆處理器的超大型平行分散式系統已經可以實現了。而在這些平行分散式系統當中,其中一個重要的步驟就是決定各個處理器之間連結的拓樸性質(稱之為連結網路)。網路的拓樸性質影響了平行分散式系統的硬體層面和軟體層面的各種設計。有許多的連結網路已經被提出來研究,其中有一類被稱為凱利圖的網路引起廣泛的注意和興趣。
對於連結網路來說,有一類重要的問題,是在某一個網路上模擬另外一個網路。這個問題稱為「嵌入網路」問題。在這當中,線性陣列和環是對於平行與分散式計算的連結網路來說,兩種最基本的網路。它們適合發展簡單而有效的演算法,並且同時只需花費相當低的通訊代價。線性陣列和環在實際層面上的廣泛運用給了我們在圖上做「嵌入路徑」和「嵌入圈」問題的動機。先前在「嵌入路徑」和「嵌入圈」問題上的研究多半聚焦於在圖上找出最長的路徑或最長的圈,另外有一類問題則聚焦於在圖上找出所有可能長度的圈。
在一個系統當中,處理器和它們彼此之間的鏈結都有可能發生錯誤,因此考慮一個連結網路的容錯能力是非常重要的。也就是說,連結網路在發生某些處理器錯誤或者鏈結錯誤時,這個網路仍能保有原先的性質。一般來說,有兩種考量連結網路容錯能力的模型:隨機錯誤(random fault)與條件錯誤(conditional fault)。若假設錯誤會毫無限制的隨機發生,就稱之為隨機錯誤。反之,若假設錯誤的發生會滿足某些條件,則稱之為條件錯誤。
在這本論文裡,我們研究在邊錯誤下的其中三類凱利圖上的無錯嵌入路徑、嵌入圈問題:星網絡(star graph),交替群圖(alternating group graph),與煎餅網絡(pancake graph)。我們證明了在隨機錯誤模型中,一個n維交替群圖在至多2n-6個鏈結損壞的情形下,仍然可以找到所有可能長度的環。以能容忍鏈結損壞的角度來看,這個結果是最佳的。另一方面,我們也在條件錯誤模型中討論了三個問題。假設每個節點至少和兩個健康的鏈結相連的情況下,我們證明了一個n維星網絡在至多2n-7個鏈結損壞的情形下,仍能在任意兩點之間找到最長的路徑;一個n維交替群圖在至多4n-13個鏈結損壞的情形下,仍然可以找到最長的環;一個n維煎餅網絡在至多2n-7個鏈結損壞的情形下,仍然可以找到最長的環。上述三個在條件錯誤模型的結果中,在星網絡與交替群圖的兩個結果,以能容忍鏈結損壞的角度來看,這兩個結果是最佳的。
最後,我們在條件錯誤模型中,針對這三個不同的圖另外找出三個小性質,做為對上述主要問題的補充與對照。此外,針對我們在條件錯誤模型中的假設(假設每個節點至少和兩個健康的鏈結相連),我們也透過計算機率的方式來說明該假設是有實質應用上的意義的。
zh_TW
dc.description.abstractAdvances in technology, especially the advent of VLSI circuit technology, have made it possible to build a large parallel and distributed system involving thousands or even tens of thousands of processors. One crucial step on designing a large-scale parallel and distributed system is to determine the topology of the interconnection network (network for short). The network topology not only affects the hardware architecture but also the nature of the
system software that can be used in a parallel and distributed system. A number of network topologies have been proposed. Among them, a class of graphs called Cayley graphs is of interest for the design and analysis of interconnection networks.
For interconnection networks, the problem of simulating one network by another is modelled as a network embedding problem. Linear arrays and rings, which are two of the
most fundamental interconnection networks for parallel and distributed computation, are suitable to develop simple and efficient algorithms with low communication costs. The wide applications of linear arrays and rings motivate us to investigate path and cycle embedding in networks. Some of previous researches on path or cycle embedding focused on finding longest paths or cycles (i.e., the Hamiltonian problem, in terms of graph theory). Some others focused on finding cycles of all possible lengths (i.e., the pancycle problem, in terms of graph theory).
Since node faults and/or link faults may occur to networks, it is significant to consider faulty networks. Fault tolerance ability is an important consideration for interconnection network topology. That is, the network is still functional when some node faults and/or link faults occur. Among them, two fault models were adopted; one is the random fault model, and the other is the conditional fault model. The random fault model assumed that the faults might occur everywhere without any restriction, whereas the conditional fault model assumed that the distribution of faults must satisfy some properties. It is more difficult to solve problems under the conditional fault model than the random fault model.
In this dissertation, we investigate fault-free path/cycle embedding problems with edge faults on three instances of Cayley graphs: star graphs, alternating group graphs, and pancake graphs. If the random fault model is adopted, we show that an n-dimensional alternating group graph is (2n−6)-edge-fault-tolerant pancyclic. This result is optimal with respect to the number of edge faults tolerated.
On the other hand, under the conditional fault model and with the assumption of at least two non-faulty links incident to each node, we show that an n-dimensional star graph is (2n−7)-edge-fault-tolerant strongly Hamiltonian laceable and (n−4)-edge-fault-tolerant hyper Hamiltonian laceable, an n-dimensional alternating group graph is (4n−13)-edge-fault-tolerant Hamiltonian and (2n−7)-edge-fault-tolerant Hamiltonian connected, and an n-dimensional pancake graph is (2n−7)-edge-fault-tolerant Hamiltonian and (n−4)-edge-fault-tolerant Hamiltonian connected. The results on star graphs and alternating group graphs are optimal with respect to the number of edge faults tolerated. We also verify that the assumption is meaningful in practical by evaluating its probability of occurrence, which is very close to 1, even if n is small.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:57:35Z (GMT). No. of bitstreams: 1
ntu-97-D90922007-1.pdf: 1731081 bytes, checksum: a5adacf9f6eb93af733caa2d3f9ebef4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction 1
1.1 Path/Cycle Embedding 3
1.2 Fault Tolerance 4
1.2.1 The Random Fault Model 4
1.2.2 The Conditional Fault Model 5
1.3 Thesis Organization 7
2 Preliminaries 8
2.1 Definitions and Notations 8
2.2 Cayley Graphs 10
2.2.1 Star Graphs 11
2.2.2 Alternating Group Graphs 13
2.2.3 Pancake Graphs 15
3 Edge-Fault-Tolerant Hamiltonicity of Star Graphs 18
3.1 Properties of Star Graphs 18
3.2 Fault-Free Longest Paths under the Conditional Fault Model 22
3.3 Probability and Optimality 31
4 Edge-Fault-Tolerant Hamiltonicity of Alternating Group Graphs 34
4.1 Properties of Alternating Group Graphs 34
4.2 Fault-Free Cycles under the Random Fault Model 36
4.3 Fault-Free Hamiltonian Cycles under the Conditional Fault Model 42
4.4 Probability and Optimality 48
5 Edge-Fault-Tolerant Hamiltonicity of Pancake Graphs 51
5.1 Properties of Pancake Graphs 51
5.2 Fault-Free Hamiltonian Cycles under the Conditional Fault Model 58
6 Discussion and Conclusion 68
6.1 Contribution 68
6.2 Remarks 71
6.3 Further Research 72
Bibliography 75
Appendix A Source Codes for Lemma 3.6 83
Appendix B Source Codes for Theorem 4.2 89
Appendix C Source Codes for Lemma 5.5 96
dc.language.isoen
dc.subject連結網路zh_TW
dc.subject星網絡zh_TW
dc.subject交替群圖zh_TW
dc.subject煎餅網絡zh_TW
dc.subject凱利圖zh_TW
dc.subject嵌入zh_TW
dc.subject容錯zh_TW
dc.subjectstar graphen
dc.subjectembeddingen
dc.subjectCayley graphen
dc.subjectpancake graphen
dc.subjectalternating group graphen
dc.title三種凱利圖上的邊容錯路徑/迴圈嵌入問題之研究zh_TW
dc.titleEdge-Fault-Tolerant Path/Cycle Embedding on Three Classes of Cayley Graphsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.coadvisor傅榮勝(Jung-Sheng Fu)
dc.contributor.oralexamcommittee王有禮(Yue-Li Wang),謝孫源(Sun-Yuan Hsieh),劉邦鋒(Pang-Feng Liu),趙坤茂(Kun-Mao Chao)
dc.subject.keyword星網絡,交替群圖,煎餅網絡,凱利圖,嵌入,容錯,連結網路,zh_TW
dc.subject.keywordstar graph,alternating group graph,pancake graph,Cayley graph,embedding,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved