Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄(Hao-Hsiung Lin)
dc.contributor.authorChi-Kuang Chenen
dc.contributor.author陳紀光zh_TW
dc.date.accessioned2021-06-14T16:56:46Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] R. R. King, C. M. Fetzer, P. C. Colter, K. M. Edmondson, J. H. Ermer, H. L. Cotal, H. Yoon, A. P. Stavrides, G.. Kinsey, D. D. Krut, N. H. Karam, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, pp.776-779, 2002.
[2] M. Yamaguchi, A. Luque, “High efficiency and high concentration in photovoltaics,” IEEE Transactions on Electron Devices, vol. 46, pp.2139-2144, 1999.
[3] C. H. Henry, “Limiting efficiency of ideal single and multiple energy gap terrestrial solar cells”, J. Appl. Phys. vol. 51, pp.4494-4500, 1980.
[4]M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys., vol. 31, pp.L853-L855, 1992.
[5] M. Kondow, K. Uomi, A. Niwa, and T. Kitatani, “GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys., vol. 35, pp. 1273-1275, 1996.
[6] G. Ungaro, G. Le Roux, R. Teissier, and J. C. Harmand, “GaAsSbN: a new low-bandgap material for GaAs substrates,” Electron. Lett., vol. 35, pp.1246-1248, 1999.
[7] H. Luo, J. A. Gupta, and H. C. Liu, “1.55μm GaAsSbN photodetector on GaAs,” Appl. Phys. Lett., vol. 86, pp.21-23, May 2005.
[8] N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition,” IEEE J. Sel Top. Quantum Electron., vol. 9 no. 3 pp. 1220-1227, Sept-Oct. 2003.
[9] H. Riechert, A. Y. Egorov, D. Livshits, B.Borchert, and S. Illek, “InGaAsN-GaAs heterostructures for long-wavelength light-wavelength light-emitting devices,” Nanotechnology, vol. 11, pp. 201-205, 2000.
[10] T. Miyamoto and F. Koyama, “GaInNAs based laser diodes grown by MOVPE,” 11th Int. Conf. Metalorganic Vapor Phase Epitaxy (ICMOVPE XI), Berlin, Germany, paper Tue-A1, Jun. 2002.
[11] C. W. Coldren, M. C. Larson, S. G. Spruytte, and J. S. Harris, “1200 nm GaAs based vertical cavity lasers employing GaInNAs multiple quantum well active regions,” Electron. Lett., vol. 36, pp. 951-952, 2000.
[12] A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett., vol. 37, pp. 355-356, 2001.
[13] N. M. Margalit, K. A. Black, Y. J. Chiu, E. R. Hegblom, K. Streubel, P. Abraham, M. Anzlowar, J. E. Bowers, and E. L. Hu, “Top-emitting double fused 1.5μm vertical cavity lasers,” Electron. Lett., vol. 34, no. 3, pp. 285-287, 1998.
[14] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friendman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. B., vol. 82, pp. 1221-1224, 1999.
[15] F. Bousbih, S. Ben Bouzid, R. Chtourou, F. F. Charfi, J. C. Harmand and G. Ungaro, “Effect of nitrogen in the electronic structure of GaAsN and GaAsSb(N) compounds,” Material Science and Engineering C, vol. 21, pp. 251-254, 2002.
[16] S. R. Bank, H. Bae, L. L. Goddard, H. B. Yuen, M. A. Wistey, R. Kudrawiec, and J. S. Harris, Jr., “Recent progress on 1.55-μm dilute nitride lasers,” IEEE J. Quantum Electron., vol. 43, pp. 773-785, 2007.
[17] J. C. Harmand, G. Ungaro, L. Largean, and G. L. Roux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN,” Appl. Phys. Lett., vol. 77, 2482, 2000.
[18] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam, “Structural changes during annealing of GaInAsN,” Appl. Phys. Lett., vol. 78, 748, 2001.
[19] D. Jackrel, A. Ptak, S. Bank, H. Yuen, M. Wistey, D. Friendman, S Kurtz, and J. S. Harris, “GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy,” Proceeding of WCPEC4, 783, 2006.
[20] S. Wicaksono, S. F. Yoon, W. K. Loke, K. H. tan, and B. K. Ng, “Effect of growth temperature on closely lattice-matched GaAsSbN intrinsic layer for GaAs-based 1.3 µm p-i-n photodetector,” J. Appl. Phys., vol. 99, 104502, 2006.
[21] H. Luo, J. A. Gupta, and H. C. Liu, “1.55 µm GaNAsSb photodetector on GaAs,” Appl. Phys. Lett., vol. 86, 211121, 2005.
[22] T. C. Ma, Y. T. Lin, T. Y. Chen, L. C. Chou, and H. H. Lin, “Incorporation behaviors of group V elements in GaAsSbN grown by gas source molecular beam epitaxy,” in the proceedings 19th IPRM, pp.350-353, May 2007.
[23] T. Y. Chen, “Photoluminescence study of GaAsSbN bulk epilayers on GaAs substrates,” GIEE, National Taiwan University, 2007.
[24] Y. T. Lin, “Studies on the optical and structure properties of bulk GaAsSbN epilayers on GaAs,” GIEE, National Taiwan University, 2007.
[25] S. A. Lourenco, I. F. L. Dias, L. C. Pocas, and J. L. Duarte, “Effect of temperature on the optical properties of GaAsSbN/GaAs single quantum wells grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 93, pp. 4475-4479, 2003.
[26] T. K. Ng, S. F. Yoon, S. Z. Wang, W. K. Loke, and W. J. Fan, “Photoluminescence characteristics of GaInNAs quantum wells annealed at high temperature,” J. Vac. Sci. Technol. B, vol. 20, pp.964-968, 2002.
[27] M. -A. Pinault and E. Tournie, “On the origin of carrier localization in Ga1-xInxNyAs1-y/GaAs quantum wells,” Appl. Phys. Lett., vol. 78, pp.1562-1565 2001.
[28] R. J. Klar, H. Grunning, J. Koch, S. Schafer, K. Volz, W. Stolz, and W. Heimbrodt, A. M. Kamel Saadi, A. Lindsay, and E. P. O Reill, “(Ga,In)(N,As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen,” Phys. Review B, vol. 64,121203(R), 2001.
[29] J. Li. S. Lyer, S. Bharatan, L. Wu, K. Nunna, W. Collis, K. K. Bajaj, and K. Matney, “Annealing effects on the temperature dependence of photoluminescence characteristics of GaAsSbN single-quantumwells,” J. Appl. Phys., vol. 98, 013703, 2005.
[30] S. Y. Xie, S. F. Yoon, and S. Z. Wang, “Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN,” J. Appl. Phys., vol. 97, 073702, 2005.
[31] S. R. Bank, Homan B. Yuen, H. Bae, Mark A. Wistey, and J. S. Harris, Jr., “Overannealing effects in GaInNAs(Sb) alloys and their importance to laser applications” Appl. Phys. Lett., vol. 88, 221115, 2006.
[32] G. Mussler, J.-M. Chauveau, A. Trampert, M. Ramsteiner, L. Daweritz, and K. H. Ploog, “Nitrogen-dependent optimum annealing temperature of Ga(As,N),” J. Cryst. Growth, vol. 267, pp. 60-66, 2004.
[33] S. Govindaraju, J. M. Reifsnider, M. M. Oye, and A. L. Holmes, Jr., “Rapid Thermal Annealing Effects on the Photoluminescence Properties of Molecular Beam Epitaxy-Grown GaIn(N)As Quantum Wells with Ga(N)As Spacers and Barriers,” J. Electron. Mater., vol. 33, pp.851-860, 2004.
[34] T. Kageyama, T. Miyamoto, S. Makino, F. Koyama, and K. Iga, “Thermal Annealing of GaInNAs/GaAs Quantum Wells Grown by Chemical Beam Epitaxy and Its Effect on Photoluminescence,” Jpn. J. Appl. Phys., Part 2, vol. 38, pp. L298-L300, 2004.
[35] H. P. Bae, S. R. Bank, H. B. Yuen, T. Sarmiento, E. R. Pickett, M. A. Wistey, and J. S. Harris, “Temperature dependencies of annealing behaviors of GaInNAsSb/GaAs quantum wells for long wavelength dilute-nitride lasers,” Appl. Phys. Lett., vol. 90, 231119, 2007.
[36] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg, and E. D. Jones,“Minority carrier diffusion defects, and localization in InGaAsN, with 2% nitrogen,” Appl. Phys. Lett., vol. 77, pp. 400-402, 2000.
[37] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, “InGaAsN solar cells with 1.0eV band gap, lattice matched to GaAs,” Appl. Phys. Lett., vol. 74, pp. 729-731, 1999.
[38] A. J. Ptak, D. J. Friedman, S. Kurtz, and James Kiehl, “Enhanced-depletion-width GaInNAs solar cells grown by molecular-beam epitaxy”, in the proceedings of IEEE 31st PVSC, pp. 603-606, 2005.
[39] N. Miyashita, Y. Shimizu, N. Kobayashi, Y. Okada, and M. Yamaguchi, “Fabrication of GaInNAs-based solar cells for application to multi-junction tandem solar cells,” in the proceedings of 4th WCPEC, 2006.
[40] J. Wu, K. M. Yu, W. Walukiewicz, G. He, E. E. Haller, D. E. Mars, and D. R.Chamberlin, “Mutual passivation effects in Si-doped diluted InyGa1-yAs1-xNx alloys,” Phys. Rev. B, vol. 68, 195202, 2003.
[41] S. Y. Xie, S. F. Yoon, and S. Z. Wang, “Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN,” J. Appl. Phys., vol. 97, 073702, 2005.
[42] Y. G. Hong, C. W. Tu, R. K. Ahrenkiel, “Improving properties of GaInNAs with a short-period GaInAs/GaNAs superlattice,” J. Cryst. Growth, pp.536-540, 2001.
[43] R. J. Kapla, A. R. Arehart, S. A. Ringel, A. A. Allerman, R. M. Sieg, and Steven R. Kurtz, “Deep levls and their impact on generation current in Sn-doped InGaAsN,” J. Appl. Phys., vol. 90, pp. 3405-3408, 2001.
[44] A. Fukuyama, T. Ikari, Y. Akashi, and M. Suemitsu, “Interdefect correlation during thermal recovery of EL2 in semi-insulating GaAs: Proposal of a three-center-complex model,” Phys. Rev. B, vol. 67, 113202, 2003.
[45] S. Wicaksono, S. F. Yoon, W. K. Loke, K. H. Tan, K. L. Lew, M. Zegaoui, J. P. Vilcot, D. Decoster, and J. Chazelas, “Effect of growth temperature on defect states of GaAsSbN intrinsic layer in GaAs/GaAsSbN/GaAs photodiode for 1.3 μm application,” J. Appl. Phys., vol. 102, 044505, 2007.
[46] S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition.
[47] E. J. Johnson, in Semiconductors and semimetals, edited by R. K. Willarson, and A. C. Beer, vol. 3, pp. 167-169, 1967.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40706-
dc.description.abstract本論文的研究主題為熱退火對砷銻氮化鎵化合物半導體材料特性的影響以及利用砷銻氮化鎵化合物製作長波長光偵測器與太陽能電池。在砷銻氮化鎵塊材的研究中,我們發現在當氮含量超過1.7%時,矽與鈹等加入雜質有被鈍化的現象。雖然熱退火能改善光激螢光頻譜強度並且減少元件的漏電流密度,但也會提高電洞密度並造成導電型態轉換為P型。我們將這種現象歸因於熱退火所產生的受子型缺陷。在元件的研究方面,我們利用比較的方式發現異質結構、N-on-P型結構的元件最能適應熱退火所造成的導電型態轉換。接著,我們以此結構對熱退火的時間與溫度作詳細的最佳化研究。我們發現低溫長時間的熱退火條件不僅能獲得較好的光激發螢光強度而且有較低的受子型缺陷。最後,我們利用異質結構、N-on-P的元件結構製作截止波長超過1600 nm的光偵測器以及轉換效率達3.64%的1-eV太陽能電池。zh_TW
dc.description.abstractWe have studied the effect of thermal annealing on the properties of GaAsSbN and the fabrication of GaAsSbN PIN devices. Passivation of Si and Be dopants in as-grown GaAsSbN was observed when the composition of nitrogen exceeded 1.7%. Although thermal annealing can improve the photoluminescence intensity and decrease the leakage current of the PIN junction, it results in high hole concentrations, leading to the conduction-type conversion in un-doped and Si-doped GaAsSbN. This phenomenon is ascribed to the generation of acceptor-type defects during the annealing process. After a comparative study on the device structures, we found that the N-on-P hetero-junction device has the best immunity to the type conversion effect resulting from the annealing process. Then, the effect of annealing temperature and duration on the device performance was systematically investigated. We found that annealing at 650en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:56:46Z (GMT). No. of bitstreams: 1
ntu-97-R95943053-1.pdf: 1945786 bytes, checksum: a15ab26735c96654cfae72b05a4d939d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要…………………………………………………………………………I
Abstract………………………………………………………………………II
Figure captions……………………………………………………………V
Chapter 1 Introduction 1
11 Applications of dilute nitride to solar cell 1
12 Properties of dilute nitride 4
13 Annealing effect 5
14 Device structure 7
15 This work 8
Chapter 2 Experiments 14
21 Growth of GaAsSbN 14
22 Electron Probe X-ray Micro-Analysis (EPMA) 15
23 X-ray diffractometry (XRD) 15
24 Rapid Thermal Annealing 15
25 Van der Pauw measurement 16
26 Photoluminescence (PL) measurement 17
27 Fabrication process 17
28 Photocurrent-Voltage (IV) measurement 19
29 Capacitance-Voltage (CV) measurement 20
210 Quantum efficiency (QE) measurement 20
Chapter 3 Results and Discussions 24
31 Properties of GaAsSbN 24
32 Structure of GaAsSbN Device 29
321 Homo-junction versus hetero-junction structures 29
322 P-on-N versus N-on-P structures 31
323 Devices with different N composition 32
33 Optimal annealing condition for PIN devices 35
34 Energy gap determined from spectral response 37
Chapter 4 Conclusion 61
Reference 62
dc.language.isoen
dc.subject分子磊晶成長zh_TW
dc.subject含氮元件zh_TW
dc.subject砷銻氮化鎵zh_TW
dc.subject光偵測器zh_TW
dc.subject太陽能電池zh_TW
dc.subjectMBEen
dc.subjectdilute nitrideen
dc.subjectGaAsSbNen
dc.subjectphotodetectoren
dc.subjectsolar cellen
dc.title砷銻氮化鎵之材料特性與光電元件研究zh_TW
dc.titleStudy on the properties of GaAsSbN and the applications to Optoelectronic devicesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鶯聲,辛華煜,蔡世貞,毛明華
dc.subject.keyword含氮元件,砷銻氮化鎵,光偵測器,太陽能電池,分子磊晶成長,zh_TW
dc.subject.keyworddilute nitride,GaAsSbN,photodetector,solar cell,MBE,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved