Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40721
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor翁宗賢
dc.contributor.authorMin-Han Chiuen
dc.contributor.author邱銘漢zh_TW
dc.date.accessioned2021-06-14T16:57:25Z-
dc.date.available2018-07-28
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] E. F. Cooper, “Electro-explosive devices,” IEEE Potentials, Vol. 19, pp. 19-22, 2000.
[2] X. Zhang, A. Mehra, A. A. Ayon, and I. A. Waitz, “Igniters and temperature sensors for a micro-scale combustion system,” Sens. Actuators A: Phys. Vol. 103, pp. 253-262, 2003.
[3] D. A. Benson, M. E. Larsen, A. M. Renlund, W. M. Trott, and R. W. Bickes Jr., “Semiconductor bridge: a plasma generator for the ignition of explosives,” J. Appl. Phys., Vol. 62, pp. 1622-1632. 1987.
[4] R. W. Bickes Jr., and C. B. McCampell, “Semiconductor bridge (SCB) research and development,” SAND 91-0310C, 1991.
[5] K. E. Willis, M. G. Richman, W. D. Fahey, J. G. Richards, and D. S. Whang, “Semiconductor bridge explosive device,” US. Patent 5912427, 1999.
[6] K. N. Lee, M. I. Park, S. H. Choi, C. O. Park, and H. S. Uhm, “Characteristics of plasma generated by poly-silicon semiconductor bridge (SCB),” Sens. Actuators A: Phys., Vol. 96, pp. 252-257, 2002.
[7] W. Smetana, R. Reicher, M. Mundlein, J. Nicolics, and H. Homolka, “Thick film initiator elements- an alternative to resistive initiators for automotive safety units,” 26th International Spring Seminar on Electronics Technology, Slovak Republic, May 8-11, 2003.
[8] H. H. Dibiaso, B. A. English, and M. G. Allen, “Solid-phase conductive fuels for chemical micro-actuators,” Sens. Actuators A: Phys., Vol. 111, pp. 260-266, 2004.
[9] K. L. Zhang, S. K. Choua, S. S. Angb, and X. S. Tang, “A MEMS-based solid propellant microthruster with Au/Ti igniter,” Sens. Actuators A: Phys., Vol. 122, pp. 113-123, 2005.
[10] J. J. Moore, and H. J. Feng, “Combustion synthesis of advanced materials, part I: reaction parameters,” Progress of Materials Science, Vol. 39, pp. 243-273, 1995.
[11] T. A. Baginski, S. L. Taliaferro, and W. D. Fahey, “Novel electro-explosive device incorporating a reactive laminated metallic bridge,” J. Propuls. Power, Vol. 17, pp. 184-189, 2001.
[12] T. A. Baginski, T. S. Parker, and W. D. Fahey, “Electro-explosive device with laminated bridge,” US. Patent 6925938, 2005.
[13] Military Standard, “MIL-STD-883D, method 2002.3, Mechanical Shock,” US Dept. of Defense, 1982.
[14] Military Standard, “MIL-STD-810F, Test Method Standard for Environment Engineering Considerations,” US Dept. of Defense, 2000.
[15] D. B. Novotney, B. M. Welch, and D. W. Ewick, “Semiconductor bridge development for enhanced ESD and EF immunity,” AIAA-1999-2417 AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, 35th, Los Angeles, CA, June 20-24, 1999.
[16] M. Arimondi, U. Anselmi-Tamburini, A. Gobetti, Z. A. Munir, and G. Spinolo, “Chemical mechanism of the Zr + O2 → ZrO2 combustion synthesis reaction,” J. Phys. Chem. B, Vol. 101, pp. 8059-8068, 1997.
[17] J. S. Lee, “Thermal properties and firing characteristics of the Zr/KClO4/ Viton A priming compositions,” Thermochimica Acta, Vol. 392-393, pp. 147-152, 2002.
[18] 莊達人,VLSI製造技術,高立圖書有限公司,2000年。
[19] 郭瑋軒,The Synthesis of MOCVD Precursor CuⅡ(OCHMeCH2Net2)2 and Growth of Copper Thin Films,國立台灣科技大學化學工程研究所碩士論文,2006年。
[20] B. Marmiroli, G. Manzoni and R. Frassine, “Thermal conductivity measurement of nanoparticle based solid propellant mixtures,” 2nd Int. Meeting on Space and Aerospace Materials Technology, Wiley-VCH edition, Vol. 34, Issue 4, 2003.
[21] ANSYS Tutorials, 3-D coupled thermal-electric solid, Chapter 4 in the Content of Element Reference 10.0, 2006.
[22] ANSYS Tutorials, thermal-electric shell, Chapter 4 in the Content of Element Reference 10.0, 2006.
[23] Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany.
[24] T. E. Faber, Introduction to the Theory of Liquid Metals, Cambridge University Press, 1972.
[25] C. L. Hung, M. H. Chiu, Y. T. Ning, and T. S. Wung, “Analysis and Fabrication of MEMS Thin-film Igniting Chip,” The 2006 Conference of National Defense Technology and Academic Cooperation, Lung-Tan, Tao-Yuan, Nov. 2006.
[26] D.S. Steinberg, Vibration Analysis of Electronic Equipment, Wiley, New York, 1973.
[27] LS-DYNA_960, Keyword User Manual, 2001, Livermore Software Tech. Corp., USA.
[28] ANSYS DYNA PrepPost, Ansys Documentation, Ansys Inc., USA, 2004.
[29] A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Nanoindentation of Au and Pt/Cu thin films at elevated temperatures,” J. Mater. Res., Vol. 19, pp. 2650-2657, Sep 2004.
[30] http://www.platinummetalsreview.com, Johnson Matthey Public Limited Company.
[31] I. A. Balagansky, V. A. Agureikin, I. F. Kobilkin, N. I. Nosenko, V. V. Naumov, A. V. Vinogradov, and A. I. Balagansky, “Acceleration Device Based on High Explosive Charge which Contains High Modular Ceramic Tube,” Int. J. Impact Eng. Vol. 22, pp. 813-823, 1999.
[32] T. Irvine, An Introduction to The Shock Response Spectrum, Revision P, May 24, 2002.
[33] D. J. Steinberg, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Lab., Livermore CA, 1996.
[34] Datasheet of Piezoresistive Accelerometer Model 7270A, Endevco Corporation, USA.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40721-
dc.description.abstract電火工品(Electro-Explosive Device, EED)是觸發含能材料反應的起始能量,因其反應速率快,工作功率高,故常應用在火箭脫節、點燃推進燃料、觸動車輛安全氣囊的氣體產生器等產品上。
本文針對電火工品的電橋結構進行研究,以改進傳統電橋絲結構的諸多缺失。本文運用微機電製作技術,首先在矽晶片上成長二氧化矽厚膜層,接著在氧化層上製作金(Au)薄膜電橋,然後切割成平整的電橋晶片,使點火晶片相較於傳統外部焊接的電橋絲,具有反應速度快、起始能量低、抗衝擊佳的特性。為了瞭解此種薄膜晶片的點火特性與反應金屬的作用機制,本文首先利用數值摹擬的方法來分析Au鈍感薄膜電橋的電-熱升溫歷程,設計並製作出金鈍感點火晶片;然後在Au電橋表面鍍上鋯(Zr)層,製作出反應式覆層金屬薄膜點火晶片。
為測試Au鈍感與Au/Zr反應式點火晶片的性能,本文利用33μF的電容器充電至33.5 V,然後放電觸發電橋,所有電橋皆能成功地擊發。在點觸電路的同時,除了量測電橋上的電壓變化外,也在晶片外部以光二極體量測電橋發出熱輻射的歷程,比較兩者的訊號,以確認電橋溫度升溫至相變化或放熱反應的時間。接下來以這兩種電橋觸發滿足MIL-STD-1512規範的鋯粉/過氯酸鉀(Zr/KClO4)反應式物質,驗證電橋晶片的能量足以激發Zr/KClO4作用;並以2000畫面/秒的高速攝影裝備觀察反應過程,觀測Zr/KClO4燃燒完畢的時間。試驗結果顯示,含有反應式材料的Au/Zr點火晶片反應速度為1.7 μsec,快於鈍感Au點火晶片的2.6 μsec,這是含能材料的自導傳高溫合成反應的結果。本文的數值分析模型估算鈍感Au點火晶片的反應時間為2.8 μsec,與實驗量測誤差僅0.2 μsec。由高速攝影的過度曝光畫面來觀測,Au/Zr點火晶片觸發之Zr/KClO4燃畢時間為6片畫面時間(3 ms),Au點火晶片為9片畫面(4.5 ms),試驗結果顯示含有Zr確實可使點火反應加快。
針對衝擊響應特性,本文以點火晶片與傳統鉑銥合金絲式電橋做衝擊數值摹擬,檢視電橋結構所受之最大應力與最大位移量。分析結果顯示Au點火晶片在半導體微電路元件測試標準—MIL-STD-883D Method 2002.3機械衝擊允收規範下,足以抵抗衝擊值1500 G、歷時0.5 msec之Condition B與衝擊值10000 G、歷時0.2 mesc之Condition E的半正弦波加速度衝擊,故可供耐環境衝擊產品使用。利用本研究所製作之晶片,經陶瓷底座與金屬外殼封裝後形成電火工品,並整合點火電路形成一種可於衝擊環境中使用的點火系統,以供火箭推進點火、脫節點火或車輛撞擊安全氣囊點火使用。
因為高G值衝擊實驗多為破壞性實驗,使用全系統模組來進行試驗代價太過高昂,本文針對需抗高加速度衝擊存活的點火電路系統,以數值分析的方式設計了一種利用含能材料釋放能量的推送質量系統,構成衝擊產生器,量測數據顯示本文所研製之衝擊產生器可產生均方根加速度值5,152 G,平均有效衝擊作用歷程2.11 msec之重力加速度環境,此加速度-時間歷程經過衝擊響應頻譜(Shock Response Spectrum, SRS)分析後,獲得自然頻率區域的響應值,其包絡線滿足MIL- STD-810F衝擊環境規範所律訂之曲線條件。此種高G值衝擊產生裝置除了可以供點火系統測試使用外,亦可作為重量為1公斤等級之機械、電子等次組件執行高加速度衝擊測試之裝置。
zh_TW
dc.description.abstractAn electro-explosive device can provide high initiating power to trigger energetic materials in a fast rate. They are widely utilized in automobile, aeronautics, space, and defense industries.
In this thesis, planar bridge structures of novel electric-explosive devices were investigated to improve over conventional metal bridge wires. The solid ignition chips were fabricated via micro-electro-mechanical system (MEMS) technologies. Gold (Au) bridges were deposited and patterned on the oxide layer of a silicon wafer. These thin- film ignition chips can be integrated as excellent electro-actuating devices capable of initiating energetic materials with exceptional features of fast response, low initiating energy, high stability, and high shock resistance. The design and manufacture of the Au ignition chips were based on numerical simulations of the metal bridges undergoing electric-thermal heating processes. Afterward, a shaped layer of Zirconium (Zr) was overlaid on the Au bridge to form a reactive ignition chip.
In order to elucidate the igniting performances of the inert Au and reactive Au/Zr metal bridges, both thin-film chips were successively activated by an electric igniting circuit with a 33μF capacitor charged to 33.5 V. In addition to monitoring the voltage across the bridge during actuating, a photodiode was simultaneously used to detect the radiative intensity of the bridge under activation. Both signals evidence scenarios of temperature rising, phase changes, and percussion of the bridge reactions. The two types of the solid igniters were then employed to trigger a small amount of reactant powder Zr/KClO4 according to MIL-STD-1512 regulation overlaid on each of the bridges with satisfactory success. The exothermic reaction of Zr/KClO4 powder was confirmed by a high-speed CCD camera imaged at 2000 frames/sec. The experimental results reveal that the reacting time for the Au/Zr bridge is 1.7
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:57:25Z (GMT). No. of bitstreams: 1
ntu-97-D91543006-1.pdf: 6021241 bytes, checksum: d73088a3de6c1eb819cb931a10f87da3 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
符號說明 vii
目錄 ix
圖目錄 xi
表目錄 xv
第一章 序論 1
1.1引言 1
1.2文獻回顧 2
1.3研究動機與本文內容 5
第二章 點火晶片設計邏輯與數學模式 7
2.1 安全性:良好的平面熱傳結構 8
2.2 安全性:本質對靜電與電磁干擾鈍感 8
2.3 電橋材料的選擇 9
2.4 電/熱/含能材料活化能轉換統御方程式 9
2.5 RC電路對活化能之影響 11
第三章 鈍感點火晶片之溫度場數值分析 14
3.1基本假設 14
3.2材料參數 14
3.3 ANSYS前處理 15
3.4分析結果 16
第四章 晶片製程與實驗 22
4.1 晶片製程 22
4.2 實驗架構 23
4.3 預備試驗 23
4.4 裸金電橋實驗 24
4.5 Au/Zr電橋實驗 25
4.4 Zr/KClO4引燃實驗 31
第五章 晶片抗震分析與衝擊替代試驗設計 39
5.1 點火晶片抗震分析 39
5.2 衝擊替代實驗 63
5.3 真實環境響應與數值分析結果比較 70
5.4 實驗架構 77
5.5 實驗結果與討論 78
第六章 結論與未來展望 81
6.1 結論 81
6.2 未來展望 82
參考文獻 84
dc.language.isozh-TW
dc.subject高G衝擊試驗裝置zh_TW
dc.subject衝擊響應zh_TW
dc.subject反應式覆層zh_TW
dc.subject固態電橋zh_TW
dc.subject點火晶片zh_TW
dc.subjectigniting chipen
dc.subjecthigh G impact apparatusen
dc.subjectreactant layeren
dc.subjectshock responseen
dc.subjectsolid bridgeen
dc.title抗震點火晶片研製zh_TW
dc.titleInvestigation of Shock-Resistant Ignition Chipsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee張家歐,張正憲,沈弘俊,璩貽安,沈柏成
dc.subject.keyword點火晶片,固態電橋,反應式覆層,衝擊響應,高G衝擊試驗裝置,zh_TW
dc.subject.keywordigniting chip,solid bridge,reactant layer,shock response,high G impact apparatus,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
5.88 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved