請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Wei-Yi Feng | en |
| dc.contributor.author | 馮偉意 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:56:12Z | - |
| dc.date.available | 2010-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | [1]Y. Yuh-Shyong, L. Ude, and B. C. P. Hu, 'Prescription chips,' Circuits and Devices Magazine, IEEE, vol. 18, pp. 8-16, 2002.
[2]J. Homola, 'Present and future of surface plasmon resonance biosensors,' Analytical and Bioanalytical Chemistry, vol. 54, pp. 3-15, 2003. [3]C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S. Lin, X.-j. Shi, and C.-K. Lee, 'Admittance loci design method for multilayer surface plasmon resonance devices,' Sensors and Actuators B: Chemical, vol. 117, pp. 219-229, 2006. [4]K. M. Ashutosh, 'Nitric oxide and asthma: a review,' Current Opinion in Pulmonary Medicine, vol. 6, pp. 21-25, 2000. [5]N. Yamazoe, G. Sakai, and K. Shimanoe, 'Oxide Semiconductor Gas Sensors,' Catalysis Surveys from Asia, vol. 7, pp. 63-75, 2003. [6]R. P. Bene, I.V.; Réti, F; Meyer, F.A.; Fleisher, M.; Meixner, H., 'Chemical reactions in the detection of acetone and NO by a CeO2 thin film,' Sensors and Actuators B: Chemical, vol. 71, pp. 36-41, 2000. [7]N. G. M. Patel, K.K; Panchal, C.J; Dave, D.B; Vaishnav, V.S., 'Fabrication of carbon tetrachloride gas sensors using indium tin oxide thin films,' Sensors and Actuators B: Chemical, vol. 23, pp. 49-53, 1995. [8]B. Ruhland, T. Becker, and G. Mler, 'Gas-kinetic interactions of nitrous oxides with SnO2 surfaces,' Sensors and Actuators B: Chemical, vol. 50, pp. 85-94, 1998. [9]T. H. Miyata, Tomohiro; Minami, Tadatsugu, 'High sensitivity chlorine gas sensors using multicomponent transparent conducting oxide thin films,' Sensors and Actuators B: Chemical, vol. 69, pp. 16-21, 2000. [10]K. Nagata and H. H. (Eds.), Real-time Analysis of Biomolecular Interactions. TOKYO: Springer-Verlag, 2000. [11]Z. Salamon, H. A. Macleod, and G. Tollin, 'Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles,' Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol. 1331, pp. 117-129, 1997. [12]Z. Salamon, H. A. Macleod, and G. Tollin, 'Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,' Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol. 1331, pp. 131-152, 1997. [13]Mircea S. Rogalski and Stuart B. Palmer, Solid state physics: Gordon & Breach Science publishers, 2000. [14]K.-P. Chen, 'Design and Fabrication of Optical Thin Film for SPR Bio-Sensor Chip,' in Institute of Biomedical Engineering Taipei: National Taiwan University, 2004. [15]J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999. [16]B. H. Cuthbertson, S. Stott, and N. R. Webster, 'Use of inhaled nitric oxide in British intensive therapy units,' British Journal of Anaesthesia, vol. 78, pp. 696-700, June 1 1997. [17]郭益男, '反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,' in 電機工程學系: 國立中山大學, 2004. [18]J. Anderson and G. V. d. W. Chris, 'Oxygen vacancies in ZnO,' APPLIED PHYSICS LETTERS, vol. 87, p. 122102, 2005. [19]D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, 'ZnO: growth, doping & processing,' Materials Today, vol. 7, pp. 34-40, 2004. [20]T. K. Subramanyam, B. S. Naidu, and S. Uthanna, 'Physical Properties of Zinc Oxide Films Prepared by dc Reactive Magnetron Sputtering at Different Sputtering Pressures,' Crystal Research and Technology, vol. 35, pp. 1193-1202, 2000. [21]P. Nunes, D. Costa, E. Fortunato, and R. Martins, 'Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering,' Vacuum, vol. 64, pp. 293-297, 2002. [22]L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang, and X. Xu, 'The photo- and electro-luminescence properties of ZnO:Zn thin film,' Displays, vol. 21, pp. 147-149, 2000. [23]E.M. Bachari, G. Baud, S. Ben Amor, and M. Jacquet, 'Structural and optical properties of sputtered ZnO flms,' Thin Solid Films, vol. 348, pp. 165-172, 1999. [24]Y. H. Lee, M. H. Song, B. K. Ju, D. K. Shin, and M. H. Oh, 'Thin film phosphor prepared by physical vapor deposition for field emission display application,' in The 9th international vacuum microelectronics conference, St.Petersburg (Russia), 1997, pp. 512-515. [25]M. H. W. F. A. Selim, D. Solodovnikov, K. G. Lynn, 'Nature of Native Defects in ZnO,' PHYSICAL REVIEW LETTERS, vol. 99, p. 085502, 2007. [26]C.-L. C. H.-Y. Lin, Y.-Y. Chou, L.-L. Huang, Y.-F. Chen, K.-T. Tsen, 'Enhancement of band gap emission stimulated by defect loss,' OPTICS EXPRESS, vol. 14, p. 6, 2006. [27]M. G. Kenichi OZAKI, 'Strong Ultraviolet Photoluminescence in Polycrystalline ZnO Sputtered Films,' The Japan Society of Applied Physics, vol. 41, pp. 5614–5617, 2002. [28]Y.-W. C. Ting-Jen Hsueh, Shoou-Jinn Chang, Sea-Fue Wang, and Y.-R. L. Cheng-Liang Hsu, Tzer-Shen Lin, I-Cherng Chen, 'ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures,' Journal of The Electrochemical Society, vol. 154, pp. J393-J396, 2007. [29]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, 'Mechanisms behind green photoluminescence in ZnO phosphor powders,' Journal of Applied Physics, vol. 79, pp. 7983-7990, 1996. [30]C. H. Ong, J. H. Wang, H. Gong, and H. S. O. Chan, 'Crystal Structure and Gas Sensing Properties of Cu-Doped Zinc Oxide,' International Journal of Modern Physics B: Condensed Matter Physics; Statistical Physics; Applied Physics, vol. 16, p. 314, 2002. [31]M. E. Franke, T. J. Koplin, and U. Simon, 'Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?,' Small, vol. 2, pp. 36-50, 2006. [32]A. M. Gas’kov and M. N. Rumyantseva, 'Nature of Gas Sensitivity in Nanocrystalline Metal Oxides,' Russian Journal of Applied Chemistry, vol. 74, pp. 440-444, 2001. [33]B. Bhushan, S. C. Kashyap, and K. L. Chopra, 'Electrical and dielectric behavior of a zinc oxide composite,' Journal of Applied Physics, vol. 52, pp. 2932-2936, 1981. [34]H.-J. L. Lim, Deuk Yong; Oh, Young-Jei, 'Gas sensing properties of ZnO thin films prepared by microcontact printing,' Sensors & Actuators: A. Physical, vol. 125, pp. 405-410, 2006. [35]C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, 'Metal oxide nanocrystals for gas sensing,' Sensors and Actuators B: Chemical, vol. 109, pp. 2-6, 2005. [36]W. S. Göpel, Klaus Dieter, 'SnO2 sensors: current status and future prospects,' Sensors and Actuators B: Chemical vol. 26, pp. 1-12, 1995. [37]G. M. Sakai, Naoki; Shimanoe, Kengo; Yamazoe, Noboru, 'Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,' Sensors and Actuators B: Chemical vol. 80, pp. 125-131, 2001. [38]M. N. Kamalasanan and S. Chandra, 'Sol-gel synthesis of ZnO thin films,' Thin Solid Films, vol. 288, pp. 112-115, 1996. [39]F. E. L. Paraguay D., W.; Acosta N., D.R.; Andrade, E.; Miki-Yoshida, M., 'Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis ' Thin Solid Films, vol. 350, p. 192, 1999. [40]Kiyoshi Nakamura, Tatsuya Shoji, and Hee-Bog Kang, 'ZnO Film Growth on (0112)LiTaO3 by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy and Determination of Its Polarity ' Japanese Journal of Applied Physics, vol. 39, pp. L534-L536, 2000. [41]H. S. Tadatsugu Minami, Shinzo Takata and Hirotoshi Sato, 'Transparent and Conductive ZnO Thin Films Prepared by Atmospheric-Pressure Chemical Vapor Deposition Using Zinc Acetylacetonate,' Japanese Journal of Applied Physics, vol. 33, pp. L743-L746, 1994. [42]N. J. M. Ianno, L.; Shaikh, N., 'Characterization of pulsed laser deposited zinc oxide,' Thin Solid Films, vol. 220, p. 92, 1992. [43]A. Z. S. Maniv, 'Controlled texture of reactively rf-sputtered ZnO thin films,' Journal of Applied Physics, vol. 49, p. 2787, 1978. [44]W.-C. S. M.-S. Wu, W.-H. Tsai, 'Growth of ZnO thin films on interdigital transducer/Corning 7059 glass substrates by two-step fabrication methods for surface acoustic wave applications,' Journal of Physics F: Metal Physics, vol. 31, p. 943, 1998. [45]K. Y. Hashimoto, S. Ogawa, A. Nonoguchi, T. Omori, and M. Yamaguchi, 'Preparation of piezoelectric ZnO films by target facing type of sputtering method,' in Ultrasonics Symposium, 1998. Proceedings., 1998 IEEE, 1998, pp. 207-212 vol.1. [46]W. Water and S.-Y. Chu, 'Physical and structural properties of ZnO sputtered films,' Materials Letters, vol. 55, pp. 67-72, 2002. [47]M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis, 'ZnO transparent thin films for gas sensor applications,' Thin Solid Films, vol. 515, pp. 551-554, 2003. [48]H. Oechsner, 'Sputtering—a review of some recent experimental and theoretical aspects ' Applied Physics A: Materials Science & Processing, vol. 8, pp. 185-198, 1975. [49]R. W. Berry, P. M. Hall, M. T. Harris, and J. Klerer, 'Thin Film Technology,' Journal of The Electrochemical Society, vol. 117, pp. 180C-180C, 1970. [50]D. A. E. L. Yakshin, Eric Drs; Bijkerk, Dr. Frederik, 'Method for the production of multi-layer systems,' 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40692 | - |
| dc.description.abstract | 表面電漿共振是一種光學式的生物/化學感測器,具有良好的靈敏度、非接觸式、即時反應、及可平行檢測等優點,已在生物分子與化學的檢測元件上成為非常重要之檢定方式。我們的研究是以氧化鋅奈米結構做為一種新式光學氣體檢測裝置之感測層,藉由最佳化之氧化鋅結構與薄膜特性,提供最理想的表面電漿共振曲線與靈敏度,以利未來於一氧化氮氣體檢測之疾病診斷以及環境氣體監視之應用。
本研究中我們以射頻濺鍍系統製作氧化鋅奈米薄膜,由於氧化鋅薄膜其感測效能與其各項薄膜特性皆息息相關,如表面粗糙度、表面晶粒大小、薄膜導電度、光致螢光特性…等,其中薄膜的自由載子濃度與氧化鋅本身之晶格缺陷有關,因此氧化鋅薄膜的感測效能評估將藉由其薄膜電性、螢光特性與表面結構來評估。在物性分析部分,我們利用X光繞射儀、場發射電子顯微鏡與原子力顯微鏡於分析感測薄膜之表面結構與薄膜特性。在螢光特性方面,亦藉由光致螢光光譜儀,分析在不同濺鍍條件下所得的薄膜其光激發光特性,並藉此了解薄膜之缺陷情況。 在本論文實驗中,我們已成功的結合氧化鋅奈米結構於表面電漿共振檢測裝置於一氧化氮氣體之偵測。由薄膜分析實驗結果得知,無氧環境下所沉積之氧化鋅薄膜具有較高比例的氧空缺,進而造成較高之薄膜導電度與較強之綠光發光波段,由氣體感測實驗結果呈現,與此一薄膜特性結合之表面電漿共振氣體感測器已具有快速、可逆反應、低溫以及高靈敏度等良好特性,於未來可望成為一低功率之光學式表面電漿共振氣體感測裝置。 | zh_TW |
| dc.description.abstract | Surface plasmon resonance (SPR) sensing technique, which provides advantages of high sensitivity, non-contact, real-time, and parallel detection, has been developed and played an important role for biomolecular and biochemical sensor. In this study, we proposed to design SPR sensing chip combined with the Zinc Oxide (ZnO) nano-film as a novel optical SPR gas sensor. Depending on the optimal design of ZnO sensing film, it provided better SPR curve and sensitivity and in the future will be able to apply to nitric oxide (NO) detector, which is a critical index in asthma diagnostic, and environmental toxic gas sensor.
In this study, we used the radio-frequency sputtering deposition system to prepare the ZnO nano-film. Because the sensing performance of ZnO is intimately related to the physical properties, for instance, the surface roughness, grain size, conductivity, photoluminescence…etc, the study of the electricity and optics as well as morphology are very important and could be the evaluation index for gas sensing performance. The physical characteristics of ZnO thin films were obtained by the analyses of XRD, SEM, and AFM. The optical properties of ZnO thin films with different sputtering parameters were also studied by measuring the photoluminescence spectrometer. In the experiments of this thesis, we have successfully combined the ZnO nano-structure with the SPR sensor to serve as a nitric oxide gas detector. According to the experimental result, it is found that under less oxygen sputtering environment, there is higher extent of oxygen vacancies in the ZnO thin film and, therefore, it has higher conductivity and stronger defect emission at the PL experiment. By combining the oxygen defect ZnO film with SPR, this novel type gas sensor provides several advantages such as fast, reversible, low working temperature and high sensitivity and is able to serve as a low-power required optical surface plasmon resonance gas sensor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:56:12Z (GMT). No. of bitstreams: 1 ntu-96-R95548048-1.pdf: 2635493 bytes, checksum: d889c018a7382a6f33e4ae78c692483d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT I
ABSTRACT II 中文摘要 IV CONTENTS V GRAPH INDEX VII TABLE INDEX IX CHAPTER 1 INTRODUCTION 1 1.1 RESEARCH BACKGROUND 1 1.2 PAPER REVIEW 2 1.3 CONTRIBUTION 3 1.4 STRUCTURE OF THIS THESIS 5 CHAPTER 2 THEORY ANALYSIS 6 2.1 SURFACE PLASMON RESONANCE 6 2.1.1 Surface Plasmon Wave (SPW) 6 2.1.2 Excitation of Surface Plasmon Resonance 11 2.1.3 SPR Sensing Mechanism 13 2.2 NITRIC OXIDE 14 2.3 ZINC OXIDE THIN FILM 15 2.3.1 Introduction of Zinc Oxide 15 2.3.2 The Light Emission Properties 16 2.3.3 SPR Curve with ZnO Thin Film 20 2.4 THE GAS SENSING PRINCIPLES 21 2.4.1 NO Acts As Reducing Gas 22 2.4.2 NO Acts As Oxidizing Gas 24 2.4.3 The Grain Size and Surface Roughness 24 2.4.4 Conductivity and Relative Permittivity 26 2.5 THE PRINCIPLE OF RADIO-FREQUENCY SPUTTERING SYSTEM 27 2.5.1 DC Glow Discharge Phenomenon 28 2.5.2 Radio-Frequency Sputtering System 29 CHAPTER 3 EXPERIMENTAL SETUP 31 3.1 THE PREPARATION OF SPR GAS SENSING CHIP 31 3.1.1 The Substrate Cleaning Procedures 32 3.1.2 The E-Beam Evaporator And Metal Films Deposition 33 3.1.3 The Sputtering System and Sensing Film Deposition 38 3.2 THE ANALYSIS OF THIN FILMS 40 3.2.1 X-ray Diffraction 40 3.2.2 The Scanning Electron Microscope 41 3.2.3 Atomic Force Microscope 42 3.2.4 Photoluminescence Spectrometer 42 3.3 GAS SENSING SYSTEM SETUP 42 3.3.1 Ellipsometry, EP3 43 3.3.2 GWC SPR-Imager System 44 3.3.3 The Gas Sensing Components 45 3.4 NITRIC OXIDE GAS SENSING PROCEDURES 45 CHAPTER 4 RESULTS AND DISCUSSION 47 4.1 ADJUSTMENT OF SPR CHIPS FABRICATIONS 47 4.2 THE STRUCTURAL AND OPTICAL PROPERTIES OF THIN FILMS 48 4.2.1 Results of ZnO Film Deposition 49 4.2.2 The XRD for Lattice Analysis 49 4.2.3 The SEM for Structural Analysis 51 4.2.4 The AFM for Surface Analysis 53 4.2.5 The PL for Crystal Defect Analysis 55 4.3 THE OPTIMIZATION OF SPR CURVE WITH ZNO THIN FILMS 55 4.3.1 The SPR Curve with Normal ZnO Films 56 4.3.2 The SPR Curve with Defect ZnO Films 57 4.4 THE GAS SENSING RESULTS 59 4.4.1 Normal ZnO Films 59 4.4.2 Defect ZnO Films 61 CHAPTER 5 CONCLUSION AND FUTURE WORK 63 CONTRIBUTION 65 REFERANCE 67 | |
| dc.language.iso | en | |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 氣體感測器 | zh_TW |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 半導體薄膜 | zh_TW |
| dc.subject | Gas sensor | en |
| dc.subject | Surface plasmon resonance | en |
| dc.subject | Metal oxide thin film | en |
| dc.subject | Zinc oxide | en |
| dc.subject | Nitric oxide | en |
| dc.title | 應用氧化鋅奈米結構發展創新型表面電漿共振氣體感測晶片 | zh_TW |
| dc.title | Development of a Novel SPR-based Gas Sensor with ZnO Nano-structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李世光(Chih-Kung Lee),何國川(Kuo-Chuan Ho),陳一誠(I-Cherng Chen) | |
| dc.subject.keyword | 氣體感測器,一氧化氮,氧化鋅,半導體薄膜,表面電漿共振, | zh_TW |
| dc.subject.keyword | Gas sensor,Nitric oxide,Zinc oxide,Metal oxide thin film,Surface plasmon resonance, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
