Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇(Yao-Yu Chuang)
dc.contributor.authorYu Kangen
dc.contributor.author康 瑜zh_TW
dc.date.accessioned2021-06-14T16:55:50Z-
dc.date.available2010-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citationReference
1. Parkin, D.M., et al., Global cancer statistics, 2002. CA Cancer J Clin, 2005. 55(2): p. 74-108.
2. Jemal, A., et al., Cancer statistics, 2007. CA Cancer J Clin, 2007. 57(1): p. 43-66.
3. 行政院衛生署衛生統計資料網, Health and National Health Insurance Annual Statistics Information Service
4. Travis, W.D., Pathology of lung cancer. Clin Chest Med, 2002. 23(1): p. 65-81, viii.
5. Spira, A. and D.S. Ettinger, Multidisciplinary management of lung cancer. N Engl J Med, 2004. 350(4): p. 379-92.
6. Perez CA, P.T., Rubin P, et al., Long-Term Observations of the Patterns of Failure in Patients With Unresectable Non-Oat Cell Carcinoma of the Lung Treated With Definitive Radiotherapy.Report by the Radiation Therapy Oncology Group. Cancer 1987. 59: p. 1874-81.
7. Jackson, S.P., Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002. 23(5): p. 687-96.
8. Dent, P., et al., Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res, 2003. 159(3): p. 283-300.
9. Iliakis, G., et al., DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene, 2003. 22(37): p. 5834-47.
10. Hartwell, L.H. and T.A. Weinert, Checkpoints: controls that ensure the order of cell cycle events. Science, 1989. 246(4930): p. 629-34.
11. Lucke-Huhle, C., Alpha-irradiation-induced G2 delay: a period of cell recovery. Radiat Res, 1982. 89(2): p. 298-308.
12. Tobey, R.A., Different drugs arrest cells at a number of distinct stages in G2. Nature, 1975. 254(5497): p. 245-7.
13. Kastan, M.B. and J. Bartek, Cell-cycle checkpoints and cancer. Nature, 2004. 432(7015): p. 316-23.
14. Smits, V.A., et al., Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol, 2000. 2(9): p. 672-6.
15. Muschel, R.J., et al., Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. Cancer Res, 1991. 51(19): p. 5113-7.
16. Bao, S., et al., ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature, 2001. 411(6840): p. 969-74.
17. AHW, N., An introduction to radiobiology, ed. 2nd. 2000, Chichester,England: John Wiley&Sons Ltd.
18. Dent, P., et al., MAPK pathways in radiation responses. Oncogene, 2003. 22(37): p. 5885-96.
19. Baselga, J., et al., Autocrine regulation of membrane transforming growth factor-alpha cleavage. J Biol Chem, 1996. 271(6): p. 3279-84.
20. Schmidt-Ullrich, R.K., et al., Expression of oestrogen receptor and transforming growth factor-alpha in MCF-7 cells after exposure to fractionated irradiation. Int J Radiat Biol, 1992. 61(3): p. 405-15.
21. Schulze, A. and J. Downward, Navigating gene expression using microarrays--a technology review. Nat Cell Biol, 2001. 3(8): p. E190-5.
22. Amundson, S.A., et al., Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res, 2008. 68(2): p. 415-24.
23. Tsai, M.H., et al., Transcriptional responses to ionizing radiation reveal that p53R2 protects against radiation-induced mutagenesis in human lymphoblastoid cells. Oncogene, 2006. 25(4): p. 622-32.
24. Radtke, F. and K. Raj, The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer, 2003. 3(10): p. 756-67.
25. Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake, Notch signaling: cell fate control and signal integration in development. Science, 1999. 284(5415): p. 770-6.
26. Miele, L., Notch signaling. Clin Cancer Res, 2006. 12(4): p. 1074-9.
27. Weng, A.P. and J.C. Aster, Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev, 2004. 14(1): p. 48-54.
28. Santagata, S., et al., JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res, 2004. 64(19): p. 6854-7.
29. Dickson, B.C., et al., High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol, 2007. 20(6): p. 685-93.
30. Bhattacharjee, A., et al., Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13790-5.
31. Kruse, J.J., et al., Identification of differentially expressed genes in mouse kidney after irradiation using microarray analysis. Radiat Res, 2004. 161(1): p. 28-38.
32. Gray, G.E., et al., Human ligands of the Notch receptor. Am J Pathol, 1999. 154(3): p. 785-94.
33. Zhang, Y., et al., Down-regulation of Jagged-1 induces cell growth inhibition and S phase arrest in prostate cancer cells. Int J Cancer, 2006. 119(9): p. 2071-7.
34. Fitzek, M.M., et al., Unexpected sensitivity to radiation of fibroblasts from unaffected parents of children with hereditary retinoblastoma. Int J Cancer, 2002. 99(5): p. 764-8.
35. Chuang, E.Y., et al., Abnormal gene expression profiles in unaffected parents of patients with hereditary-type retinoblastoma. Cancer Res, 2006. 66(7): p. 3428-33.
36. Siebenlist, U., G. Franzoso, and K. Brown, Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol, 1994. 10: p. 405-55.
37. Sun, X.F. and H. Zhang, NFKB and NFKBI polymorphisms in relation to susceptibility of tumour and other diseases. Histol Histopathol, 2007. 22(12): p. 1387-98.
38. Perkins, N.D., Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 2007. 8(1): p. 49-62.
39. Hayden, M.S. and S. Ghosh, Signaling to NF-kappaB. Genes Dev, 2004. 18(18): p. 2195-224.
40. Perkins, N.D., Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene, 2006. 25(51): p. 6717-30.
41. Tsai, M.F., et al., A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst, 2006. 98(12): p. 825-38.
42. Ramdass, B., et al., Coexpression of Notch1 and NF-kappaB signaling pathway components in human cervical cancer progression. Gynecol Oncol, 2007. 104(2): p. 352-61.
43. Wang, Z., et al., Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res, 2006. 66(5): p. 2778-84.
44. Bash, J., et al., Rel/NF-kappaB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. EMBO J, 1999. 18(10): p. 2803-11.
45. Cheng, P., et al., Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol, 2001. 167(8): p. 4458-67.
46. Espinosa, L., et al., IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFkappaB pathways. Mol Biol Cell, 2003. 14(2): p. 491-502.
47. Moran, S.T., et al., Synergism between NF-kappa B1/p50 and Notch2 during the development of marginal zone B lymphocytes. J Immunol, 2007. 179(1): p. 195-200.
48. Osipo, C., et al., Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest, 2008. 88(1): p. 11-7.
49. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60.
50. Yang, P.C., et al., Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol, 1992. 7(2): p. 161-71.
51. Chen, J.J., et al., Global analysis of gene expression in invasion by a lung cancer model. Cancer Res, 2001. 61(13): p. 5223-30.
52. Mohindra, A., et al., A tumour-derived mutant allele of XRCC2 preferentially suppresses homologous recombination at DNA replication forks. Hum Mol Genet, 2004. 13(2): p. 203-12.
53. Stahl, M., et al., Roles of Pofut1 and O-fucose in mammalian Notch signaling. J Biol Chem, 2008. 283(20): p. 13638-51.
54. Amon, A., The spindle checkpoint. Curr Opin Genet Dev, 1999. 9(1): p. 69-75.
55. Ma, L., X. Zhao, and X. Zhu, Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. J Biomed Sci, 2006. 13(2): p. 205-13.
56. Valerie, K. and L.F. Povirk, Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003. 22(37): p. 5792-812.
57. Cragg, J.E.a.M.S., Mitotic death: a mechanism of survival? A review Cancer Cell International 2001. 1(1): p. 1-7.
58. LaTulippe, E., et al., Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res, 2002. 62(15): p. 4499-506.
59. Shareef, M.M., et al., Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res, 2007. 67(24): p. 11811-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40683-
dc.description.abstract肺癌是全世界最普及、致死率最高的癌症。非小細胞肺腺癌佔肺癌病人的百分之八十,不論是否為轉移的腫瘤,經由放射治療後的五年存活率僅達百分之五。然而,關於肺癌細胞對輻射線的反應機制仍不清楚。本研究以具有不同遷移能力之人類肺腺癌細胞CL1-0和CL1-5作為離體的研究對象。本研究目的在於利用微陣列晶片探討造成兩株肺腺癌細胞對輻射線敏感度差異之成因以及Jagged 1 基因在此兩細胞株中,細胞敏感度差異之中扮演的角色。首先使用群落形成測試法來比較兩株細胞對於輻射線敏感度的差異,接著以流式細胞分析儀分析在輻射線照射過後,細胞在不同時間點的細胞週期分佈。同時,以微陣列晶片實驗來探討在輻射線照射過後,兩細胞株相關基因變化以及分子機制。並且,在微陣列晶片資料中發現,Jagged 1的表現量在兩細胞的差異極大,而此表現形式也以即時聚合連鎖反應以及西方墨點法得到驗證。為了更近一步探討Jagged 1 在輻射線敏感度差異中扮演的角色,在CL1-0中大量表現Jagged 1,並且進行功能測試。結果顯示,CL1-5 相較於CL1-0來說,對於輻射線具有較高的敏感性。經由10 Gy 加瑪射線照射之後,CL1-0和CL1-5 均在24小時的時間點,具有最高比率的細胞停滯在G2/M期,並且均缺乏G1/S期的滯留。將微陣列的資料經由密集叢聚分析結果可知,有六個集群在兩細胞株之中表現形式差異極大,這些集群中的基因和細胞死亡、細胞週期、細胞生長、增殖與細胞功能維持有關。在其中一個不同表現的集群中,具有和G2/M細胞檢查點相關的基因,與實驗中G2/M 細胞週期停滯之引發吻合。 在CL1-0中大量表現Jagged 1之功能測試結果中發現,相較於CL1-0,其經由10 Gy輻射線照射之後,存活率上升,而經由即時聚合連鎖反應可知,其細胞中NFκBIA 的含量改變,由流式細胞分析儀的結果可知,其在24 小時,sub G1 以及 G2/M 的細胞分佈比例介於CL1-0 與CL1-5之間。 综合上述,CL1-5較CL1-0來得具有輻射線敏感性,而CL1-5主要的死亡機制是透過增殖死亡,除此之外,Jagged 1 與CL1-0以及 CL1-5輻射敏感性差異有相關連,可能與NFκBIA具有交互作用,進而影響存活率。zh_TW
dc.description.abstractLung cancer is the most common and lethal cancer in the world. NSCLC accounts for 80% lung cancer patients, and the 5-year survival rate after radiotherapy is about 5% whether the patients are with less or more extensive tumors. However, the mechanism behind radiation response of lung cancer is still not clear. Here, lung adenocarcinoma cell lines CL1-0 and CL1-5 with different metastasis abilities were used as the objects of our in vitro study. The aim of this thesis was to investigate the radiosensitivity in CL1-0 and CL1-5 via global gene expression profiles and the role of a notch ligand, Jagged 1 played in radiosensitivity. Clonogenic assay was used to obtain radio sensitivity in CL1-0 and CL1-5. To better understand the cell cycle distributions followed by radiation, flow cytometry experiment was performed at different time points. At the same time, the temporal global gene expression profile was obtained to understand the radiosenstivity via global transcriptional activities. In addition, the expression difference of Jagged 1 between CL1-0 and CL1-5 were significant in microarray, and were further confirmed by real time PCR and western blotting. To investigate the role of Jagged 1 in radiosensitivity, Jagged 1 overexpressed CL1-0 was obtained to perform functional assay. The data indicated that CL1-5 was more radiosensitive than CL1-0 after 10 Gy radiation. The irradiated CL1-0 and CL1-5 exhibited G2/M blockade and with the lack of G1/S checkpoint. Moreover, the subG1 area was significantly higher in the irradiated CL1-0 than the CL1-5 cells. From microarray data and through tight clustering analysis, there were six clusters expressed significantly different between CL1-0 and CL1-5. Genes among them were related to cell death, cell cycle, cell growth and proliferation, cellular function and maintenance. A different expression gene group between CL1-0 and CL1-5 showed genes related to G2/M checkpoint, which was consistent with the G2/M arrest activities. The Jagged 1 functional assay results showed an increasing survival rate in Jagged 1 overexpressed CL1-0 compared to CL1-0.Also, the transcription level of NFκBIA were changed in Jagged 1 overexpressed CL1-0. Compared to CL1-0 and CL1-5, Jagged 1 overexpressed CL1-0 cell line showed a mid percentage in sub G1 and G2/M phase. In conclusion, CL1-5 was more radio sensitive than CL1-0 and the death cause was mainly from mitotic death. In addition, Jagged 1 was associated partially with the radiosenstivity in CL1-0 and CL1-5, and may have a cross talk with NFκBIA.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:55:50Z (GMT). No. of bitstreams: 1
ntu-97-R95921057-1.pdf: 1134610 bytes, checksum: 9d20c83189dd01f81f4bd4ce66b2f462 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents
中文摘要 i
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Lung cancer 1
1.2 Cellular responses to ionizing radiation DNA damage 2
1.3 Global gene expression analysis by microarray 3
1.4 Notch Signaling 4
1.5 Role of Jagged 1 in cancer 5
1.6 NF-κB pathway 6
1.7 Motivation and specific aims 7
Chapter 2 Materials and Methods 9
2.1 Cell culture 9
2.2 Radiation Treatment 9
2.3 Clonogenic survival assay 10
2.4 RNA Preparation 10
2.5 Illumina microarray hybridization 11
2.6 Synthesis of cDNA and cRNA for Affymetrix microarray analysis 11
2.7 Oligonucleotide microarray hybridization 12
2.8 Validation of Microarray Results by Real-Time PCR 13
2.9 Flow cytometry analysis and apoptosis determination 14
2.10 Western Blot Analysis 15
Chapter 3 Results 16
3.1 Clonogenic survival assay of CL1-0 and CL1-5 16
3.2 Flow cytometry analysis and apoptosis determination of CL1-0 and CL1-5 16
3.3 Identification of differentially expressed genes and the gene expression profile 18
3.4 Microarray data validation by real time PCR 21
3.5 Western blot of Jagged 1 after 10Gy radiation treatment 22
3.6 Jagged 1 over expressed in CL1-0 23
3.7 Clonogenic survival assay of Jagged 1 overexpressed CL1-0 23
3.8 Flow cytometry analysis and apoptosis determination of Jagged 1 over expressed CL1-0 24
3.9 Real time PCR results of Jagged 1, NFκBIA and NFκBIZ in Jagged 1 over expressed CL1-0 24
Chapter 4 Discussion 26
4.1 Elucidation of different cell survival mechanisms in CL1-0 and CL1-5- from microarray and flow cytometry results 26
4.2 Elucidation of different cell survival mechanisms in CL1-0 and CL1-5- from Jagged 1 related functional assay 29
Chapter 5 Conclusion 32
Figures 33
Tables 49
Reference 56

List of Figures
Fig 1. Survival rate of CL1-0 and CL1-5 after 5Gy and 10Gy radiation treatments 33
Fig 2. Cell cycle distribution in CL1-0 and CL1-5 34
Fig 3.Cell Cycle distributions in CL1-0 and CL1-5 after 10Gy radiation treatment 36
Fig 4. The top 5 gene functions and canonical pathways of 1595 genes analyzed by IPA 37
(a) Top 5 gene functions of 1595 genes 37
(b) Top 5 canonical pathways of 1595 genes 37
Fig 5. Tight cluster analysis results of six differentially expressed clusters in CL1-0 and CL1-5 after 10 Gy radiation treatments 39
Fig 6. Validation of Jagged 1 expressions in microarray by real-time PCR 41
Fig 7. Validation of NFκBIA expressions in microarray by real-time PCR 42
Fig 8. Validation of NFκBIZ expressions in microarray by real-time PCR 43
Fig 9. Western Blot Analysis of Jagged 1 protein induction by 10 Gy radiation 44
Fig 10. Western blot analysis of Jagged 1 in Jagged 1 over- expressed CL1-0 45
Fig 11. Survival rate of CL1-0, CL1-5, and Jagged 1 overexpressed CL1-0 after 10Gy radiation treatments 46
Fig 12. Sub G1 and G2M phase distributions in CL1-0, CL1-5 and Jagged 1 over expressed in CL1-0 after 10Gy radiation treatment 47
Fig 13. TNF-α is induced after 10Gy radiation in CL1-5. 48

List of Tables
Table 1. The top functions of 5 major networks in 1595 genes 49
Table 2 The related networks of six differentially expressed clusters 50
Cluster a 50
Cluster b 50
Cluster c 51
Cluster d 52
Cluster e 53
Cluster f 54
dc.language.isoen
dc.subjectJagged 1zh_TW
dc.subject肺癌zh_TW
dc.subject輻射zh_TW
dc.subject輻射敏感度zh_TW
dc.subject微陣列晶片zh_TW
dc.subjectmicroarrayen
dc.subjectlung canceren
dc.subjectradiationen
dc.subjectradiosensitivityen
dc.subjectJagged 1en
dc.title兩種肺癌細胞株經游離輻射誘發之基因體研究
與Jagged 1所扮演之角色
zh_TW
dc.titleGenomic Study of Radiation-Induced Transcriptional Responses and the Role of Jagged 1 in Two Closely-Related
Lung Cancer Cell Lines
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor蔡孟勳(Mong-Hsun Tsai)
dc.contributor.oralexamcommittee賴亮全(Liang-chuan Lai),何國傑(Kuo-Chieh Ho),阮雪芬(Hsueh-Fen Juan)
dc.subject.keyword肺癌,輻射,輻射敏感度,微陣列晶片,Jagged 1,zh_TW
dc.subject.keywordlung cancer,radiation,radiosensitivity,microarray,Jagged 1,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved